
A Uniform Archi tec ture for Parsing and Generat ion

Stuart M. SHIEBER

Artificial Intelligence Center
SRI International

Menlo Park, California, USA*

A b s t r a c t

The use of a single grammar for both parsing and generation
is an idea with a certain elegance, the desirability of which
several researchers have noted. In this paper, we discuss a
more radical possibility: not only can a single grammar be
used by different processes engaged in various "directions" of
processing, but one and the same language-processing archi-
tecture can be used for processing the grammar in the various
modes. In particular, parsing and generation can be viewed
as two processes engaged in by a single parameterized theo-
rem pr6ver for the logical interpretation of the formalism. We
discuss our current implementation of such an architecture,
which is parameterized in such a way that it can be used for
either purpose with grammars written in the PATR formal-
ism. Furthermore, the architecture allows fine tuning to re-
flect different processing strategies, including parsing models
intended to mimic psycholinguistic phenomena. This tuning
allows the parsing system to operate within the same realm
of efficiency as previous architectures for parsing alone, but
with much greater flexibility for engaging in other processing
regimes.

1 Introduct ion

t h e use of a single grammar for both parsing and generation is an idea
~ith a certain elegance, the desirability of which several researchers
nave noted. Of course, judging the correctness of such a system re-
quires a characterization of the meaning of grammars that is indepen-
dent of their use by a particular processing, mechanism-- tha t is, the
brmalism in which the grammars are expressed must have an abstract
~emantics. As a paradigm example of such a formalism, we might take
~ny of the various logic- or unification-based grammar formalisms.

As described by Pereira and Warren [1983], the parsing of strings
~ccording to the specifications of a grammar with an independent log-
cal semantics can be thought of as the constructive proving of the
;tring's grammaticality: parsing can he viewed as logical deduction.
-3ut, given a deductive framework that can represent the semantics
ff the formalism abstractly enough to be independent of processing,
he generation of strings matching some criteria can equally well be
hought of as a deductive process, namely, a process of constructive
~roof of the existence of a string that matches the criteria. The dif-
erence rests in which information is given as premises and what the
~oal is to be proved. This observation opens up the following possi-
bility: not only can a single grammar be used by different processes
~ngaged in various "directions" of processing, but one and the same
anguage-processing architecture can be employed for processing the
grammar in the various modes. In particular, parsing and generatioa
:an be viewed as two processes engaged in by a single parameterized
;heorem prover for the logical interpretation of the formalism.

We will discuss our current implementation of such an architecture,
~hich is parameterized in such a way that it can be used either for
~arsing or generation with respect to grammars written in a particular
~rammar formalism which has a logical semantics, the PATR formal-
sm. Furthermore, the architecture allows fine tuning to reflect differ-
mt l:':ocessing strategies, including parsing models intended to mimic
)s~'cholinguistiC phenomena. This tuning allows the parsing system to
)perate within the same realm of efficiency as previous architectures
or parsing alone, but with much greater flexibility for engaging in
,ther processing regimes.

*This research was sponsored by the Nippon Telegraph and Telephone Corpo-
ation under a contract with SRI International.

2 Language Processing as Deduction

Viewed intuitively, natural-language-utterance generation is a nonde-
terministic top-down process of building a phrase that conforms to
certain given criteria, e.g., that the phrase be a sentence and that
it convey a particular meaning. Parsing, on the other hand, is usu-
ally thought of as proceeding bottom-up in an effort to determine what
properties hold of a given expression. As we have mentioned, however,
both of these processes can be seen as variants of a single method for
extracting certain goal theorems from the deductive closure of some
given premises under the rules or constraints of the grammar. The
various processes differ as to what the premises are and which goal
theorems are of interest. In generation~ for instance, the premises are
the lexical items of the language and goal theorems are of the form
"expression a is a sentence with meaning M" for some given M. In
parsing, the premises are the words a of the sentence to be parsed
and goal theorems are of the form "expression a is a sentence (with
properties P)". In this case, a is given a priori.

This deductive view of language processing clearly presupposes an
axiomatic approach to language description. Fortunately , most cur-
rent linguistic theory approaches the problem of linguistic description
axiomatically, and many current formalisms in use in natural-language
processing, especially the logic grammar and unification-based for-
malisms follow this approach as well. Consequently, the results pre-
sented here will, for the most part, be applicable to any of these
formalisms. We will, however, describe the system schematically--
without relying on any of the particular formalisms, but using notation
that schematizes an augmented context-free formalism like definite-
clause grammars or PATR. We merely assume that grammars classify
phrases under a possibly infinite set of structured objects, as is com-
mon in the unification-based formalisms. These s t ructures-- terms in
definite-clause grammars, directed graphs in PATt~, and so forth--will
be referred to generically as nonterminais, since they play the role in
the augmented context-free formalisms that the atomic nonterminal
symbols fulfill in standard context-free grammars. We will assume
that the notion of a unifier of such objects and most general unifier
(mgu) are well defined; the symbol 0 will be used for unifiers.

