Parsing Noisy Sentences

Hiroaki SAITO

Center for Machine Translation
Carnegie Mellon University
Pittsburgh, PA 15213, USA

and
ATR Interpreting Telephony Research Laboratories
Twin 21 MID Tower, 2-1-61 Shiromi
Higashi ku, Osaka 540, Japan

Abstract

This paper describes a method to parse and understand a
"noisy" sentence that possibly includes errors caused by a
speech recognition device. Our parser is connected to a
speech recognition device which takes a continuously
spoken sentence in Japanese and produces a sequence of
phonemes. The output sequence of phonemes can quite
possibly include errors: altered phonemes, extra phonemes
and missing phonemes. The task is to parse the noisy
phoneme sequence and understand the meaning of the
original input sentence, given an augmented context-free
grammar whose terminal symbols are phonemes. A very
efficient parsing method is required, as the task's search
space is rouch larger than that of parsing un-noisy
sentences. We adopt the generalized LR parsing algorithm,
and a certein scoring scheme to select the most likely
sentence out of multiple sentence candidates, The use of a
confusion matrix, which is created in advance by analyzing
a large set of input/output pairs, is discussed to improve the
scoring accaracy. The system has been integrated into
CMU's knowledge-based machine translation system.

1. Introduction

There have been a few attempts to integrate a speech
recognition device with a natural language understanding
system, Hayes et. al /Hayes86/ adopted the technique of
caseframe instantiation to parse a continuously spoken
English sentence in the form of a word lattice (a set of word
candidates hypothesized by a speech recognition module)
and produce a frame representation of the utterance. Poesio
and Rullent /Poesio 1987/ suggested a modified
implementation of the caseframe parsing to parse a word
lattice in Italian. Lee et. al /Lee 1987/ developed a
prototype Chinese (Mandarin) dictation machine which
takes a syllable lattice (a set of syllables, such as [guo-2]
and [tieng-1], hypothesized by a speech recognition module)
and produces a Chinese character sequence which is both
syntactically and semantically sound.

In this paper, we try to parse a Japanese utterance in the
form of a sequence of phonemes.1 Our speech recognition
device, which is a high-speed speaker-independent system
developed by Matsushita Research Institute /Morii 1985/,
/Hiracka 1986/ takes a continuous speech utterance, for

1. Phonemes (e.g. /¢/, la/, /s/, ete.) are even lower level units than
syllables.

2. We distinguish noisy from ill-formed. The former is due to
recognition device errors, while the latter is due to human users,

Masaru TOMITA

Center for Machine Translation
Carnegie Mellon University
Pittsburgh, PA 15213, USA

example "megaitai" ("I have a pain in my eye."), from a
microphone and produces a noisy phoneme sequence such
as "ebaitaai."2

The speech recognition device does not have any syntactic
or semantic knowledge. More input/output examples of the
speech device are presented in Figure 1-1.

< correct sequence > <recognition output>
igamukamukasuru ---> igangukamukusjuru
igamukamonkasjuru
kubigakowabagqteiru ---> kurigakoogateiru
azubigakoabadqciiru
atamagéitai --> otomogaitai
atamogeitain

Figurel-1: Input and Output of Recognition Device

Note that the speech recognition device produces a
phoneme sequence, not a phoneme lattice; there are no
other phoneme candidates available as alternates. We
must make the best guess based solely on the phoneme
sequence generated by the speech device. Errors caused by
the speech device can be classified into three groups:

. Altered Phonemes -- Phoniemes: recognized incorrectly.
The second phoneme /b/ in "ebaitaai" is an altered
phoneme, for example.

- Missing Phonemes -- Phonemes which are actually
spoken but not recognized by the device. The first phoneme
/m/in "megaitai", for example, is a missing phoneme,

- Extra Phonemes - Phonemes recognized by the device
which are not actually spoken. The penultimate phoneme
/a/ in "ebaitaai", for example, is an extra phoneme.

