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S u m m a r y  

It is suggested that the concept of "logic grammar"  as 
re la t ion be tween  a str ing and a parse- t ree  can be 
ex tended  by admi t t i ng  the lexicon as par t  of the 
relation. This makes it possible to give a s imple  and 
elegant formulat ion of the process of infering a lexicon 
f rom e x a m p l e  sen tences  in con junc t ion  wi th  a 
g r a m m a r .  V a r i o u s  p r o b l e m s  a r i s i n g  f r o m  
implementa t ion  and complexity factors are considered, 
and examples are shown to support  the claim that the 
method shows potential as a practical tool for automatic 
lexicon acquisition. 
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1. Introduction 

The basic idea is as follows: a logic grammar  [1] can be 
v iewed  as the definit ion of a relation between a string 
and a parse-tree. You can run it two ways: finding' the 
parse-trees that correspond to a given s t r ing (parsing), 
or f ind ing  the s tr ings that  cor respond  to a g iven  
parse-tree (generating). However ,  if we v iew the lexicon 
as part  of this relation, we  get new possibilities. More 
spec i f ica l ly ,  w e  can c o m p u t e  the lexicons t h a t  
correspond to a given string; this can in a natural way  
be v iewed as a formalizat ion of "lexicon learning from 
example  sentences". In terms of the "explanation-based 
l ea rn ing"  p a r a d i g m ,  this  makes  the  a s soc ia t ed  

parse-tree the "explanation" (See diagram 1). 
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learning j ~  ~,~ 
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In what  comes below,  we are going to consider  the 
fol lowing questions: 

1) We are learning from posit ive-only examples~ What  
can't be learned like this? 

2) The basic structural constraint, the thing that makes 
it all work,  is the assumption that a word  can usually 
only be interpreted as one part of speech. If we assume 
that this is always going to be true, then things really go 
pret ty wel l  (Section 2). However ,  this rule is broken 
sufficiently often that a realistic system has to able to 
deal with it. How? 

3) H o w  impor tant  is the order in which examples are 
presented? Can the system select a good order itself, if it 
is important? 

4) What  kind of complexi ty features are there? H o w  
scalable is it in terms of number  of sentences, number  
of grammar  rules, number  of words  to learn? 

2. Learning with the "one entry per word" assumption. 

This is the simplest  var iant  of the idea: assume that 
there is one entry per word,  and represent the lexicon as 
an association-list (alist) with one entry for each word. 
Each sentence n o w  constrains the possible values of 
these entries to be ones. which allow it to be parsed; the 
hope is that a conjunction of a suitably large number  of 
such constraints  wi l l  be e n o u g h  to de te rmine  the 
lexicon uniquely.  

In concre te  Pro log  p r o g r a m m i n g  terms,  wha t  this 
means is the following. In the 

initial lexicon, the entries are all uninstant iated.  We 
use this to parse the first sentence, which fills in some 
entries; the resul t ing part ial ly instantiated lexicon is 
sent to the second sentence, which either refutes it or 
instantiates it some more,  and the process is repreated 
until we get to the end. If at any stage we are unable to 
parse a sentence, we just backtrack. If we want  to, we 
can cont inue  even  after w e ' v e  got  to the end,  to 
generate  all possible lexicons that are consistent with 
the inpu t  sentences and the grammar  (and in fact w e  
ought  to do this, so as to know which words  are s t i l l  
ambiguous) .  This p rocedure  can be embod ied  as a 
one-page Prolog program (see diagram 2), but  despite 
this it is still surpr is ingly fast on small  examples  (a 
g rammar  with  15-30 rules, 10-15 sentences with a total 
of  30-40 w o r d s  to learn).  We p e r f o r m e d  some  
exper iments  wi th  this k ind of setup, and drew these i 
conclusions:  

1) Certain things can' t  be learned from posi t ive-only 
examples. For example  (at least with the grammars we  
have  tried),  it is imposs ib le  to de te rmine  whe ther  
belongs is a verb which takes a PP complement  with 
p repos i t ion  to, or is an intransi t ive verb  which  just 
happens  to have  a PP modif ier  in all the sentences 
where  it turns up. However ,  things of this kind seem 
fairly rare. 