Following Pereira and Warren, the lemmas we will be proving from a
grammar and a set of premises will include the same kind of conditional
information encoded by the items of Earley's parsing algorithm. In
Earley's algorithm, the existence of an item (or dotted rule) of the
form

in state set j > i makes a claim that , for some string position k > j ,
t h e substring between i and k can be classified as an N if the sub-
str!ng between j and k can be decomposed into a sequence of strings
classified, respectively, under Vm,.. . , V~. We will use a notation rem-
iniscent of Pereira and Warren's t to emphasize the conditional nature
of the claim and its independence from V1, . . . , V,n-1, namely,

[i,N *-- V,~.. 'Vn,j]

2.1 T e r m i n o l o g y

We digress here to introduce some terminology. If n = 0, then we will
leave off the arrow; [i, N,j] then expresses the fact that a constituent
admitted as a nonterminal N occurs between positions i and j . Such
items will be referred to as nonconditional items; if n > 0, the item
will be considered conditional. In the grammars we are interested in~
rules will include either all nonterminals on the right-hand side or a~I
terminals. We can think of the former as grammar rules proper, the

XLater, in the sections containing examples of the architecture's operation, we
will reintroduce V1, . . . , Vm-1 and the dot marker to aid readability.

d14

latter as lexical entries. Nonconditional i t ems formed by immediate
inference from a lexieal entry will be called lexical items. For instance,
if there is a grammar rule N P ---, sonny , then the item [0, N P , 1] is
a lexical item. A prediction i tem (or, simply, a prediction) is an item
with identical s tart and end positions.

2 .2 R u l e s o f I n f e r e n c e

The two basic deduction steps or rules of inference we will use a re - -
following Earley's terminology--predict ion and completion. 2

The inference rule of prediction is as follows:

[i ,A *- B C 1 . . 'Cm, j] B ' -+ D r . " "Dn 0 = m g u (B , B ')
[j, B'O ~- DxO. . . D,O, j]

This rule corresponds to the logically valid inference consisting of in-
stantiating a rule of the grammar as a conditional statement. 3

The inference rule of completion is as follows:

[i ,A , - B C 1 . . "Cm,j] Li, B ' , k] 0 = m g u (B , B ')
[i, AO *-- C~O.. .C~O,k]

This rule corresponds to the logically valid inference consisting of lin-
ear resolution of the conditional expression with respect to the non-
conditional (unit) lemma.

3 P a r a m e t e r i z i n g a Theorem-Proving
Archi tecture

This characterization of parsing as deduction should be familiar from
the work of Pereira and Warren. As they have demonstrated, such
a view of purging is applicable beyond the context-free grammars by
regarding the variables in the inference rules as logical variables and
using unification of B and B t to solve for the most general unifier.
Thus, this approach is applicable to most, if not all, of the logic gram-
mar or unification-based formalisms.

In particular, Pereira and Warren construct a parsing algorithm us-
ing a deduction strategy which mimics Earley's algorithm. We would
like to generalize the approach, so that the deduction strategy (or at
least portions of it) are parameters of the deduction system. The pa-
rameterization should have sufficient generality that parsers and gen-
erators with w~rious control strategies, including Pereira and Warren's
Barley deduction parser, are instances of the general architecture.

We start the development of such an architecture by considering
the unrestricted use of these two basic inference rules to form the
deductive closure of the premises and the goals. The exhaustive use
of prediction and completion as basic inference rules does provide a
complete algorithm for proving lemmas of the sort described. However,
several problems immediately present themselves.

First, proofs using these inference rules can be redundant. Various
combinations of proof steps will lead to the same lemmas, and com-
binatorial havoc may result. The traditional solution to this problem
is to store lemmas in a table, i.e., the well-formed-substring table or
chart in tabular parsing algorithms. In extending tabular parsing to
non-context-free formalisms, the use of subsumption rather than iden-
tity in testing for redundancy of lemmas becomes necessary, and has
been described elsewhere [Pereira and Shieber, 1987].

Second, deduction is a nondeterministic process and the order of
searching the various paths in the proof space is critical and differs
among processing tasks. We therefore parameterize the theorem-
proving process by a priority function tha t assigns to each lemma
a priority. Lemmas are then added to the table in order of their pri-
ority. As they are added, furtlmr lemmas that are consequences of the

2Pereira and Warren use the terms insfantiation and reduction for their analogs
to these rules.

3As Jted previously [Shieber, 1985], this rule of inference can lead to arbitrary
numbers of cousequents through repeated application when used with a grammar
formalism with an infinite [structured] nonterminal domain. The solution proposed
in that paper is to restrict the information passed from the predicting to the pre-
dicted item, corresponding to the rule

[i,A 4- BC~ •..Cry,j] B' .--* Da .•. Dn 0 = m g u (B ~ , B')
[j, B'O ~ DIO'" DuO,j]

where B ~ is a aonterminal with a bounded subset of the information of B. This
inference rule is the one actually used in the implemented system. The reader is
directed to the earlier paper for further discussion.

new lemma and existing ones in the table may be deduced• These are
themselves assigned priorities, and so forth. The technique chosen for
implementing this facet of the process is the use of an agenda struc-
tured as a priority queue to store the lemmas that have not yet been
added to the table.