To cope with these problems, we need:

- A very efficient parsing algorithm, as our task requires
much more search than conventional typed sentence
parsing. And

- A good scoring scheme, to select the most likely sentence
out of multiple candidates.

In sections 2 and 3, we describe the parsing algorithm and
the scoring scheme, respectively.

2. The Parsing Algorithm

The grammar we are using is an Augmented Context-Free
Grammar whose terminal symbols are phonemes rather
than words. That is, the grammar includes rules like

561

Noun-->watasi
instead of '
Noun --> 'watasi’

The grammar has been developed primarily for CMU's
knowledge-based machine translation system /Tomita
1987/ and consists of more than 2000 rules including lexical
rules like one above.3

2.1. Generalized LR Parsing

Tomita /Tomita 1985/, /Tomita 1987b/ introduced the
Generalized LR Parsing Algorithm for Augmented
Context-Free Grammars, which can ingeniously handle
nondeterminism and ambiguity with a graph-structured
. stack. Tomita also showed that it can be used for a word
lattice parsing /Tomita 1986/, Our algorithm here is based
on Tomita's parsing algorithm,

A very simple example grammar is shown in Figure 2-1,
and its LR parsing table, compiled automatically from the
grammar, is shown in Figure 2-2.

(1) S --> NP PD
2) S -> N
3) S -> PD
(4) NP ~-> N P
(5) N -> me
(6) N ->j
(7) P -> g a

) -> it ali

—_
)
&
-]
10

Figure 2-1: An Example Grammar

Statea i e m g "t $ NNPPPDS
0 s4 s5 2 3 1.6
1 r3

2 -87,r2 8

3 s9 10
4 r6 si11,r6

5 s12

6 .acc

7 s13

8 rd

9 ’ s11

10 i r1

11 s14

12 r5 r5

13 r7

14 s15

15 r8

Figure 2-2: LR Parsing Table with Multiple Entrieé ,

Grammar symbols of lower case characters are terminals.
The Generalized LR parsing algorithm is a table driven
shift-reduce parsing algorithm that can handle arbitrary
context-free grammars in polynomial time. Entries "s n" in
the action table (the left part of the table) indicate the

3. The run-time grammar, which contains both syntax and
semantics, is compiled automatically from more abstract
formalisms: the Functional Grammar formalism for syntax and
frame representation for semantics. For more digcussions on this
Universal Parser Architecture, see /Tomita 1987a/.

562

action "shift one word from-input buffer onto the stack and
go to state n". Entries "r n" indicate the action "reduce
constituents on the stack using rule n'". The entry "acc"
stands for the action "accept”, and blank spaces represent
"error". The goto table (the right part of the table) decides
to which state the parser should go after a reduce action.
While the encountered entry has only one action, parsing
proceeds exactly the same way as LR parsers, which are
often used in compilers of programming languages., When
there are multiple actions in one entry called conflicts, all
the actions are executed in parallel with the graph-
structured stack. We do not describe the Generalized LR
parsing algorithm in greater detail, referring the reader to
fTomita 1985/, /Tomita 1986/, /Tomita 1987b/.

2.2, Handling altered, extra, and missing phonemes

To cope with altered, extra and missing phonemes, the
parser must consider these errors as it parses an input from
left to right, While the algorithm described in the previous
subsection cannot handle these noisy phenomena, it is well
suited to consider many possibilities at the same time, and
therefore, it can be relatively easily modified to handle
such noisy phenomena as the following.

-+ Altered phoneines -- Each phoneme in a phoneme

sequence may have been altered and thus may be incorrect.
The parser has to consider all these possibilities. We can
create a phoneme lattice dynamically by placing alternate
phoneme candidates in the same location as the original
phoneme. Each possibility is then explored by each branch
of the parser. Not all phonemes can be altered to any other
phoneme, For example, while /o/ can be mis-recognized as
M/, /il can never be mis-recognized as /o/. This kind of
information can be obtained from a confusion matrix,
which we shall discuss in the next section. With the
confusion matrix, the parser does not have to exhaustively
create alternate phoneme candidates .

