
Parallel Intersect ion and Serial Compos i t ion of Finite State Transducers

Mike REAPE 13 and Henry THOMPSON t23

Centre for Cognitive Science l
University of Edinburgh

2 Buccleuch Place
Edinbm'gh EH8 9LW

Scotland

Department of Artificial Intelligence 2 and
Centre for Speech Tectmology Research 3

University of Edinburgh
80 South Bridge

Edinburgh EH1 1HN
Scotland

Abstract

We describe a linguistically expressive and easy to implement
parallel semantics for quasi-deterministic finite state transducers
(FSTS) used as acceptors. Algorithms are given for detemain-
ing acceptance of pairs of phoneme strings given a parallel
suite of such transducers and for constructing the equivalent
single transducer by parallel intersection. An algorithm for
constructing the serial composition of a sequence of such trans-
ducers is also given. This algorithm can produce generally non-
detemlinislic FSTS and an algorithm is presented for eliminat-
ing the unacceptable nondeterminism. Finally, the work is dis-
cussed in the context of other work on finite state transducers.

1. In t roduc t ion

Finite state transducers (FSTS) have been shown to be useful
for modelling morphophonemic processes in an efficient way in
(Karttunen 1983), (Kay 1983), (Kaplan and Kay 1985), (Kart-
tunen, Koskenniemi and Kaplan 1987) and (Koskenniemi 1983)
(but cf. (Barton 1986b), (Barton 1986a)). This paper presents a
linguistically expressive parallel semantics for quasi-
deterministic FSTS used as receptors and algorithms for taking
the parallel intersection and serial composition of such FSTS.
The intersection and composition algorithms generate composite
FSTS from sets of FSTS with the same semantics as the paral-
lel semantics of the set. §2 presents the parallel semantics; §3
discusses the parallel intersection algorithm. §4 discusses the
serial composition algorithm. §5 discusses the elimination of
unacceptable general nondete~rninism which can arise fi'om the
composition algorithm. §6 discusses the implementation of the
interpreter which is based on the semantics presented here and
the three algorithms. §7 discusses this research in the context
of other work in this area and draws some conclusions.

2. A Paraflel Semantics for Finite State Transducers

In the discussion that follows, we assume that the reader is
familiar with the work of Karttunen and Koskenniemi on FSTS
and with finite state automata (FSA) generally. The notation
used is slightly different than that usually used to describe FSA

but is more convenient for our purposes. Also, rather than dis-
cuss the algorithms directly, we give their semantics. In con-
trast to Karttuuen and Koskenniemi 's work, no higher level rule
formalism is used. FSTS are stated directly.

An FST, M, is a pair <NC~,Z> where N ~ is a set of start state
urines and Z is a set of states. A state Z i ~ Z is a triple

<N,T,A> where N is the name of the state, T is an ordered
sequence of transitions Ti, l<i<n, n = ITI and A is the truth
value T if the state is au accepting state and the troth value F if
it is a nonaceepting state. (The notion of final state is not
relevant here. Only the accepting/nonaccepting distinction is
important.) A transition T i ~ T is a pair <~i,Ni> where q5 i is a
transition pair <~x,~0~>. An element of a transition pair is
either a phoneme, a phoneme class name, the symbol = or the
empty string e. A phoneme is a character and is a member of
the alphabet set. A phoneme class is a set of phonemes. We
will refer to phoneme classes and their names interchangeably.
N i is the new state, cI) i = <O~,~0P~> subsumes ~t = <~xt,t)of> if

o~i subsumes O x, and ~0 i subsumes ~I~0,. qbi subsutnes (Pt if ~i = ~t

or (~i = = or (~i is a phoneme class and ~t ~ q~i'

The transition type or type a:(~) of a transition pair fi5 =

<@,~P> is (x.x)' if both ~;~ and 0 o are phoneme classes and is
x(@).,~(~o) otherwise where x(~) is the phoneme type of q~. (x
is not a variable in this and the following definitions.)

I ! if ~ =
"~(~) = if ~ = =

otherwise

The set of types, TYP, and tile set of final types, TYP0~, arc
defined below.