Finally, depending on the kind of language processing we are inter-
ested in, the premises of the problem and the types of goal lemmas
we are searching for will be quite different. Therefore, we parameter-
ize the theorem prover by an initial set of axioms to be added to the
agenda and by a predicate on lemmas that determines which are to
be regarded as satisfying the goal conditions on lemmas.

The structure of the architecture, then, is as follows. The processor
is an agenda-based tabular theorem prover over lemmas of the sort
defined above. It is parameterized by

a The initial conditions,

u A priority function on temmas, and

• A predicate expressing the concept of a successful proofl

By varying these parameters, the processor can be used to implement
language parsers and generators embodying a wide variety of control
strategies.

4 Instances of the Archi tecture

We now define some examples of the use of the architecture to process
with grammars.

4 .1 P a r s e r I n s t a n c e s

Consider a processor to parse a given string built by using this archi-
tecture under the following parameterization:

• The initialization of the agenda includes axioms for each word
in the string (e.g., [O, sonny, 1] and [1,1eft,2] for the sentence
'Sonny left') and an initial prediction for each rule whose left-
hand side matches the start symbol of the grammar (e.g., [0, S ~-
N P VP, 0]). 4

• The priority funct ion orders lemmas inversely by. their end posi-
tion, and for lemmas with the same end position, in accordance
with their addition to the agenda in a first-in-first-out manner.

• The success criterion is that the lemma be nonconditional, that its
start and end positions be thefirst and last positions in the string,
respectively, and that the nonterminal be the start nonterminal, s

Under this parameterization, the architecture mimics Earley's algo-
ri thm parsing the sentence in question, and considers successful those
lemmas that represent proofs of the string's grammaticality with re-
spect to the grammar, s

Alternatively, by changing the priority function, we can engender
different parsing behavior. For instance, if we just order lemmas in
a last-in-first-out manner (treating the agenda as a stack) we have a
"greedy" parsing algorithm, which pursues parsing possibilities depth-
first and backtracks when dead-ends occur.

An interesting possibility involves ordering lemmas as follows:

• 1. Highest priority are prediction items, then lexical items, then
other conditional items, then other nonconditional items.

2. If (1) does not order items, items ending farther to the right have
higher priority•

3. If (1) and (2) do not order items, items constructed from the
instantiation of longer rules have higher priority.

This complex ordering implements a quite simple parsing strategy.
The first condition guarantees that no nonconditional items will be
added until conditional items have been computed• Thus, items cor-
responding to the closure (in the sense of LI~ parsing) of the non-
conditional items are always added to the table. Unlike LI~ parsing,

4For formalisms with complex structured nonterminals, the start "symbol" need
only be unifiable with the left-haud-side nonterminal. That is, if S is the start
nonterminal and S' ~ C1 .~.C, is a rule and 0 = mgu(S,S'), then [0, S'0 *-
C18... C,8, 0] is an initial prediction.

5Again, for formalisms with complex structured nontermiuals, the staxt symbol
need only subsume the item's nontermiual.

SAssuming that the prediction inference rule uses the restriction mechanism, the
architecture actually mimics the variant of Eariey's algorithm previously described
in [Shieber, 1985].

615

however, the closure here is computed at run time rather than being
preeomptled. The last two Conditions correspond to disambiguation
of shift/reduce and reduce/reduce conflicts in LR parsing respectively.
The former requires that shifts be preferred to reductions, the latter
that longer reductions receive preference.

In sum, this ordering strategy implements a sentence-disambigua-
tio n parsing method tha t has previously been argued [Shieber, 1983]
to model certain psycholinguistic phenomena--for instance, right asso-
ciation and minimal at tachment [Fra~zier and Fodor, 1978]. However,
unlike the earlier characterization in terms of LlZ disambiguation, this
mechanism can be used for arbitrary logic or unification-based gram-
mars, not just context-free grammars. Furthermore, the architecture
allows for fine tuning of the disambiguation strategy beyond that de-
scribed in earlier work. Finally, the strategy is complete, allowing
"backtracking" if earlier proof paths lead to a dead e u d f

4 .2 A P a r s i n g E x a m p l e

As a demonstration of the architecture used as a parser, we consider
the Earley and backtracking-LR instances in parsing the ambiguous
sentence:

Castillo said Sonny was shot yesterday.

Since the operation of the architecture as a parser is quite similar to
that of previous parsers for unification-based formalisms, we will only
highlight a few crucial steps in the process.