- Extra phonemes -- Each phoneme in a phoneme
sequence may be an extra, and the parser has to consider
these possibilities. We have one branch of the parser
consider an extra phoneme by simply ignoring the
phoneme. The parser assumes at most one extra phoneme
can exist between two real phonemes, and we have found
the agssumption quite reasonable and safe.

+ Missing phonemes -- Missing phonemes can be handled
by inserting possible missing phonemes between two real
phonemes. The parser assumes that at most one phoneme
can be missing between two real phonemes.

2.3. An Example

In this subsection, we present a sample trace of the parser.
Here we use the grammar in Figure 2-1 and the LR table in
Figure 2-2 to try to parse the phoneme sequence "ebaitaai"
represented in Figure 2-3. (The right sequence is
"megaitai" which means "I have a pain in my eye.")

4 6 7 8 9 1q,¢f1 121314 1516 17
e b| |a i |t a a i

Figure 2-3: An input sequence of phonemes

In this example we make the following asumptions for
altered and 1aissing phonemes.

- /i/ may possibly be mis-recognized as /e/.
- fe/ may possibly be mis-recognized as /a/.
+ g/ may possibly be mig-recognized as /b/.

+ /m/ may be missed in the output sequence with a higher
probability.

Now we begin parsing: first an initial state 0 is created.
The action table indicates that the initial state is expecting
"m" and "i" (Figure 2-4). Since the parsing proceeds strictly
from left to right, the parser looks for the missing phoneme
candidates between the first time frame 1 - 2. (We will use
the term T1, T2, ... for representing the time 1, time 2, ... in
Figure 2-3.) Only the missing phoneme "m" in this group is
applicable to state 0. The new state number 5 is
determined {rom the action table(Figure 2-5).

The next group of phonemes between T2 and T3 consists of
the "e" phoneme in the phoneme sequence and the altered
candidate phonemes of "e". In this group "e" is expected by
state 5 and "i" is expected by state 0(Figure 2-6). After "e"
ig taken, the new state is 12, which is ready for the action
"reduce 5". Thus, using the rule 5(N --> m e), we reduce
the phonenies "m e" into N. From state 0 with the
nonterminal N, state 2 is determined from the goto table.
The action t:tble, then, indicates that state 2 has a multiple
entry, i.e., state 2 is expecting "g" and ready for the reduce
action(Figure 2-7). Thus, we reduce the nonterminal N into
S by rule 2(S --> N), and the new state number 6 is
determined from the goto table(Figure 2-8). The action
table indicates that state 6 is an accept state, which means

1 2 3 1 2 3
- . .
o " 5 . 5
m. *m *o *m *o
12 o
Iigure 2-4 o m e s} 0 P m e
i |4 i
[r6]
1, 2 *
Figure 2-6
i N
*r.-p‘ m
0
Figure 2-7
Figure 2-§
1 2 3 4 5 1 2 3 4 5 [7
& [
we 112 v |12
e | e
4 s EH 4
ey s ‘ﬂlt 4 ‘t
+. Y i,
" 5 I " 5
m | %e i m | *e
o 7 7
", a
N fg 9 1 N 3{; 9 |y
P
Figure 2-10 Figure 2-11

[rd]

that "m e" is a successful parse. But only the first phoneme
"e" of the input sequence "ebaitaai" is consumed at this
point. Thus we discard this parse by the following
constraint.

[Constraint 1] The successful parse should consume the
phonemes at least until the phoneme just before the end of
the input sequence,

Note that only the parse S in Figure 2-8 is ignored and that
the nonterminal N in Figure 2-7 is alive.