TYP = {=.= x.= =.x x.E E.x
x.x =.e e.= (x.e)' (e.x)' (x.x)'}

TYP~ = {(x.x)' x.x x x.= x.e c.x e.e}

Some examples should clarify the definitions. <s,s> is of type
x.x. <s,z> is of type x.x. <sih,sih> is of type (x.x)' if sib is a
phoneme class name. <=,=> is of type =.=. <=,e.> is of type

535

The type intersection of a set of transition pairs {~i I l<i<n} is
n

O'ff¢,~) where n x is a partial function from pairs of u'ansition
i = I

types to transition types as defined below.

"q n ' "t 2 if x~ n , ' x 2 e TYP
"~a n "~ = undefined otherwise

n,~' is defined as follows.

(1) oc- n x' =:13 = (a.[3)'
(2) ~.= n . / (& . ~) ' = (a .~) '

(3) =.f~ % ' (cc[~)' = (a.D'
(4) tx.D n,~' (a.[3)' = a .~
(5) a.[~ %' c~.l~ = a.~
(6) =.= nx ' a.L3 = ot.13
(7) c~.= n.~' a.l~ = a.I 3

(8) =.1~ %' c~.~ = a.l~
(9) a.~ c~' ~i.~, = 5.~/c~" a.[~

An unprimed type "c indicates that the transition type is sup-
ported. A primed type q:' indicates that the transition type is
unsupported. That is, there have been no e.x, x.e or x.x types in
tim set of intersected types that produced the primed type. (1) is
the origin of unsupported types. (2) and (3) state that neither
ct.= nor =.ct can support a transition. (4) states that an unprimed
type supports the corresponding primed type. (5) states that the
intm'section of two identical .types is the same type. (6) States
that the intersection of =.= and any type is that type. (7) and (8)
state that the intersection of either =.o~ or co.= and a supported
type is a supported type. (9) states that n , c' is commutative and

that the commutative closure of (1)-(8) also holds.

A set of transition pairs {cI)i} which subsmne (1"5 t is licensed

w.r.t. (I) t if LICENSED({Oi},Ot) holds.

LICENSED({Oi},O t) if
n,t'ffOi) e TYP and
(nx'c(Oi) e {x.x x.e e.x} or

n,~x(Oi) e {(x.x)', =.=, = . x x.=} and

Ot = <¢'¢>)

This definition implements the "daisywheel". That is, although a
set of transition pairs {Oi} is excluded in the general case if the
type intersection of {O i} ~ {(x.x)', =.=, =.x x.=} we make an
exception if qb t is a pair of identical phonemes. So, for exam-

ple, if the type intersection of {O i} is =.x and ~t = <s,s> then

{~i} is licensed. In practical terms, this means that the user

does not need to encode a large set of "default" transition pairs
of the foma <0,¢> for each state. This effect is usually
achieved, in other FST fomaalisms in the rule compiler. How-
ever, such a compilation depends on the existence of an alpha-
bet declaration. As we do not use a rule compiler, we have
found it more convenient to build the effect into the parallel
semantics.

A machine, M in state N accepts a phoneme pair • t with

accepting transition pair • and new state N' if
ACCEPTS (M,N,~t ,~ ,N') holds.

ACCEPTS(M,N,Ot,O,N') if

M = <Net,Z> and
Z i = <N,T,A> e Z and

3T k = <Ok,Nk> e~ P(T))
Ok subsumes Ot and

= <,I,j,Nj> P(r)
1Sj<k and ~j subsumes • r

(ACCEPTS replaces the more usual state transition function ft.)

P(T) is a total function that takes the transition sequence T as
argument and returns a transition sequence T' containing the
same set of elements as T with the following ordering of the
elements of T'. All =.= transitions follow all non-=.= transi-
tions. All =.~ or f~.= transitions precede all =.= transitions and
follow all other transitions. Relative ordering of transitions in
T ' is as in T otherwise.

The definition above implies that transition precedence is by
citation order with two exceptions. All transition pairs which
have non-= first and second elements take precedence over any
pairs of the form <o~,=> and <=,a> and all non-<=,=> transition
pairs take precedence over a transition pair of the form <=,=>.

A set of machines {Mi} in states {Ni} accept a phoneme pair

t~ t with accepting transitions pairs {Oi} and new states {Ni' } if
. (t

S-ACCEPTS({Mi},{NiL I)t,{N i }) holds.