2) Order  is fairly critical. When examples are presented 
at random,  a run t ime of about 100 seconds for a 10-12 
sentence group is typical; ordering them so that not  too 
many  new words  are int roduced at once drops this to 
about  5 seconds,  a factor of 20. This gets worse  wi th  
more sentences, since a lot of work can be done before 
the sys tem realizes it's g o t  a wrong  hypothesis  and 



backtracks 

].earn (Sents~ L) :- 
start lex(SentsvL), 
learn :[(Sents~L) . 

learn 1(JILL). 
learn I([FIR]~L) : -  
parse(F,L) r 
learn ] (RgL) , 

parse(gent~]-.) :- s(Sent~ [],L) 

start lex(Sents~L) :- 
seto{°([W, ]vS^(member(SvSents), 

member(W,S)),L). 

lex lookup(WordvLex,Class) :~" 
member([Word, Class],Lex). 

% Example grammar: 

s(L) ---~> np(L),vp(L) . 
np(L) .... > det (L) , noun (L) . 
vp(L) .... > iv(L). 
vp(L) -.-> tv(L),np(L) . 
det(L) .~-> [D], {lex lookup(D,Lrdet) }. 
noun(L) --> [N], {lex lookup(N, Lrnoun) } . 
iv (L) ~.-> [V] r {lex .lookup (V, L, iv) } . 
tv(L) ~-> [V], {lex lookup (V, L, tv) } . 

Diagram 2 

3) A mo~:e important complexity point: structural  
ambiguities needn't  be lexical ambiguities; in other 
wo~'ds, it is quite possible to parse a sentence in two 
distinct ways which still both demand the same lexical 
entries (in practice, the most common case by far is 
NP/VP ~l'.:tachment ambiguity). Every such ambiguity 
introduce:; a spurious duplication of the lexicon, and 
since these.,, multiply we get an exponential dependency 
on the number of sentences. We could conceivably 
have tried to construct a grammar which doesn't 
produce this kind of ambiguity (cf. [2], pp. 64-71), but 
instead we reorganized the algorithm so as to collect 
aftex' each step the set of all possible lexicons compatible 
with the input so far. Duplicates are then eliminated 
from this, and the result is passed to the next step. 
Although the resulting program is actually considerably 
xnore expensive for small examples, it wins in the long 
run. Moreover, it seems the  right method to build on 
when we relax the "one entry per word" assumption. 

3° ~.emov;[ng the "one curry per word" assumption. 

We doxft actually remove the assumption totally, but 
just weaken it; for each new. sentence, we now assume 
that, of tlle words already possessed of one or more 
entries, a'~ most one may have an unknown alternate. 
.Multiple entries are sufficiently rare to make this 
reasonable. 9o we extend the methods from the end of 
section 2; first we try and parse the current sentence by 
h ~ k i n g  up known entries and filling in entries fox" 
words we so far know nothing about. If we don't get 
a~y result this way, we try again, this time with the 
added possibility of once assuming that a word which 
already has known entries in fact has one more. 

Tids is t~sually OK, but sometimes produces strange 
i'esults, as witness the following example. Suppose the 
first three sentences are John drives a car, John drives 

well, and John drives. Aftex' the first sentence, the 
system gaesses that drives is a transitive verb, and it is 
able to maintain this belief after the second sentence if 
it also assumes that well is a pronoun. However, the 
third sentence forces it to realize that drives can also be 
an intransitive verb. Later on, it will presumably meet 
a sentence which forces well to be an adverb; we now 
have an anomalous lexicon where well has an extra 
entry (as pronoun), which is not actually used to 
explain anything any longer. To correct situations like 
this one, a two-pass method is necessary; we parse 
through all the sentences a second time with the final 
lexicon, keeping count of which entries are actually 
used. If we find some way of going through the whole 
lot without using some entry, it can be discarded. 

4. Ordering the sentences 

As remarked above, order is a critical factor; if words are 
introduced too quickly, so that the system has no 
d~ance to disambiguate them before moving on to new 
ones, then the number of alternate lexicons grows 
exponentially. Some way of ordering the sentences 
automatically is essential. 