Now we return to the Figure 2-6 and continue the shift
action of "i". After "i" is taken, the new state 4 is
determined from the action table. This state has a multiple
entry, i.e. state 4 is expecting "t" and ready for the reduce
action. Thus we reduce "i" into N by rule 6. Here we use the
local ambiguity packing technique, because the reduced
nonterminal is the same, the starting state is 0 for both,
and the new state is 2 for both. Thus we do not create the
new nonterminal N,

Now we go on to the next group of phonemes between T3
and T4. Only "m" is applied to the initial state(Figure 2-9).

The next group of phonemes between T4 and T5 has one
applicable phoneme, i.e. an altered phoneme candidate "g"
to state 2. After "g" is taken, the new state 7 is determined
from the action table (Figure 2-10).

The next group of phonemes between TH and T6 has only
one applicable phoneme; a missing phoneme candidate "m"
to state-0. Here we can introduce another constraint which
discards this partial-parse.

[Constraint 2] After consuming two phonemes of the input
sequence, no phonemes can be applied to the initial state 0.

1 2 3 1 2 3 4
b5 5
*g *o
12 12
e e
i 14 i 4
[r6] (x6] s
; * m | *e
N2 N2
4 g
[
S 6
I ace
Figure 2-8 Figure 2-9
1 2 3 4 5 6 7
&
v 12
e
4
o, *
. 5
I T e 13
[x7] b et 7
H N 2 |9 %]®
*g
P 8
3
NP i
Figure 2-12

563

1 2 3 4 5 6 7 1 2 3 4 6 7 8 9 19 1% 12 13 14, 15 16, 17
12 12
4 4
o "t
* 3 T 12 T 12
m |*e e |Lrb] m | *e e
2 2
* *,
N 4 N 4 14
13 13 A
N f 9 x| N f 9 1% |® PR W [PPSR AR EPOURY SUROROR TS
g 8 g, 8 o |t |1z |a |14 i |15
p 4 *t *a * [x8]
NP 3 NP 3 - PD 10
* *) [r1]
s 6
Figure 2-13 ace
Figure 2-14
This constraint is natural because it is unlikely that more])
than two phonemes are recorded before the actual NO | ral fof NI A el WAl .. () UB
beginning phoneme for our speech recognition device. /al 1938 11 13 0 27 0o o 0.9 5477
The next group of phonemes between T6 and T7 has two fol | 24 843 » >8 0 03 0 06 6.5 7529
applicable phonemes, i.e. the output phoneme "a" to state 7 ’l_’/ 03 18 797 24 46 01 0 9.7 5722
and the altered phoneme candidate "e" to state 5. After "a" i 020 03 912 35 07 0 29 6158
is taken, the new state 7 is ready for the reduce action. /?/ 190 45 3381 01 0 113248
Thus, we reduce "g a" into P by rule 7 (Figure 2-11). The i 0 0 11 23 22 82'1 0.3 1142660
new state 8 is determined by the goto table, and is also fwi] 02 51 58 05 0 26 561 1.2 a8
ready for the reduce action. Thus we reduce "N P" into NP) o o ' '
by rule 4 (Figure 2-12). The new state is 3. In applying "e", o7 o o
there are two "state 2"s: one is "m" between T1 and T2; the (] 327 176 564 512 200 864 212

other one is "m" between T3 and T4. Here we can introduce
a third constraint which discards the former partial-parse.

[Constraint 3] A shift action is not applied when the
distance between the phoneme and the applied
(non)terminal is more than 4. (This distance contains at
least one real phoneme.)

Figure 2-13 shows the situation after "e" is applied.

The parsing continues in this way, and the final situation
is shown in Figure 2-14. As a result, the parser finds two
successful parses; "megaitai" and "igaitai"(which means "I
have a stomachache.")

3. Scoring and the Confusion Matrix

There are two main reasons why we want to score each
parse: first, to prune the search space by discarding
branches of the parse whose score is hopelessly low; second,
"to select the best sentence out of multiple candidates by
comparing their scores. Branches of the parse which
consider fewer altered/extra/missing phonemes should be
given higher scores. Whenever a branch of the parse
handles an altered/extra/missing phoneme, a specific
penalty is given to the branch. Scoring accuracy can
improve with the confusion matrix.