S-ACCEPTS ({ Mi}, { Ni},Ot, { Ni'}) if
Vi 3 0 i

ACCEPTS ({Mi}, {Ni},Ot, {Oi},{Ni'}) and
LICENSED({qDi},Ot}).

A string is a sequence of phoneme pair elements. A string pair
<It,v> is a pair of strings g and v. <oql3> is a prefix of the
string pair <g,v> and the string pair <~t',v'> is the correspond-
ing suffix of <It,v> if CONCAT(<oq~>,<It ' ,v '>,<g,v>) holds.

CONCAT(<0~,~>,<g',v'>,<I.t,v>) if
= ~ g ' and

v = 13v' and
~ (a = e A f~ = e) .

In particular, this means that prefixes can be of the schematic
types x.x, x.e and e.x but not e.e.

A set of machines {/Vii} in states {Ni} accept a string pair

<It,v> with new states {Ni' } if STR ~

ACCEPTS({ Mi}, { Ni} ,<ll,v>, { Ni '})holds.

STR-ACCEPTS({M i } ,{Nil ,<e,e>, { Nil).
STR-ACCEPTS ({Mi}, { Ni},<II,v>, { Ni'}) if

~<OC,[~> ~<[x',V'> 3Ni"
CONCAT(<~,I3>,<~',V'>,<g,V>) and
S-ACCEPTS({ Mi}, {Ni},<a,13>, { Ni '}) and
STR-ACCEPTS({ M i}, { Ni"},<l.t',v'> , { Ni' }).

The following definition is the top-level relation of our seman-
tics. A set of machines {Mi} accepts a string pair <it,v> if
ACCEPTS({Mi},<It,v>) holds.

536

ACCEPTS({ Mi},<l.t,v>) if

VM i = <NC~,E> e {Mi}

~Ni a E N a

~Z i = <Ni,T,T> ~ E
STR-ACCEPTS ({ Mi}, {N~" } ,<bt,V>, { Ni}),

The reader may have noticed that there is no explicit declara-
tion of the set of phonemes which define the alphabet of the
FSTS. This is the reason that no mention was made of the

alphabet in the definition of an FST above as is usually done
for finite state machines. This complicates the algorithms to be
discussed below a groat deal. In particular, phoneme classes
cannot in geaeral be replaced by their definitions, the = notation
cannot be compiled away nor can transition sequences be

replaced by transition sequences in which d0 ~ and ~P are both

phonemes fi)r every transition pair • = <d?k,~)P>. However,
explicitly declaring the alphabet is unnecessm'y and a certain
flexibility ill the semantics of the FSTS is gained by not doing
SO.

3. The Parallel Intersect ion Algori thm

As (Karttnnen and Wittenburg 1983) points out, it is possible to
merge a set of pm'allel FSTS into one large FST. In the worst
case, the number of states of tile intersected FST is the product
of the numl~er of states of the intersected FSTS. In theory, this
number can be very large. Ill practice, it is usually much
smaller becaase the intersection of most state pairs is undefined.

Parallel intersection is associative and commutative. Thus, tile
tbllowing detinition of the intersection of a sequence of FSTS
is adequate

n

N<[VI1 ' ' ' Mn> = ("h Mi'
i=1

The intersection M 1 c~ M2, of two FSTS

M t := <N~,Y-.,I> and M 2 = <N~,Y_,2>

is their cross product

<N{* x N~',E 1 x Z2>

The cross product of two state name sets {N i' [l_<i_<n} and
p tt,.~ {Nj"] l<i_<_m} is tile set {<N i ,Nj~ .] l_<i_<n and l<_j_<m},

The intersection Y'<I,a> = E1 ~ 22 of two states

E 1 := <NpT1,AI> and E 2 = <Na,Ta,A2>

is

)2<1,2 > = <<NI,N2> , T 1 × "1"2, A 1 A A2>,

I,e., the nanm of the intersection is the pair of the names of the
two intersected states. The intersection is an accepting state if
both of the intersected states are accepting states and is a
nonaccepting state otherwise.

The cross product of two transition seqnences T 1 and T 2 is a
sequence T t x 'I'~ = <T',_<> where T' is tile set defined below

and -<- is a to ta l o rder ing .