The Earley parser assigns higher priority to items ending earlier in
the sentence. The highest-priority initialization items are added first, s

[O,S-~ , N P VP, O] "

[0, N P .--+ castillo °, 1] 'Castillo'

By Completion, the item

[0, S ---* N P • VP , 1] 'Castillo'

is generated, which in turn predicts

[1, V P -4 • V P XI 1] "
[1, v p - - + . v, 1] "

[1, V P --* o V P AdvP, 1] "

The highest-priority i tem remMniug on the agenda is the initial i tem

[1, V -+ s a i d . , 2] 'said'

Processing progresses in this manner, performing all operations at
a string position before moving on to the next position until the final
position is reached, at which point the final initial i tem corresponding
to the word 'yesterday' is added. The following flurry of items is
generated by completion. 9

[5, A d v P .--+ y e s t e r d a y . , 6] 'yesterday'
(2) [I, V P ---+ V P A d v P . , 6] 'said Sonny was shot

yesterday'
(3) [3, V P ---* V P A d v P . , 6] 'was shot yesterday'

[4, V P ---* V P A d v P . , 6] 'shot yesterday'
[1, V P --* V P . A d v P , 6] 'said Sonny was shot

yesterday'
(4) [0, S ~ N P V P . , 6] 'Castillo said Sonny was

shot yesterday'
[3, V P --* V P ° Adv P, 6] 'was shot yesterday'

(5) [2, S --* N P V P ° , 6] 'Sonny was shot yesterday'
[4, V P ~ V P ° AdvP, 6] 'shot yesterday'

(6) [1, V P ---+ V P S °, 6] 'said Sonny was shot
yesterday'

[1, V P ---* V P ° AdvP, 6] ~said Sonny was shot
yesterday'

(7) [0, S --* N P V P . , 6] 'Castillo said Sonny was
shot yesterday'

' 7Modeling uf an incomplete version of the shift-reduce technique is also possible.
The simplest method, however, involves eliminating the chart completing, and
mimicking closure, shift, and reduction operations as operations on LR states (sets
of items) directly. Though this method is not a straightforward instantiation of the
architecture of Section 3 (since the chart is replaced by separate state sets), we have
implemented a parser using much of the same technology described here and have
successfully modeled the garden path phenomena that rely on the incompleteness
of the shift-reduce technique.

SThe format used in displaying these items reverts to one similar to Earley's
algorithm, with a dot marking the position in the rule covered by the string gener-
ated so far, so as to describe more clearly the portion of each grammar rule used.
In addition, the string actually parsed or generated is given in single quotes after
the item for convenience.

SThe four instances of 'said Sonny was shot yesterday' arise because of lexical
ambiguity in the verb 'said' and adverbial-attachment ambiguity. Only the finite
version of 'said' is used in forming the final sentence.

6 1 6

Note that the first full parse found (4) is derived from the high attach-
meat of the word 'yesterday' (2) (which is composed from (i) directly),
the second (7) from the low attachment (6) (derived from (5), which
is derived in turn from (3)).

By corhparison, the shift-reduce parser generates exactly the same
items as the Earley parser, but in a different order. The crucial order-
ing difference occurs in the following generated items:

(1) [5,AdvP --+ yesterday °, 6] 'yesterday'

(3) [3, V P ~ V P A d v P . , 6] 'was shot yesterday'
[3, V P ---* V P ° Adv P, 6] 'was shot yesterday'

(5) [2, S --~ N P V P °, 6] 'Sonny was shot yesterday'
(6) [1, V P - + V P S °, 6] 'said Sonny was shot

yesterday'
[1, V P --~ V P • AdvP, 6] 'said Sonny was shot

yesterday'
(7) [0, S ~ N P V P °, 6] 'Castillo said Sonny was

shot yesterday'
(8) [2, S---* N P V P °, 5] 'Sonny was shot'

[1, V P ---+ V P S , , 5] 'said Sonny was shot'
[1, V P --+ V P ° AdvP, 5] 'said Sonny was shot'

(2) [1, V P ~ V P A d v P . , 6] 'said Sonny was shot
yesterday'

[1, V P ---* V P ° AdvP, 6] 'said Sonny was shot
yesterday'

(4) [0, S ~ N P V P ° , 6] 'Castillo said Sonny was
shot yesterday'

Note that the reading of the sentence (7) with the low attachment
of the adverb-- the so-called "right association" reading--is generated
before the reading with the higher attachment (4), in accordance with
certain psycholinguistic results [Frazier and Fodor, 1978]. This is be-
cause item (3) has higher priority than item (8), since (3) corresponds
to the shifting of the word 'yesterday' and (8) to the reduction Of
an N P and V P to S. The second clause of the priority definition or-
ders such shifts before reductions. In summary, this instance of the
architecture develops parses in right-association/minlmal-attachment
preference order.

4 .3 G e n e r a t o r I n s t a n c e s

As a final example of the use of this architecture, we consider'using it
for generation by changing the initialization condition as follows:

* The ini t ial izat ion of the agenda includes axioms for each word
in the lexicon at each position (e.g., [O, s o n n y , 1] and [0, left, 1]
and /1, left, 2/, and so on) and an initial prediction for each
rule whose left-hand side is the start symbol of the grammar
(e.g., [0, S +- N P VP,0]). In the case of a grammar formalism
with more complex information structures as nonterminals, e.g.,
definite-clause grammars, the "start symbol" might include infor-
mation about, say, the meaning of the sentence to be generated,
We will refer to this as the goal meaning.

u The success cr i ter ion is that the nonterminal be subsumed by the
start nonterminal (and therefore have the appropriate meaning).