Figure 3-1 shows a part of the confusion matrix made by
the manufacturer of the recognition device from the large
word data. This matrix tells us, for example, that if the
phoneme /a/ is inputed, then the device recognizes it

564

{I) rate of missing phonemes
(i) total number of samples
(i) number of extra phonemes

Figure 3-1: A Confusion Matrix (portion)

correctly 93.8% of the time; mis-recognizes it as /o/ 1.1% of
the time, as /u/ 1.3% of the time, and so on. The column (i)
says that the input is missed 0.9% of the time.

Conversely, if the phoneme /o/ is generated from the device,
there is a slight chance that the original input was /a/, /u/
and /w/, respectively, but no chance that the original input
was i/, /e/ or /j/. The probability of the original input being
/a/ is much higher than being /w/. Thus, an altered
phoneme /w/ should be given a more severe penalty than
/al, A score for altered phonemes can be obtained in this
way, missing phonemes should be given a negative score,
and extra phonemes should be given a zero or a negative
score. With this scoring a score of a partial parse is
calculated by summing up the score of each constituent.
Therefore, the more likely parse has a higher score.

Two methods have been adopted to prune partial parses by
a score;

- Discarding the low-score shift-waiting branches when a
phoneme is applied.

+ Discarding the low-score branches in a local ambiguity
packing.

The former method is very effective when strictly applied.

The confusion matrix only shows us the phoneme-to-
phoneme iransition, therefore a broader unit transition

should also be considered, such as a tendency for the /w/:

phoneme in ’owa’ or 'owo’ to be missed or for the very first
/h/ sound of an input to be missed, and the frequent
transformation to "h@' of the 'su’ sound in 'desuka.’

4, Conclusions

The parser has been implemented in Common Lisp on a
Symbolics Lisp Machine and is being integrated into
CMU's knowledge-based machine translation system to
accept a spoken Japanese sentence in the domain of doctor-
patient conversation and generate sentences in English,
German and Japanese.

The parser has been tested against five persons. Each
person pronounced 27 sentences in which long sentences
are not included due to the limits of the speech recognition
device. 84 % of the inputs are parsed correctly and the right
sentence appears as the best-score candidate in 88 % out of
the correctly parsed inputs. The average parsing time for
one sentence is 82 seconds.

Acknowledgements

The authors would like to thank Shuji Morii for giving us
the opportunity to use the speech recognition device and to
thank other members of the Center for Machine
Translation for useful comments and advices. We are also
indebted to ATR Interpreting Telephony Research
Laboratories for providing the computational environment.

Appendix. Sample Runs

Two actual outputs of the parser are shown on the next
page. The first input phoneme sequence is "ebaitaai" and

the correct sequence is "megaitai"(which is the same

sentence as in the example in Section 2.), which is
produced as the top-score sentence of all parses. The second
input sequence is "kurigakoogateiru=" and the correct
sequence is "kubigakowabagteiru" which means "I have a
stiff neck." The frame-structure output after each parse is
the meaning of the sentence. This meaning is extracted in
the same way the CMU's machine translation system does.
Namely, ¢ach rule of the context free grammar has a
function which is executed each time the rule is applied (i.e.
when the reduce action occurs.) If the function returns nil,
this partial parse is discarded because the parse is not
correct semantically. If the function returns a non-nil
value, the value becomes the semantic of the right-hand-
side of the rule and is forwarded to the left-hand-side
nonterminal symbol. The details are described in /Tomita
1987a/.

References

/Hayes 1986/ Hayes, P.J., Hauptmann, A. G., Carbonell,
J. G., and Tomita, M.

Parsing Spoken Language: A Semantic Caseframe
Approach. 11th International Conference on
Computational Linguistics (COLING86). Bonn, August,
1986.