T' = {T k [T i e T 1 and Tj e T 2 and
T k = T i n Tj is defined}.

< can be any total ordering which satisfies the following partial
ordering on T':

VT m ~ T' 9

V m = T i n ~ I i a n d r iE r l a n d T j e T e
V T e T' -9

T n = T oc3 T p a n d T O c T 1 andTp ~ T 2
(I l l < n go-),

-7 (o < i and p _< j) and-1 (o -< i and p < j))

In particular, the ordering of tile following sequence satisfies
the partial order:

<T<III > ' ' " T<l,n > . . . T<m,l > T<m,n>>

where T<i,j > names tile intersection of the transitions T i ~ T l

and Tj e T 2, m = IWl[and n = IT2],

The intersection T i c5 Tj of two transitions T i = <t~i,Ni> and Tj

= <(bj,5> is <tl) i (5 q)'.l' <Ni'Nj>>'

If (1) i = .<(zi,[~i> and (l)j = <~,[3j> then • i (-i ~j is defined as fol-
lows

< a i n cry, ~i n [3i> if ~(d)i) c~ ' x(Oj) a 7'YP
4~ i n cI~) = undefined otherwise

The intersection of two phoneme pair elements x and y is

defined as follows

x n y =

x ifx =y
x ify = =
y ifx = =
x if y is a phoneme class and x c: y
y ifx is a phoneme class and y ~ x
x ¢~ y if both x and y are phoneme classes

undefined otherwise

The composite FST is nondeterministic with respect to ~; and
the set of start states and is deterministic otherwise. All
phoneme class and = notation is preserved in the intersected
transitions. This is actually quite useful for debugging pur-
poses. In general, it will often be the case that elements of all
intersected transition sequence are subsumed by preceding ele-
ments in the same sequence. It is a simple matter to remove
such transitions (although this is not necessary as they are
unreachable). Furthermore, it is often the case that transitions
with phoneme classes are partially subsumed by preceding ele-
ments in the same transition sequence. It is straightforward to
split the phoneme class transitions into disjoint phoneme class
transitions which are not subsumed by preceding transitions in
the same sequence. Our implementation uses both of these
optimisations.

Notice that the intersection algorithm does not "compile in" the
effect of the daisywheel. This is because the semantics of a set
of parallel FSTS includes the daisywheel and so the composite
FST need not have its effect "compiled in". Furthermore, the
intersection algorithm must not build in the daisywheel because
the composite FST would have the wrong parallel semantics

537

and could not be correctly used as input to tbe intersection
algorithm. (I.e., we cannot eliminate = or phoneme classes
from any transition pairs.)

The cross product of two transition sequences T 1 and T 2 is a

sequence T 1 x T 2 = <T',<> where T' is defined below and < is
a total ordering.

4. Tile Serial Composition Algorithm

Just as parallel FSTS can be intersected, a cascade of FSTS
may be composed into one FST. Such a cascade is most useful
for representing ordered sequences of rules. For example, a
theory which orders assimilation processes before morpho-
phonemic processes could be modelled by a cascade of two
parallel sequences of transducers where the first parallel
sequence models the assimilation processes and the second
models the morphophonemic processes. As is the case with
parallel intersection, the number of states of a composed FST is
the product of the number of states of the composed FSTS in
the worst case. Again, the number of states in the composed
FST is usually much smaller in practice.

Serial composition is different in several ways from the parallel
intersection problem. Fit'st, each FST in the composition must
have the parallel semantics of §2 "compiled in" before it is
composed. This means that type intersection as defined for
parallel intersection is irrelevant for composition. On the other
hand, we must include the effect of the daisywheel before com-
position on any transition pair <Op;~,OpP> where both gpX and ¢0
are phoneme classes. As a result, we can replace all such tran-

sitions with one or more transitions <¢x,, CO,> •where ¢~' and

~ ' are both phonemes. This simplifies the composition algo-
rithm considerably. However, we must still check that the type
of each transition pair in each FST to be composed is an ele-
ment of TYP e . (In particular, users may encode illegal transi-

tions.) Also, although serial composition is associative, unlike
parallel intersection, it is not commutative. So, a cascade of
FSTS must be composed in the same order as they appear in
the cascade.