()ur initial effort in this direction is very simple, but 
still seems reasonably efficient; sentences are 
pre-ordered so as to minimize the number of new 
words introduced at each stage. So the first sentence is 
the one that contains the smallest number of distinct 
words, the second is the one which the smallest 
number of words not present in the first one, and so on. 
We have experimented with this approach, using 
groups of between 20 and 40 sentences and a grammar 
containing about 40 rules. If the sentences are randomly 
ordered, the number of alternate lexicons typically 
grows to over 400 within the first 6 to 10 sentences; this 
slows things down to the 

point where further progress is in practice impossible. 
Using the above strategy, we get a fairly dramatic 
improvement; the number of alternates remains small, 
reaching peak values of about 30. This is sufficient to be 
able to process the groups within sensible times (less 
than 15 seconds per sentence average). In the next two 
sections, we discuss the limitations of this method and 
suggest some more sophisticated alternatives. 

5. Increasing efficiency 

It is rather too early to say how feasible the methods 
described here can be in the long term. As far as we can 
see, scalability is good as far as grammar.~size is 
concerned; we have increased the number of rules from 

15 in the first version to about 40 in the current one 
with little performance degradation. Scalability with 
respect to number of sentences is more difficult to 
estimate. Using the methods described in sections 3 and 
4, we have sucessfully processed groups of up to 50 
sentences (about equally many words), with run times 
typically in the region of 10-15 minutes. An example is 
shown in the appendix. It is reasonable to suppose that 
the system as it stands would be capable of dealing with 
groups up to four or five times this size (i.e. 200-250 
words to learn), but it has a limit; the problem is that 
there are always going to be a few words in any given 
corpus which occur insufficiently often for their lexical 
class to be determinable. Although these words are 
typically fairly rare, the ambiguities they introduce 
multiply in the usual way, leading to an eventual 
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breakdown of the system. The following tentative ideas 
represent some approaches to this problem which we 
are currently investigating. 

What appears to be necessary is to find some intelligent 
way of utilising the fact that the various alternate 
lexicons all agree on the majority of entries; typically, 
less than 10% are ambiguous after any given step in the 
processing. The current system completely ignores this, 
representing each lexicon as a separate entity. If we are 
to improve this state of affairs, we can envisage two 
possible plans. Firstly, we could simply remove the 
"difficult" words, hoping that there are sufficiently few 
for this not to matter. More ambitiously, we can try to 
share structure between lexicons, so that the common 
part is not duplicated. We now expand on these two 
ideas in more detail. 

5.1. Removing "difficult" entries 

At regular intervals the group of alternate lexicons is 
analyzed: the normal state of affairs is that they are 
identical excepting the entries for a few words, the 
potential "troublemakers". What one could do would 
be simply to remove these entries, making them once 
again uninstantiated; then all sentences containing the 
offending words would be removed from the subgroup 
marked as already having been processed, and saved for 
possible future use. The overall effect would be to 
reduce the group of alternate lexicons to a single 
"lowest common denominator" ,  which ~ would  
represent the "reliable" information so far acquired, 
this at the expense of losing some partial information 
on the "dubious" words. 

We have carried out a few simple experiements along 
these lines, using a variant of the ,dea which at each 
"check-point" removes all ambigous words for which 
there are no further sentences awaiting processing. This 
seems at first sight very reasonable, but unfortunately it 
turns out that there are problems. Although one might 
easiIy think that an ambiguous word is going to stay 
ambiguous if it doesn't occur in any of the remaining 
sentences, in actual fact this is not so; a word can be 

disambiguated "indirectly", as a result of other words 
being disambiguated.  To give a simple example: 
suppose that the first sentence is The zebra laughed. 
This can give rise to a number of possibilities: for 
example, the and laughed could be pronouns, and zebra 
a transitive verb. If the word zebra didn't  occur again, 
one would thus wrongly conclude that there was no 
way of determining whether it was a common noun or  
a transitive verb. But this can easily be accomplished if 
the or laughed are later assigned to their proper classes, 
which will then remove the incorrect interpretation 
and indirectly make zebra unambiguous too. Clearly, a 
more sophisticated implementation is required if this 
idea is going to work. 

