A Process-AcTIVATION BaskDd PARSING ALGORITIM

roR

THE DEVELOPMENT OF NATURAL LANGUAGE {iEAMMARS

Massimo MARINO
Department of Linguistics ~ University of Pisa
Via $. Marla 36 - 56100 Pisa - ITALY
Electronic Mail: MASSIMOM@ICNUCEVM.BITNET

ABSTRACT

A running systerny, named SAIL, for the development
of Natural Language Grammars is described. Stress is put
on the particular grammar rule model adopted, named
Complex Grammar Units, and on the parsing algorithm
that rung rules written in according to this model.
Moreover, the parser is like a processor and sees grammar
rules as processes which can be activated or inactivated,
and can handle exchange of information, structured as
messages, among rules for long distance analysis. A brief
description of the framework of SAIL a user can interact
with, named SIS, is also given. Finally, an example shows
that different grammar formalisms can be implemented
into the frame of SAIL.

1, INFTRODUCTION

Most recent research in the field of grammar
formalisins and parsers for naturallanguage has seen the
flourishing of various theoretical as well as
computational accounts, which, however, bring into
consideration the same facts. The most relevant ones

seern the following:

- whatever representation is adopted for the structure of
the parsed sentence {basically f-stiuctures or treeg), it is
agreed that (complex) sets of features must describe the
linguistic units. It is, therefore, necessary to provide
feature handling mechanisms;

long distance dependency, or, more generally,
dependency, requires a speeific treatment, which is to be
naturally embedded in the theoretical or computational
model of syntax, and must be subject to language
dependent constraints. In any case, the treatment of
dependencies takes the forin of a differently constrained
search for a referent;

- a certain amount of context-sensitiveness is to be
allowed in natural language parsing.

As an additional feature of recent research, the
inclination towards the one-to-one correspondence
between semantic and syntactic rules has to be
mentioned.

SAIL is the parsing algorithm of a developiment
environment, called SAIlL Interfacing System, where
different. grammars corresponding to different
grammatical theories can be implemented (/Marino
1988/). Its basic features, which allow full
implementation of grammars and their debugging are as
follows:

a rich language for the handling of features;
grammar rules are seen as processes which can be
activated or inactivated, and can exchange messages;
this mechanism allows a natural treatment of
dependencies and the running of context-sensitive rules;
the format of the rules is such as to allow sexnantic
processing in parallel with syntactic processing;

the traditional structure of the parser, a bottom-up

all-paths algorithm, allows relative efficiency and the

390

casy integration of a diagnostic coumponent for debugging;

the development envirorment 1g based on different
layers of rules, which ave processed by the same parser
and can handle the external interface, the particular
application, and the debugger. This enables the user to
modify also the front-end of SAIL, by modifying the
corresponding gramnar.

2. THE GRAMMAR RULE FORMALISH

The grarnmar rules are expressed in a formalism
called Complex Grammar Undts (C.G.U.s) having the
following BNF:

CGU 2=
<Syntactic-Rules ::

<Syntactic-Rule> <Semantic-Rule»
<Production <Syn-Testss
<Sym-Actions:»
<Syn-Recovery-Actions:

Hon

<Production> ::: <LHS> <RHS>
<LHS>» 1= A non-terininal syinbol of the
Eraninar
<RHS> 1= A pattern string of terminal

ard/or non-terminal symbols
<Gyn-Testss = Some tests on the applicability of
the syntactic actions
Arbitrary syntactic actions
Syntactic actions for the recovery
in case of match-fatl or test-fail
<Sem-Tests> <Sem-Actlons>
<Sem-Recovery-Actionss
Some tests on the applicabliily of
the semantic rule
Arbitrary serqantic actions
Samantic actions for the recovery
in case of maich-fail or test-fatl

«<Syn-Actiongs =
<Syn-Recovery-Actionss 1=

<Semantic-Rule> ::
«<Sein-Tests> 1=

<Seimn-Actionss :;
<Sewn-Recovory-Actiongs jix

In: each grammar rule the syntactic terpretatlon is
directly connected with the corresponding semantic
interpretation: in this way the parser processes in parallel
both interpretations.