The composition of a sequence of FSTS *<M 1 . . . Mn> is
defined by

f M ifn=l
*<211/t ' " M > :

<M l . . . M. t> M ifn>l k

T ' = {TklT i ~ T I and T j e T 2
and T k = T i * Tj is defined}.

< must satisfy the same partial ordering as that given for paral-
lel intersection (modulo the substitution of * for n) . Again, we
use the ordering given in §3.

If Z i = < N i ' , T I , A i > and Ej = <N j ' ,T2 ,A j> and T i E T 1 and Tj
T 2 then the composition T i * Tj of two transitions T i = <Oi,Ni>
and Tj = <~j,Nj> is defined by

r , * ~ =

<<=,=>,<NvNj >>
<<~,I3>,~/vF>

<<a,~>.<v~ ~v/>>
<<~,~>,~,':v~>>
<<a,~>,~v, Svj>>
undefined

if ~ /= <=,=> and Oj = <=,=>
if Oi = <=,=> and ~ = <~,13>
and <<a;0t>,Nk> fl T 1 ~ k<i

if • i = <a,13> and Oj = <=,=>
and <<13,13>,Nk> ¢ T 2 ~ k<j
if Ot = <a,e>
if Oj = <e,[~>
if O i = <a.13> and O/= <13,$>
otherwise

(The fourth and fifth clauses are due to Martin Kay (Kay
1983).)

Note that if • i = <a,e> and Oj = <e,13> then both

<<(z,e>,<Ni,N'j>> and <<a,~>,<N'i,Nj>> are defined. Their
• order relative to each other is irrelevant since the semantics is
nondetemainistic with respect to e transitions. Also, note that
the second and third clauses dealing with <=,=> transitions are
further constrained to eliminate any "instantiation" of <=,=>
which has lower precedence than a transition with the "instan-
tiati0n" in the transition sequence which contains <=,=>. E.g., if
<<=,=>,Nj> e T 1 and <<=,=>,Nil * <<b,c>,Nk> =

<<b,c>,<Nj,Nk>> and there is a transition <<b,b>,Ni> e T 1 and

i<j then <<b,b>,Ni> takes precedence over <<=,=>,Nj> and so
the composition is undefined.

The composition M 1 * M 2 of two FSTS

M 1 =<N~,Y.I> and/Vl 2 =<N~,E2>

is their cross product

<v~ x te~,X 1 x X2>

The composition Z<l,2 > = Z 1 * Z 2 of two states

Finally, note that nondetemainistic transition sequences may be
defined. That is, two or more transitions with the same transi-
tion pair may be specified which have different new states. E.g.,
the composition of the transitions <<a,b>,sl> and <<b,c>,tl> is
<<a,c>,<sl,tl>> but the composition of the transitions
<<a,d>,s2> and <<d,c>,t2> i s <<a,c>,<s2,t2>>. Both composi-
tions have the transition pair <a,c> but the new state is the
<s l , t l> for the first transition and <s2,t2> for the second transi-
tion. This form of nondeterminism is genuine and must be
eliminated if the quasi-deterministic semanties that we have
outlined is to be maintained.

X 1 = <NI,T1,AI> and Z z = <N2,T2,A2> 5. T h e D e t e r m i n i s a t i o n A l g o r i t h m

is

Z<l,2 > = <<Ni,N2>, T 1 x T2, A 1 A A2>

I.e., the name of the composition is the pair of the names of the
two composed states. The composition is an accepting state if
both of the composed states are accepting states and is a nonae-
cepting state otherwise.

As (Barton 1986b) points out, FSTS used as aeceptors are
finite-state machines (FSM) with an alphabet of pairs of charac-
ters. As such, an equivalent deterministic FST can be con-
strutted.for any nondeterministic FST used as an acceptor since
a deterministic FSM can always be constructed that accepts
exactly t h e same language as a nondeterministic FSM
(Hoperoft and Ullman 1979). Because the serial composition
algorithm may produce nondeterministic FSTS, a determinisa-
tion algorithm is required to produce equivalent deterministic
FSTS.