5.2. "Lexicon compaction" using Prolog constraints 

Here, we discuss the idea of exploiting the similarity 
between different alternate lexicons to "merge" or 
"compact" them. The technical tool we will be using t o  
perform this operation is the Prolog "constraint" 
mechanism [3], [4]. What we propose is illustrated in 
diagram 3, which shows two alternate lexicons, 
differing in a single entry. These can be combined into 
the third lexicon without any loss of information. 
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Simple compaction of two lexicons 

Two alternate lexicons for the sentence: the dog 
belongs to the man 

[ [the:d], [dog:n], [be longs:v(intrans) ], 

[to:prep], [man:n] ] 

[ [the:d], [dog:n], [belongs:v(prep(to)) ], 

[to:prep], [man:n] ] 

These can be compacted into the following single 
lexicon 

[[the:d], [dog:n], 
[belongs:<X:X=v(prep(to) ;X=v(intrans)>], 

[to:prep], [man:n]l 

Diagram 3 

The technique is potentially very powerful, and in 
favourable circumstances can be used to compact 
together large numbers of alternates, as diagram 4 
illustrates. 

Compacting four lexicons into one in a two-stage 
process. 

lexl: [ . . .  [ b e l o n g s : v ( i n t r a n s ) ] ,  . . .  
[plays:v(intrans) ], . . .] 

lex2: [ . .. [belongs : v (prep (to) )]r • • . 

[plays:v(intrans) ], . . .] 

lex3: [ • .. [belongs:v(intrans) ]~ ... 

[plays:v(prep(with))], ...] 

lex4: [ ... [belongs:v(prep(to))], ... 

[plays:v(prep(with)) ], ...] 

In the first stage, we compact lexl and lex2 to make 
lex12, and lex3 and lex4 to make lex34. 

lex12: [ . . . [belongs : 

<X:X=v(prep(to);X=v(intrans)> ], ... 

[plays:v(intrans)], ...] 

lex34: [ . . . [belongs : 

<X : X=v (prep (to) ;X=v(intrans)> ], . . . 

[plays:v(prep(with)) ], . . .] 

Then we compact lex12 and lex34 to get the final result. 

[ . . . [belongs : 

<X:X=v(prep(to) ;X=v(intrans)> ], ... 
[plays: <Y:Y=v(prep(with) ;Y=v(intrans)> ], 
• ..] 

Diagram 4 

What makes the "compaction" method so attractive is 
that it appears to get the best of both worlds: no 
information is lost, but substantial efficency gains can be 
attained. The method draws its power from the fact that it 
is "intelligent" about divergences between lexicons: if the 
sentence to be parsed contains none of the "constrained" 
words, then the compacted lexicon will behave as though 
it were a single, unambiguous ,  lexicon; but  if 
"constrained" words are present, then the lexicon will be 
"split" again, to exactly the extent required by the various 
parsings of the sentence. It is to be noted that all this of 
course requires a Prolog constraint mechanism which is 
both efficient and logically complete, something that has 



only recently become possible [4]. We are currently in the 
process of in~plementing the method within our system. 

6o Conclusioas and further directions 

We have descr ibed a series of experiments  which 
investigate the feasibility of automatically infering a 
lexicon frora a logic grammar and a set of example 
sentences; this stands in fairly sharp contrast to most 
work done so far within the field of automatic language 
acquisition, where the emphasis  has been either on 
grammar induction e.g. [51, [6], [7], or learning of word 
senses [8]: Ia view of the fact that much recent linguistic 
research has been moving towards unification-based 
formalisms where the bulk of the information is stored 
in the lexicon, we think that ideas like the ones we 
propound here should have a rich field of application. 
For example, Pollard and Sag's HPSG framework [9] has 
at only a couple of dozen grammatical rules, all of which 
are ex t r eme ly  general; the rest of the information is 
lexical in nature. 

Al though we think that progress to date has been 
extremely encouraging, it is still a little too early to make 
any firm claim that our methods are going to be usable in 
a practical system. As discussed above, there are some 
non-trivial efficiency problems to be overco-ae: it also 
seems likely that we will need a more sophisticated 
ordering algori thm than that described in section 4, 
probably incorporating some notion of giving higher 
priority to sentences containing ambiguous words. Other 
important topics which we so far have not had time to 
devote at tent ion to are the use of morphologica l  
information and the deve lopment  of some way of 
handling incorrect sentences (maybe just ignoring them 
is enough; but our feeling is that things will be a little 
trickier). These and other related questions will, we hope, 
provide fruitful ground for continued research in this 
area, 
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We enclose two appendices. The first shows some 
sample runs; the second, the grammar used in the 
examples. 