Under this parameterization, the architecture serves as a generator
for the grammar, generating sentences with the intended meaning.
By changing the priority function, the order in which possibilities are
pursued in generation can be controlled, thereby modeling depth-first
strategies, breadth-first strategies, and so forth.

Of course, as described, this approach to generation is sorely inade-
quate for several reasons. First, it requires that we initially insert the
entire lexicon into the agenda at arbitrary numbers of string positions.
Not only is it infeasible to insert the lexicon so many times (indeed,
even once is too much) but it also leads to massive redundancy in
generation. The same phrase may be generated starting at many dif-
ferent positions. For parsing, keeping track of which positions phrases
occur at is advantageous; for generation, once a phrase is generated,
we want to be able to use it in a variety of places.

A simple solution to this problem is to ignore the string positions
in the generation process. This can be done by positioning all lemmas
at a single position. Thus we need insert the lexicon only once, each
word being inserted at the single position, e.g., [0, s o n n y , 0].

Although this simplifies the set of initial items, by eliminating index-
ing based on string position we remove the feature of tabular parsing

methods such as Earley's algorithm that makes parsing reasonably effi-
cient. The generation behavior exhibited is therefore not goal-directed;
once the lexicon is inserted many phrases might be built that could
not contribute in any way to a sentence with the appropriate mean-
ing. In order to direct the behavior of the generator towards a goal
meaning, we can modify the priority function so that it is partial; not
every item will be assigned a priority and those that are not will never
be added to the table (or agenda) at all. The filter we have been using
assigns priorities only to items that might contribute semantically to
the goal meaning. In particular, the mean ing associated with the i t em

m u s t s u b s u m e s o m e por t ion o f the goal m e a n i n g } ° This technique, a
sort of indexing on meaning, replaces the indexing on string position
that is more appropriate for parsing than generation.

As a rule, filtering the items by making the priority function par-
tial can lead to incompleteness of the parsing or generation process, n
However, the subsumption filter described here for use in generation
does not yield incompleteness of the generation algorithm under one
assumption about the grammar, which we might call s e m a n t i c mono-

tonici ty. A grammar is semantically monotonic if, for every phrase
admitted by tim grammar, the semantic structure of each immediate
subphrase subsumes some portion of the semantic structure of the en-
tire phrase. Under this condition, items which do not subsume part
of the goal meaning can be safely ignored, since any phrase built from
them will also not subsume part of the goal meaning and thus will
fail to satisfy the success criterion. Thus the question of complete-
ness of the algorithm depends on an easily detectable property of the
grammar. Semantic monotonicity is, by intention, a property of the
particular grammar we have been using. •

4 .4 A G e n e r a t i o n E x a m p l e

As an example of the generation process, we consider the generation
of a sentence with a goal logical form

pass iona te ly (love (sonny , ka i t))

The example was run using a toy grammar that placed subcate-
gorization information in the lexicon, as in the style of analysis of
head-driven phrase-structure grammar (HPSG). The grammar ignored
tense and aspect information, so that, for instance, auxiliary verbs
merely identified their own semantics with that of their postverbal
complement .n

The initial items included the following:

(1) [0, N P . - ~ s o n n y , , O] 'Sonny'
(2) [0, N P . + kait ,,13] 'Knit'

[0, V -÷ t o . , O] 'to'
[0, V -* was •, O] 'was'
[% v - , w e r e . , O] 'were'

[0, V -+ loves *, 0] 'loves'
[0, V -+ love , , 0] 'love'
[0, V -* loved , , 0] 'loved'
[0, A d v P .--* passionately , , O] 'passionately'

(3) [0, S ~ • N P VP, 0] "

Note that auxiliary verbs were included, as the semantic structure
of an auxiliary is merely a variable (coiindexed with the semantic
structure of its postverbal complement), which subsumes some part (in
fact, every part) of the goal logical form./3 Similarly, the noun phrases
'Sonny' and ~Kait ~ (with semantics s o n n y and k a i L respectively) are
added, as these logical forms each subsume the respective innermost
arguments of the goal logical form. Several forms of the verb 'love'
are considered, again because the semantics in this grammar makes
no tense/aspect distinctions. But no other proper nouns or verbs are

*°Since the success 'criterion requires that a successful item be subsumed by the
start nonterminal and the priority filter requires that a successful item's semantics
subsume the start ~tonterminai% semantics, it follows that successful items match
the start symbol exactly in semantic information; overgeneration in this sense is
not a problem,

11 Indeed, we might want such incompleteness for certain cases of psycholinguis-
tically motivated psrsing models such as the simulated Lit model described above.

nFor reference, the grammar is similar in spirit to the third sample grammar in
[Shieber, 1986].

asIt holds in general that closed-class lexical items---case-m~rking prepositions,
function verbs, etc.~-are uniformly considered initial items for purposes of genera-
tion because of their vestigial semantics. This is as desired, and follows from the
operation of semantic filtering, rather than from any ad hoc techniques.

considered (although the lexicon that was used contained them) as
they do not pass the semantic filter.