538

The algorithm collapses all transitions in a transition :~equence
with common transition pairs but different new states into one
transition with a complex new state name. This new state name
is the name of a state which is the parallel intersection of all
the new states" of the transitions with the common transition
pairs. The only fundamental difference between this type of
parallel inteisection and the definition presented in § 3 is that a
state in the intersected FST is an accepting state if any of the
intersected states is an accepting state.

Although it may not be obvious, the determinisation algorithm
is guaranteed to terminate. The following argument shows
why. The new states of simple states are always simple states
so complex states are the intersection of only simple states.
The number of simple states is finite. The number of transi-
tions within a simple state is finite. It follows that the number
of transitions in a transition sequence with common transition
pairs is bounded, the number of possible complex states is
bounded and the size of a complex state is bounded. Therefore,
there is an upper bound on the size of the equivalent deter-
ministic machine and so the determinisation algorithm is
guaranteed to terminate.

6. Implementation

The second author designed the parallel semantics and imple-
mented an interpreter for it in Interlisp-D on a Xerox 1186. The
first author designed and implemented the parallel intersection,
serial composition and determinisation algorithms in Lucid
Common Lisp on a Masscomp MC5700. The programs exhibit
reasonable performance (about ten minutes using compiled Lisp
for composite FSTS with approximately 160 states).

7. Conclusions and Related Work

Although it has been reported in the literature that the algo-
rithms described here have been implemented, we are unaware
of the publication of any such algorithms to date. The algo-
rithms themselves are of interest because they formalise the
semantics of finite state transducers. Also, these algorithms are
similar to graph unification algorithms. Specifically, the paral-
lel intersection and determinisation algorithms can be viewed as
cyclic graph unification and graph disjunction elimination algo-
rithms respectively.

As Barton points out, a determinisation algorithm like the one
presented here will not work on transducers used for generation
and recognition (as opposed to simple acceptance). He claims
that many FSTS are not determinisable at all. The current work
provides a formal basis on which to investigate the class of
detemlinisable transducers used for generation and recognition.

9. References

Barton, G. E. (1986) Constraint Propagation in Kimmo
Systems. In Proceedings of the 24th Annual Meeting of
the Association for Computational Linguistics, Columbia
University, New York, N.Y., June, 1986, pp45-52.

Barton, G. E. (1986) Computational Complexity in Two-Level
Morphology. In Proceedings of the 24th Annual
Meeting of the Association for Computational
Linguistics, Columbia University, New York, N.Y.,
June, 1986, pp53-59.

Hopcmft, J. and Ulhnan, J. D. (1979) Introduction to Automata
Theory, Languages and Computation. Reading, Mass.:
Addison-Wesley.

Kaplan, R. and Kay, M. (1985) Phonological rules and finite.-
state transducers.

Karttunen, L. (1983) KIMMO: A general morphological
processor. Texas Linguistic Forum, 22, 165-186.

Karttunen, L. and Wittenburg, K. (1983) A two-.level
morphological analysis of English. Texas Linguistic
Forum, 22, 217-228.

Karttunen, L., Koskenniemi, K. and Kaplan, R. (1987) A
Compiler for Two-level Phonological Rules. Technical
Report, Center for the Study of Language and
Information, Stanford University, 1987.

Kay, M. (1982) When meta-rules are not recta-rules, in
Sparck-Jones, K. and Wilks, Y. (cds.) Automatic Nat,ra!
Language Parsing, pp74-97. Chichester: Ellis
Horwood. Also in M Badow, D Flickinger and I A Sa!,
(eds.) Developments in Generalized Phrase Structure
Grammar: Stanford Working Papers in Grammatical
Theory, Volume 2, pp69-91. Bloomington: [ndiatm
University Linguistics Club.

Koskenniemi, K. (1983) Two-level morphology: A general
computational model for word-form recognition and
production. Publication 11, Department of General
Linguistics, University of Helsinki, Helsinki, 1983.

8. Acknowledgments

This research was supported by the Alvey Speech Input Word
Processor and Workstation Large Scale Demonstrator project,
ESRC Grants D/29611, D/29628 and 1)/29604. The first author
has been supported during the writing of this paper by the EEC
Esprit Project 393 ACORD: the Construction and Interrogation
of Knowledge Bases using Natural Language Text and Graph-
ics.

539