Appendix 1 

SICStus V0.5 - July 31, 1987 
Copyright (C) 1987, 
Swedish Institute of Computer Science. 
All rights reserved. 
I ?~- ['start.pl']. 
[consulting /khons/asa/learning/start.pl..] 
[compiling /khons/asa/learning/xgproc.pl...] 
[xgproc compiled in 14480 msec.] 
[consulting /khons/asa/learning/xgrun.pl...] 
[xgrun reconsulted in 159 msec.] 
[consulting /khons/asa/learning/utilities.pl.] 
[utilities.pl reconsulted in 1360 msec.] 
[compiling /khons/asa/learning/prettyprint.pl.] 
[prettyprint.pl compiled in 4680 msec.] 
[consulting /khons/asa/learning/top.pl...] 
[top.pl reconsulted in 5920 msec.] 
[consulting /khons/asa/learning/sent.pl...] 
[sent.pl reconsulted in 2340 msec.] 

** Grammar from file grammar.pl : 0 words ** 

[consulting /khons/asa/learning/read-file.pl.l 
[read-file.pl reconsulted in 1420 msec.] 
[start.pl eonsulted in 32100 msec.] 

% .............................................. 

% A simple test with six sentences. 
................................................ 

yes 
1 ?- test qroup(5). 

Order before sorting: [1,26,2,3,4,5] 
Order after sorting: [1,2,26,3,4,5] 

% ......................................................... 

% The format of each line is: 
% Sentence number (in test sentence), 
% sentence,number of lexicons left. 
............................................... 

i. the cat saw the dog 8 
2. the dog saw a cat 2 
26. that man saw the dog 3 
3. a man saw the nice dog 2 
4. the nice dog likes the man 2 
5. the man likes the dog that the cat saw 1 

Run time = 13420. Compiling statistics ... 

............................................ 

% The system asks the user which of the 
% alternate lexicons is the correct one. 
% Here there is only one possibility left. 
% ............................................. 

a: det 
cat: noun(_48268) 
dog: noun(48270) 
likes: verb(trans) 
man: noun(_48273) 
nice: adj 
saw: verb(trans) 
that: det rel pro 

the: det 

Is this correct? yes. 

No mistakes 
yes 

% ........................................ 

% A rather more complicated example. 
% .......................................... 
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I ? -  test_grouP(0)" 

Order before sorting: 
[i,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16e 
17,18,19,20,21,22,23,24,25,26,27,28,29, 
30,31,32,33,34,35,36,37,38,39,40,41,42,43] 

Order after sorting: 
[1,2,3,4,5,26,27,13,14,6,15,39,11,9,19,18, 
21,20,10,12,17,7,23,33,16,8,22,28,29,30, 
31,32,25,24,35,38,34,36,37,40,41,42,43] 

I. the cat saw the dog 8 
2. the dog saw a cat 2 
3. a man saw the nice dog 2 
4. the nice dog likes the man 2 
5. the man likes the dog that the cat saw 1 
26. that man saw the dog 1 
27. the man has a cat 1 
13. the dog belongs to the man 4 
14. the dog likes most men 8 
6. most men like the dog 4 
15. the men like john 4 
39. the man hoped that john likes the dog 24 
ii. the dog hoped that the man 

read the newspaper 16 
9. the man read the newspaper 16 
19. john has read the newspaper today 16 
18. john read the newspaper today 16 
21. the man read the newspaper before 

john saw the cat 16 
20. john has not read the newspaper 16 
10. the dog brought the man the newspaper 16 
12. john threw the newspaper to the dog 12 
17. john threw the newspaper on the table 12 
7. the dog sat on the table 20 
23. the cat sat on the car 20 
33. john saw a glass on the table 16 
16. the dog sat with john 8 
8. the table belongs to the man who 

owns the dog B 
22. the man who owns the cat drives the car 8 
28. the man who has a cat has no dog 8 
29. the cat ate a fish 8 ~ 
30. john ate the beans 8 
31. the man ate a can of beans 16 
32. the man brought the cat a can 

of catfood 16 
25. the man can drive the car 72 
24. the dog can not drive the car 16 
35. the man drank the whisky 16 
38. john hoped the dog drank the water 4 
34. john drank a glass of water 2 
36. john poured the water on the cat 2 
37. john poured a can of water on the cat 2 

40. mary knows that john owns a dog 2 
41; john believes that mary drives a car 2 
42. mary believes John knows that peter 

has a eat 4 
43. peter can not believe that mary 

ate the fish 2 

Run time = 949120. Compiling statistics 

~ ............................ ~ ................ 