The noun phrase 'Sonny' can be used as the subject of the sentence
by combining items (1) and (3) yielding

(4) [0, S --~ N P • VP, 0] 'Sonny'

(The corresponding item with the subject 'Knit ' will be generated
later.) Prediction yields the following chain of items.

[0, V P .-+ • V P AdvP, 0] "
[0, w - ~ . v, 0] "

The various verbs, including the forms of 'love', can complete this
latter item.

[0, V P ~ V . , O] 'to'
[0, V P --. v . , 0] 'is'
[O, VP -* V.,0] 'was'
[0, VP -~ V., O] 'were'

(5) [0, v P -~ v . , 0] 'loves'
[0, VP -~ V., O] 'love'
[0, V P ~ V . , 0] 'love'
[0, V P ---* V . , 0] 'loved'

The passive form of the verb 'loved' might be combined with the ad-
verb.

[0, V P .-~ V P • AdvP, 0] 'loved'
[0, V P --, V P A d v P . , 0] 'loved passionately'

The latter item might be used in a sentence 'Knit was loved passion-
ately.' This sentence will eventually be generated but will fail the
success criterion because its semantics is insufficiently instantiated.

Prediction from item (4) also yields the rule for adding complements
to a verb phrase.

[0, v P - - , . V P X,O] "

Eventually, this item is completed with items (5) and (2).

[0, V P ---, V P • N P, 0] 'loves'
[0, V P --~ V P N P , , 0] 'loves Knit'

The remaining items generated are

[0, V P ---* V P , AdvP, 0] 'loves Knit'
[0, V P ---, V P Adv P o, 0] 'loves Knit passionately'
[0, S ---* N P V P . , 0] 'Sonny loves Knit

passionately'

This final item matchesthe success criterion, and is the only such item.
Therefore, the sentence 'Sonny loves Kait passionately' is generated
for the logical form p a s s i o n a t e l y (l o v e (s o n n y , kn i t)) .

Looking over the generation process, the set of phrases actively ex-
plored by the generator included 'Kate is loved', 'Kate is loved pas-
sionately', 'were loved passionately' and similar passive constructions,
'Sonny loves Kalt', and various subphrases of these. However, other
phrases composed of the same words, such as 'Knit loves Knit', 'Sonny
is loved', and so forth, are eliminated by the semantics filter. Thus,
the the generation process is, on the whole, quite goal-directed; the
subphrases considered in the generation process are "reasonable".

5 T h e I m p l e m e n t a t i o n

The architecture described above has been implemented for the PATR
grammar formalism in a manner reminiscent of object-oriented pro-
gramming. Instances of the architecture are built as follows. A
general-purpose processor-building fimction, taking a priority func-
tion and success criterion fnnction as arguments, returns an object
that corresponds to the architecture instance. The object can be sent
initialization items as arbitrary lemmas of the usual form. Whenever
a successful lemma is constructed (according to the success criterion)
it is returned, along with a continuation function that can be called if
further sohttions are needed. No processing is done after a successflfl
lemma has been pro÷ed unless further solutions are requested.

Using this implementation, we have built instances of the architec-
ture for Barley parsing and the other parsing variants described in this
paper, including the shift/reduce simulator. In addition, a generator
was built that is complete for semantically monotonic grammars. It is
interesting to note that the generator is more than an order of magni-
tude faster than our original PATR generator, which worked purely by

617

top-down depth-first backtracking search, that is, following the Prolog
search strategy.

The implementation is in Common Lisp and runs on Symbolics 3600,
Sun, and Macintosh computers. It is used (in conjunction with a more
extensive .grammar) ~s the generation component of the GENESYS
system for utterance planning and production.

6 Precursors

Perhaps the clearest espousal of the notion of grammar reversability
was made by Kay [1975], whose research into functional grammar has
been motivated by the desire to "make it possible to generate and
analyze sentences with the same grammar." Other researchers have
also put such ideas into effect. Jacobs's PHRED system [Jacobs, 1985]
"operates from a declarative knowledge base of linguistic knowledge,
common to that used by PHRAN", an analyzer for so-called phrasal
grammars. Jacobs notes that other systems ~ have shared at least part
of the linguistic information for parsing and generation; for instance,
the HAM-ANS [Wahlster et al., 1983]'a;nd VII~-LANG [Steinacker and
Buchberger, 1983] systems utilize the same lexical information for both
tasks. Kasper has used a system for parsing grammars in a unification-
based formalism (SItI's Z-PATR system) to parse sentences with re-
spect to the large ISI NIGEL grammar, which had been previously
used for generation alone.