/Hiraoka 1986/ Hiraoka, S., Morii, S., Hoshimi, M., and
Niyada, K.

Compact Isolated Word Recognition System for Large
Vocabulary. IEEE-IECEJ-ASJ International Conference
on Acoustics, Speech, and Signal Processing (ICASSP86).
Tokyo, April, 1986.

/Lee 1987/ Lin-shan Lee, Chiu-yu Tseng, K.J. Chen, and
James Huang.

The Preliminary Results of A Mandarin Dictation Machine
Based Upon Chinese Natural Language Analysis.
Proceedings of the Tenth International Joint Conference on
Artificial Intelligence. Milan, August, 1987.

/Morii 1985/ Morii, S., Niyada, K., Fujii, 8., and Hoshimi,
M.

Large Vocabulary Speaker-independent Japanese Speech
Recognition System. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP85).
Tampq, March, 1985,

/Poesio 1987/ Poesio, M. and Rullent, C.

Modified Caseframe Parsing for Speech Understanding
Systems Based Upon Chinese Natural Language Analysis.
Proceedings of the Tenth International Joint Conference on
Artificial Intelligence. Milan, August, 1987.

/Tomita 1985/ Tomita, M.

Efficient Parsing for Natural Language: A Fast algorithm
for Practical Systems. Kluwer Academic Publishers,
Boston, MA, 1985.

fTomita 1986/ Tomita, M.

An Efficient Word Lattice Parsing Algorithm for
Continuous Speech Recognition. IEEE-IECEJ-ASJ
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP86). Tokyo, April, 1986.

/Tomita 1987a/ Tomita, M. and Carbonell, J. G.

The Universal Parser Architecture for Knowledge-Based
Machine Translation. Proceedings of the Tenth
International Joint Conference on Artificial Intelligence.
Milan, August, 1987,

/Tomita 1987b/ - Tomita, M.

An Efficient Augmented-Context-Free Parsing Algorithm,
Computational Linguistics. 1987.

565

[J Conmand: input

"ebaitaai”

Command: (parse-s)

Evaluation of (PARSE) took 31,522721 seconds of elapsed tine

including 7.183 seconds waiting for the disk for 39 fauits.

245,661 list, 51,644 structure, 22,287 stack words consed in KORKING-STORAGE-AREA.
204 structure words consed 1n ¥NAMESPACE~OBJECT~ARERA*.

7 parses found.
1: (185) M<1-28-18> E<2-3#308> G<4-5#18> A<6-7#32> I<B-9H38> T<18-11#31> A<L2-18#32> I<16-174#38>

((MOOD ((ROOT DEC))) (SEM ¥HAVE-A-PRIN18@2) {0OBJ {(:WH ~) (CASE GA) (SEM *EYE) (ROOT ME))) (CRUSATIVE -) (0BJ-CRBE GA)
(8UBJ-CASE GA) (SUBCAT 2ARG-GA) (CAT RADJ) (TIME ((ROCT PRESENT))) (ROOT ITAI))

2: (172) I<2-3#7> G<4-5H1@> A<H-PHIZ> 1<B-9H3B> T<1@-11#31> A<12-13#32> I<16-17#30>

{(MOOD ((ROOT DEC))) (BEM *HAVE-R-PRING1R) (0OBJ ((:WH -) (CASE GA) (SEM *STOMACH) (ROOT I))) (CRUBATIVE -) (OBJ-CASE GR)
(8UBJ-CASE GA) (SUBCAT ‘2ARG-GA) (CAT ADJ) (TYIME ((RODT PRESENT))) (ROOT ITAI))