% This is the first lexicon of two. The 
% divergences are summarized by the system 
% further down. Note that "can" and "has" 
% are correctely assigned to two different 
% classes, and "that" to three. 
% .................................................. 

% Nouns can be classified as either 
% "count" or "measure". Most of them 
% could be either, but nouns occuring 
% in partative constructions ("can of 
% catfood", "glass of whisky") are 
% forced to be "measure". 
% ............................................... 

e: det 
atef verb(trans) 
beans: noun(measure) 
before: sub_conJ 
believe: verb(s_comp) 
believes: verb(s comp) 
belongs: verb(intrans) 
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brought: verb(doubly txans) 
can: noun(342148) verb(aux) 
car: noun(342150) 
cat: noun(342152) 
catfood: noun(measure) 
dog: noun(342155) 
drank: verb(trans) 
drive: verb(trans) 
drives: Verb(trans) 
fish: noun(342160) 
glass: noun(342162) 
has: verb(trans) verb(aux) 
hoped: verb(s comp) 
john: name 
knows: verb(s_comp) 
like: verb(trans) 
likes: verb(trans) 
man: noun(342170) 
mary: name 
men: noun(342173) 
most: det 
newspaper: noun(_342176) 
nice: adj 
no: det 
not: negator 
of: partative marker 
on: prep 
owns: verb(trans) 
peter: name 
poured: verb(trans) 
read: verb(trans) 
sat: verb(intrans) 
saw: verb(trans) 
table: noun(342189) 
that: rel pro det comp 

the: det 
threw: verb(trans) 
to: prep 
today: adv 
water: noun(measure) 
whisky: noun(342197) 
who: tel pro 
with: prep 

Is this correct? yes. 
belongs : 1 mistakes [verb(pobj([to~45]))] 
yes 
J ?- halt. 

user time 983.600000 



Appendix 2 

% Here is the grammar to the learning system~ 

s v-> nprvp. 

np --> det,npl(_). 
.np --> name. 

npl(Type) --> adJs, 
n(Type), 
optional_lop, 
tel. 

adjs -->. []. 
adjs --> adJ,adJs. 

vp --> v(Verb), 
lex(Verb,verb(V type)), 
v_comps(V type),v mods. 

v comps(intrans) --> []. 
v_comps(trans) --> np. 
v_comps(doubly trans) --> np,np. 
v_comps(pobj(Prep)) --> pp(Prep). 
v_comps(s_cOmp) --> comp, s. 
v_comps(s comp) --> s. 

v mods--> pp(Prep). 
v~mods --> adv. 
v mods --> sc. 
v-mods --> []. 

sc --> sub conJ,s. 

optional_pp ~-> pp(_). 
optional pp --> partative marker, 

npl(measure)° 
optional_io p --> [ ] • 

pp(Prep) --> [Prep],lex(Prep,prep),np. 

rel ~-> [ ] . 
tel --> rel pro, s. 

det --> [Word],lex(Word, det). 

adv --> [Word],lex(Word, adv). 

adj -~-> [Word],lex(Word, adj). 

sub_conj --> [Word],lex(Word, sub conj). 

n(Type) --> [Word],lex(Word, noun(Type)). 

name --> [Word],lex(Word, name). 

oomp --> [Word],lex(Word, comp). 

partative_marker --> [Word], 
lex(Word,partative_marker). 

tel loro ... np --> [Word],lex(Word, rel_pro). 

v(Verb) --> [Verb],lex(Verb,verb()). 
v(Verb) --> aux, [Verb],lex(Verb,verb()). 

aux --> [Verb],lex(Verb,verb(aux)). 
aux --> [Verb,Negator], 

lex(Verb, verb(aux)), 
lex(Negator,negator). 
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