Nonetheless, all of these systems rely on often radically different
architectures for the two processes. Precedent for using a single ar-
chitecture for both tasks is much more difficult to find. The germ of
the idea can be found in the General Syntactic Processor (GSP) de-
signed for the MIND system at Rand. Kaplan and K~y proposed use
of the GSP for parsing with respect to augmented transition networks
and generation by traiisformational grammars [Kaplan, 1973]. How-
ever, detailed implementation was apparently never carried out. In
any case, although the PrOposal involved using the same arehitecture~
different formalisms (and hence grammars) were presupposed for the
two tasks, ttunning a definite-clanse grammar (DCG) "backwards"
has been proposed previously, although the normal Prolog execution
mechanism renders such a technique unusable in practice. However,

=.- alternative execution models might make the practice feasible. As
mentioned above, the technique described here is just such an exe:
cution model, and is directly related to the Earley deduction model
of Pereira and Warren [1983].. Hasida and Isizaki [1987] present an-
other method for generating and analyzing using a DCG-like formal-
ism, which they call dependency propagation. The technique seems
to entail using dataflow dependencies implicit in the grammar to con-
trol processing in a coroutining manner. The implementation status
of their method and its practical utility are as yet unclear.

The use of an agenda and scheduling schemes to allow varying the
control structure of a parser also finds precedent in the work of Kaplan
[1973] and Kay [1967]. Kay's "powerful parser" and the GSP both em-
ployed an agenda mechanism to control additions to the chart. How-
ever, the "tasks" placed on the agenda were at the same time more
powerful (corresponding to unconstrained rewrite rules) and more pro-
cedural (allowing register operations and other procedural constructs).
This work merely applies the notion in the context of the simple declar-
ative formalisms presupposed, and provides it with a logical founda-
tion on which a proof of correctness can be developed. TM Because the
formalisms are simpler, the agenda need only keep track of one type
of task: addition of a chart item.

7 F u r t h e r K e s e a r c h

Perhaps the most immediate problem raised by the methodology for
generation introduced in this paper is the strong requirement of se-
mantic monotonicity, which serves as yet another instance of the strait-
jacket of compositionality, The semantic-monotonicity constraint al-
lows the goal logical form to be systematically decomposed so that a.
dynamic-programming generation process can be indexed by the parts
of the decomposition (the subformulas), just as the constraint of string
concatenation in context-free grammars allows a goal sentence to be
systematically decomposed so that a dynamic-programming parsing
process can be indexed by the subparts of that decomposition (the

14Such a proof is currently in preparation.

canonical intentionally
logical equivalent
forms LFs

NL expression

grammar
defines

L F l a /

LF 1 ~ - - - - L F l b

LF l c

LF 2a /

L F 2 ~ - - L F 2 b

LF 2c

• L F 3 a /

LF 3 ~ LF 3b

LF 3e , I

I I
intentional equivalence

defines

Figure 1: Canonical Logical Forms

substrings). And just az the concatenation restriction of context-free
grammars can be problematic, so can the restriction of semantic mono-
tonicity. Finding a weaker constraint on grammars that still allows
efficient processing is thus an important research objective.

Even with the semantic-monotonicity constraint, the process of in-
dexing by the highly structured logical forms is not nearly so efficient
as indexing by simple integer string positions. Partial match retrieval
or similar techniques from the Prolog literature might be useful here.

Nothing has been said al~out the importartt problem of guaranteeing
that the syntactic and semantic goal properties will actually be real-
ized in the sentence generated. The success criterion for generation
described here would require that the logical form for the sentence
generated be identical to the goal logical form. However, there is no
guarantee that the other properties of the sentence include those of
the goal; only compatibility is guaranteed. Researchers at the Univer-
sity of Stuttgart have proposed solutions to this problem based on the
type of existential constraint found in lexieal-functional grammar. We
expect that their methods might be applicable within th~ presented
architecture.

Finally, on a more pessimistic note, we turn to a widespread problem
in all systems for automatic generation of natural language, which Ap-
pelt [1987] has discussed under the rubric "the problem of logical-form
equivalence". The mapping from logical forms to natural-language
expressions is in general many-to-one. For instance, the logical forms
red(x) h ball(x) and ball(x) h red(x) might both be realized as the
nominal 'red ball'. However, most systems for describing the string-
LF relation declaratively do so by assigning a minimal set of logical
forms to each string, with each logical form standing proxy for all its
logical equivalents. The situation is represented graphically as Figure
1.

The problem is complicated further in that, strictly speaking, the
class of equivalent logical forms from the standpoint of generation is
not really closed under logical equivalence. Instead, what is actu-
ally required is a finer-grained notion of intentional equivalence, under
which, for instance, p and p A (q Y -~q) would not necessarily be inten..
tionally equivalent; they might correspond to different uttera~aces, one
about p only, the other about both p and q.

In such a system, merely using the grammar per se to drive gener-
ation (as we do here) allows for the generation of strings from only a
subset of the logical-form expressions that have natural-language re-
lata, that is, LF1, LF2, and LF3 in the figure. We might call these the
canonical logical forms. Even if the grammar is reversible, the prob-
lem remains, because logical equivalence is in general not computable.
And even in restricted cases in which it is computable, for instance a
logic with a confluence property under which all logically equivalent

61B

expressions do have a canonical form, the problem is not solved unless
the notion of canonical form implicit in the logic corresponds exactly
to that of the natural-language grammar.

It should be noted that this kind of problem is quite deep. Any,sys-
tem that :represents meanings in some way (not necessarily with logical
expressions) must face a correlate of this problem. Furthermore, al-
though the issue impinges on syntax because it arises in the realm of
grammar, it is primarily a semantic problem, as we will shortly see.