N 3¢ (115) I<2-387> T<4-5#1> A<G-7#32> I<B8-9#36> K<10-11813> A<12-134#92> ,

N (¢SEM xHRVE-R-PAIN930) (TIME ((ROOT (¥OR* PRESENT FUTURE)))) (MOOD ({RODY QUES))) (OBJ-CASE GA) (SUBJ-CRSE GA) (SUBCAT 2ARG-GA)
(CAT ADJ) (ROOT ITAL))

b 4: (118) N<4~5#3> A<6-7#32> I1<B-9H3@> K<1B8-11#13> A<12-13432>

N ((SEM ¥HAVE-A-FEVER46) (TIME ((RODT (*ORx PRESENT FUTURE)))) (MDOD ((ROOT QUES))) (OBJ-CASE GR) (SUBJ-CRSE GA) (CRUSATIVE -)
(PAGSIVE —) (SUBCAT STAT) (NEGRTION ((ROOT HITEI})) (CAT V) (ROOT ARUY)

N 5: (70) I<2-387> T<4-5#1> R<E-7HAD> I<8-9430>

((MOOD ((ROOY DEC))) (OBJ-CASE GA) (SUBJ-CREE GR) (SUBCAT 2ARG-GA) (CAT RADJ) (SEM *HAVE-A~PAIN9@) (TIME ((ROOT PRESENT)))
(ROOT ITRI))

N 6: (65) N<4-583> Ac6-7432> 1<B-9HIB>

 ({MOOD ((ROOT DEC))) (DBJ-CASE GA) (SUBJ-CASE GA) (CAUSATIVE ~) (PASSIVE -) (SUBCRT BTAT) (SEM ¥HAVE-R-FEVER1B)
N (TIME ((ROOT PRESENT))) (NEGRTION ((ROOT HITEI))) (CAT V) (ROOT ARL))

N 7: (43) A<2-3#6> R<4-5#3> A<6-7#32> U<B-942>

N ((MOOD ((ROQT DEC))) (0OBJ-CRSE O) (BUBJ-CASE GA) (BHUSS;IVE -) (PRASBIVE -) (SUBCAT TRANS) (SEH xMAKE-CLEANZ48)
(TIME ((ROOT (%ORx PRESENT FUTURE))}) (CAT v} (ROOY RRAUY)

N T

 Conmand:

Dynamic Lisp Listener 1

Sample Run 1

)

25: "KURI*AKOD¥ATEIRU="
Evaluation of (PARSE) took 95,719873 seconds of elapsed tine

including 18,550 seconds waiting for the disk for 142 faults.
The garbage collector has flipped, so consing uas not measured.

8 parses found.

1: (393) K<2-3#28> U<4-5H429> B6-PHS> I<B-9#3@> G<1@-11#33> A<12-13H32> K<14-158#28> 0<16-17H24> H<17-1848> R<18-19H2> B8¢20-2149>
A<22-23#32> 0<23-24#-10> T<24-25H31> E<26-2783@> I<28~29#30> R<HB-31431> U<32-33429>

((MOOD ((ROOT DEC))) (SEM ¥HAVE-A-STIFFNESE1268) (0BJ ((:HH ~) (CASE GA) (SEM ¥NECK) (ROOT KUBI))) (CAUSATIVE -) (OBJ-CASE GR)
(SUBJ-CABE GA) (PASSIVE.-) (BUBCAT STAT) (TIME ((ROOY (+ORs PRESENT FUTURE)))) (PROGRESSIVE +) (CAT U) (RODT KOMRBARUY)

2: (372) K<2-3828> 0<4-5810> R<B-7H31> E<B-9#2> G<10-118#33> A<12-19H32> K<14-15H28> 0<16-17824> H<17-188@> ACLB-1942> B<20-2149>
A<22-23432> 0¢23-248-10> T<24-25831> E<26-27#30> I(28-29#3B> R<38-31H#31> U<I2-33H29>

((MOOD ((RODT DEC})) (OBJ ((:WH ~) (CASE GA) (ROOT KORE))) (CAUSATIVE ~) (DBJ-CASE GA) (SUBJ-CASE GA) (PASSIVE -) (BUBCAT STAT)
(BEM *HPYE-A-STIFFNESS214) (TIME ((RDOT (lQRt PRESENT FUTURE)))) (PROGRESSEIVE +) (CAT V) (RODT KOWABARU)) .