Inside the augmentations we can do several things:

- the tests are evaluated before the application of a rule
and through thera we can check its applicability;
every node of the parsing structure containg structural
information about the part of sentence it covers; this
information is local to each node and is stored as a
feature structure tree. The features are classically
stored as attribute-value pairs, with the possibility that
a value s liself an attribute-value palr; several feature
handling functions are defined Inside the system, sowe
can use them with the augmentations to create, delete,
test, get, copy and raise features;

the semantic rule acts on the semantic part of the
system, which can be, for example, a KB handled by
knowledge representation language; this side is
dependent on the system application;

the semantic actions are a sequence of semantic
operations, including the possibility of assigning
semantic value to the new node built by the vule; The

t

t

semantic value assigned to a node represents, in
goncral, the meaning of the part of the sentence the
node covers, according to the chosen formalism;

- the syotactic and semaniie recovery actions allow
alternative actions if the rale fails during the matching
phase cr the test checling, so the rules need not be
cradely rejected when they fail;

- goine budlt-in system funciions are available; these
tools handle, for example, the pariicular execution of a
rule, or wodify the paising processing, ete.; these
mechaoisms are discussed below.

The production i eacl yisle is classically represented as

a Contexi-Iree

noy-tenninal

production: A - w, w, ... w,, where Als o
wibol and w, w, ... w, is a siring of terminai
ard/or von-ieyminal syaabols,

The rules of the gravwaay ave applied by ihe parser fu a

Botiow-gy way: it stavis from the sentence and builds

over It the parsing stuchure as a graph,

It our sysicm we also have a2 dictionacy D, Each iicm

nthe dictlonary is called afeom, We distinguish between
siogle foxms and multiple fooaue, The lrstnatches the
geoeral concept of & word; the second defines a mulil-
word expression of the language, typically an idiow,
One or ore interpretations are associated with each
forin and they consist of ihe syntactic category, the
semantic value and a feature structure.,
Asentenecs is a compound of forins. For every sentence ¥
f,...%, suck: that every form e [, and a grawamar G defined
in our model, we say that #, £,...£, is pavsable if we can
build a structure through a fiuite sequence of rule
applicativns, where at least one node covers the entire
sentence and its category 1s the root symbol of the
grammmay.

Rule appiications ave performed by the parser In a
bottom-up strategy whenever:

a. at least one sequence of nodes cxists in the structure
the parser has been building, matching the <RHS>
part of the rude;

Ib. if the above condltion: holds the parser verifies the
tests of the rule; it they are verified the rule is applied;

¢. il the wateh fails, or the tests are not verified, then the
parser executes recovery actions.

The core application of a CGU consisis in:

d. building a new node corvesponding to the <LHS> part
of the rule;

¢. assigning features fo the new node by executing the
syatactic actions of the rule;

f. execufing the semantic actions of the rude, and
possibly assigning the semantle value to the new
node.

In the fellowing we always represent the production in the

standard way as above; the feature siractures associated

with a notic of category w, are represented as [and the
semantic value as [w]l

We can specily the complete process of a rule application
by means of & PASCAL-like stateroent as follows.

it Wintel (%, ..., w,, graph)

Sya-Lesis(3,1 .. B)) and
Sex-Tests ([w,]] ..., [lw]], SEM)
* B represenis the scantic maodel #/
then begin
Balld (A, w, ..., w,)

/* hatld 2 new node A over the matched nodes */
we-detlons ([BL IR, ... BJ)
widsthows { {jwll, ..., [tw)], SEM }
end

Sem-tecovery-Actlons
end
glse heghn
Byn-Recovery-Actions;
fieva-Recovery-Actions
end:

The rules are grouped in such a way that the parser
accesses (o a resivicted number of them, e, only the
currently applicable ones, when it tries to apply some,
This is accomplished by partitioning the rales into
packets discriminated by the last category in the righi-
band side. If a grammar is partitioncd as P,,...,P, then for
every 1j=1,.... kK, 4, we must have thai P, 0 = {}, So when
the parser accesses a packet through the category of a
node, the rules In that packet are the oaly ones applicable
at that moracnt.

Now ict us introduce the concept of Not Gperative

Productions.
In peneral such productions do not build a new node if one
of the three special categories <NOP>, <NOP-ASE>,
<NOP-SE> is the left-hand side. A Not Opceative
Production is one of the following:

{ «<NOP> | <NOP-ASE> | <NOP-SJi>) -5 w, w, ... w,

Rules with such productions are called NOW Rules.
Depending on the NOP-category wused, the rule
application is performed in a special way.
A NOP rule with <NOP> as left-hand side s applied as
foliows if the syntactic tests suceeed: 1) 110 new node s
budlt; 2) only the syntactic rule is iaken into account by
the parser; 3) the semantic rule is never considered.
Therefore the application of such a rule iype is performed
as in the following PASCAL-like siatevici:

i Mimtch (w), ... w,, graph)
then if Syn-Tests ({31, ... [8,])
then Sys-Actioas(B ... [B,])
¢lse Sym-Recovery-Actions

else Byn-Recovery-actions;

This kind of NOP rule is useful when we are interested in
performing modifications or particular constructions or
analyses on features Inside a certain context without
building a new node. Such a kind of NOP rule is purely
syntactic.