There are two apparent possible approaches to a resolution of this
problem. We might use a logic in vchich logical equivalence classes of
expressions are all trivial, that is, any two distinct expressions mean
something diiferent. In such a logic, there are no artifactual syn-
tactic remnants in the syntax of the logical language. Furthermore,
expressions of the logic must be relatable to expressions of the natural
language with a reversible grammar. Alternatively, we could use a
logic for which canonical forms, corresponding exactly to the natural
language graramar's logical forms, do exist.

The difference between the two approaches is only an apparent one,
for in the latter case the equivalence classes of logical forms can be
identified as h)gical forms of a new logical language with no artifactual
distinctlons. Thus, the second case reduces to the first. The central
problem in either case, then~ is discovery of a logical language which
exactly and uniquely represents all the meaning distinctions of natural
language utterances and no others. This holy grail, of course, is just
the goal of knowledge representation for natural language in general;
we are unlikely to be able to rely on a full solution soon.

However, by looking at approximations of this goal, suitably
adapted to the particular problems of generation, we can hope to
achieve some progress. In the case of approximations, it does not
hold that the two methodologies reduce one to another; in this case,
we feel that the second approach--designing a logical language that
approximates in its canonical forms those needed for grammatical
applications-qs more likely to yield good incremental results.

l '¢eferences

[Appelt, 1987] Douglas E. Appelt. Bidirectional grammars and the
design of natural language ~eneration systems. In Theoretical
Issues in Natural Language Pracessing--3, pages 185-191, New
Mexico State University, Las Cruces, New Mexico, 7-9 January
1987.

[Frazier and Fodor, 1978] Lyn Frazier and Janet Dean Fodor. The
sausage machine: a new two-stage parsing model. Cognition,
6:291-325, 1978.

[Hasida and Isizaki, 1987] KSiti Hasida and Syun Isizaki. Depen-
dency propagation: a unified theory of sentence comprehension
and generatimu In Proceedings of AAAI-87~ pages 664-670, Seat-
tle, Washington, 13-17 July 1987.

[Jacobs, 1985] Paul S. Jaeobs. PHRED: a generator for natural
language interfaces. Computational Linguistics, 11(4):219-242,
October-December 1985.

[Kaplan, 1973] Ronald M. Kapian. A general syntactic processor. In
Randall t~ustin, editor, Natural Language Processing, pages 193-
241, Algorithmics Press, New York, I973.

[Kay, 1967] Martin Kay. Experiments with a powerful parser. In
Proceedings Of the Second International Conference on Compu-
tational Linguistics, August 1967.

[Kay, 1975] Martin Kay. Syntactic processing and functional sen.
tence perspective. In Theoretical Issues in Natural Language
Pracessing--Supplement to the Proceedings, pages 12-15, Cam-
bridge, Massachusetts, 10-13 June 1975~

[Pereira and Warren, 1983] Fernando C. N. Pereira and David tL D.
Warren. Parsing as deduction. In Proceedings of the 21st An-
nual Meeting of the Association for Computational Linguistics,
pages 137-144, Massachusetts Institute of Technology, iCam-
bridge, Massachusetts, 15-17 June 1983.

[Pereira and Shieber, 1987] FernandoC. N. Pereira and Stuart M.
Shieber. Proloy and Natural-Language Analysis. Volume 10 of
CSLILecture Notes, Center for the Study of Language and Infor-
mation, Stanford, California, 1987.

[Shieber, 1983] Stuart M. Shieber. Sentence disambiguation by a
shift-reduce parsing technique. In Proceedings of the 21st An-
nual Meeting of the Association for Computational Linguistics,
pages 113-118, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, 15-17 June 1983.

[Shieber, 1985] Stuart M. Shieber. Using restriction to extend parsing
algorithms for complex-feature-based formalisms. In Proceedings
of the 23rd Annual Meeting of the Association for Computational
Linguistics, pages 145-152, University of Chicago, Chicago, Illi-
nois, 8-12 July 1985.

[Shieber, 1986] Stuart M. Shieber. An Introduction to Unification.
Based Approaches to Grammar. Volume 4 of CSLI Lecture Notes,
Center for the Study of Language and Information, Stanford, Cal-
ifornia, 1986.

[Steinackerand Buchberger, 1983] Ingeborg Steinacker and Ernst
Buchberger. l~elating syntax and semantics: the syntactico-
semantic lexicon of the system VIE-LANG. In Proceedings of the
First Conference of the European Chapter of the Association for
Computational Lir~guistics, pages 96-100, Piss, Italy, 1-2 Septem-
ber 1983.

[Wahlster et al., 1983] Wolfgang Wahlster, Heinz Marburger, An-
thony Jameson, and Stephan Busemann. Overanswering yes-no
questions: extended responses in a natural language interface to
a vision system. In Proceedings of the Eighth Mternational Joint
Conference on Artificial Intelligence, pages 643-646, Karlsruhe,
West Germany, 8-12 August]983.

619