2: (372) K<2-8#28> 0¢4-S5#108> R<6-7H#31> E<B-942> G<18-11#33> A<12-13832> K<14-15828> 0<16~17424> W<17-184#0> A<18-1942> B<20-214#9>
A<22-23#32> 0<23-244-18> T<24~25131> E<26-27438> T<¢28~29430> R<38-31431> U<32-33429>

((MOOD ((RODT DEC))) (8UBJ ((:WH -) (CABE GR) (ROOT KORE))) (SUBJ-CASE GA) (OBJ-CASE GA) (CAUSATIVE =) (PASGIVE -) (SUBCAT 8TAT)
(BEM ¥HRUE-R-BTIFFNEGE214) (TIME ((ROOT (%¥OR* PRESENT FUTURE)))) (PROGRESBIVE +) (CAT V) (ROOT KOWABARU))

N 4: (279) K<2-3428> U<4-5429> B(6-7#5> I<A-943@> G<1@-11#33> Ac12-13H32> K<14-15828> 0<16-17424> He17-1980> R<18-1982> B<20-2189>
N A¢22-23432> 0<23-244-18> T<24-25#31> A<26-27H6>

N ({M0OD ((ROOT.DEG))) (SEM ¥HAVE-RA-STIFFNESS1264) (0BJ ((:HH -) (CASE GA) (BEM *NECK) (RODT KUBI))) (CRUSATIVE -) (OBJ~CASE GR)
 (BUBJ-CASE GA) (PABBIVE -) (SUBCAT &TAT) (TIME ((ROOT PAST))) (CAT V) (RODT KOWABARU))

N S: (258) K<2-3820> 0<4-5818> R<6-PH3L> E<B-982> G¢1@-11833> A<12-13H32> K<14-15820> D<16-17H24> W<17-18#8> R<18-1942> P<20-2149>
N A<22-23432> Q<23-248-10> T<24-25831> A<26-27H6>

((M0OD ((RODT DEG))) (OBJ ((:WH -) (CRBE GR) (ROOT KORE))) (CRUSATIVE -) (OBJ-CASE GA) (SUBJ~CRSE GR) (PRBSIVE -) (BUBCAT BTAT)
(BEM *HAVE-A-BTIFFNESS38) (TIME ((RCOT PAST))) (CAT V) (ROOT KOMABARU)))

G: (258) K<2-3#28> 0<4-SH#1B> R<6-7#31> E<B-982> G<18-11#33> A<12-13432> K<14-15H268> 0<16-17424> WC17-1B#8) A<1B-1982> B<20-21#9>
A<22-23#32> 0<23-244-10> T<24-25H31> A<26-2746>

((MoOD ((RODT DEC))) (SUBJ ({:MH -) (CASE GA) (RODT KORE))) (GUBJ-CRSE GA) (OBJ-CASE GR) (CAUSATIVE -) (PASSIVE ~) (BUBCAT STRT)
(BEM *HRVE-A-STIFFNESS38) (TIME ({RGOT PAST))) (CAT N)) (ROOT KOWABARU))

Y 7: (282) K<2-3#28> 0<4-5#10> R¢6-7H31> E<B-9H82> G<1@-11#33> A<12-13H32> K<14-15620> 0<16-17824> N<20-2145) R<22-20832> I<26-2747>

R

A T O

((MOOD ((ROOT BEC))) (SUBJ ({:WH -) (CASE GA) (ROOT KORE))) {SUBJ~CRSE GA) (CAUBATIVE -) (PASEIVE -) (SUBCAT INTRANS)
-siﬁEEE::;RHNSSBB) (TIME ((RODT PRESENT))) (NEGATION ((ROOT HITEI})) (CART V) (ROOY KURU))

Dynemic Ligp Listener 12 J

Sample Run 2

566