In a production with <NOP-ASE> as left-hand side, I both
gyntactic and semantic tests succeed: 1) no new node is
built; 2) the rule application is performed in the standacd
way, including feature handling if it does not involve the
non-existent parent node.

In a production with <NOP-5E> as left-hand side, if only
the sexnantic tesis succeed: 1) nonew nodeis built; 2) only
the semantic rule is taken into account by the parser; 3)
the syntactic rule is never considered. From thereon
application is the dual of that defined for the <NOP>
category.

4. RULES AS PROCRESSES

The rules defined in our system are viewed as
processes to be executed by the parser which has the role
of the processor. As a consequence, a state is assigned to
cach rule which is determined at the snoment of grannar
definition. Rules can assume two different states: active
or inactive state. A rule is seiive when the parser
normally takes it into account for application; rules are
active when their names are in their corresponding
packets. A rule is inactive when the parser does not
normally take it nto consideratdion for application; rules
are inactive when their names are not in any packet.
It is possible to modify the state of a vule By means of two

591

functions within the augmentations during a rule
application.

Arule R, changes its state from active to inactive if some
rule R calls within its augmentations the function rule-
disable for R, performing a disabling operation; on the
termination of the disabling rule R , the disabled rule
name R, is removed from the corresponding packet, and
the parser does not take into account R,. Conversely, a
rule R, changes its state from inactive to active if some rule
R calls the function rule-enable for R within its
augmentations, performing an enabling operation. On
the termination of the enabling rule R,, the enabled rule
name R, becomes present into the corresponding packet.
It is possible to change the state of one or more rules at
a time through these functions and the rules can perform
self-enabling and self-disabling operations. Changes of
state effected during the parsing are not permanent. At
the end of each parse the rules are reconfigured as
indicated in their original definition.

In addition we can invoke an inactive rule for just one
application from another rule. We say that an Inactive
rule R is activated to be applied just once, when a call to
the function rule-activation is in some augmentation of
another rule R, The activation of an inactive rule R, allows
just one application of it by the parser, immediately after
the termination of the activating rule R. The state of the
activated rule is not modified. The activation of more than
one rule at a time is possible, and once a rule is activated
it can activate other rules.

4. CONTEXTUAL RULES

Rule activation by means of the rule-activation
function, together with NOP rules can be used to handle
context sensitive languages. However, this 1s entirely
done by means of CF productions and the
augmentations.

A typical CS production is: y, A p, -, B 1, where 1,

1. B are strings of symbols, and A is a non-terminal
symbol. A bottom-up application of such a production is

possible if it happens in iwo steps: 1) individuation of the

context y, B p,; the right-hand side must match a
sequence of sub-trees that covers phB %: 2) inside this
context we can perform the application of the CF¥
production A -» building the node A over the sequence

of nodes characterized by pB. So the complete ap;ﬁlicaﬂon
for a CS production is made in two steps: the first one

concerns context determination, the context being
represented by the right-hand side of the CS production;
the second step is just the application of a CF produiciion
if and only if the first step has determined the context
where the CF production is applicable. These
considerations allow us to say that: step 1 can be
performed by the application of a NOPrule using the NOP-
special categorles; in fact this kind of rule is useful in
determining the context by defining a NOP rule with
production:

{ <NOP> | <NOP-SE> | <NOP-ASE>) -, B,
Step 2 can be performed by the application of an activated
rule; in fact, when the rule at step 1 determines the
context it can activate an inactive rule with a production
A-3f, indicating in the call to rule-activation the last

node in the sequence p.
Now we can give the definition of contextual rnle.

We say that a rule is coniextual If it is a NOP rule with
production:

{ <NOP> | <NOP-SE> | <NOFP-ASE>) — w, ... w,
and inside the augmentations there is a rule activation of
at least one inactive rule which has a production:

A=W, W, .. W 1gk<msn
Ae VNU[<NOP>,<NOP-SE>, <NOP-ASE=)

392

where VN is the set of the non-terminal symbols of the
grarnmar,

This definition allows a nesting of contextual rules: in fact
an activated rule can be a contextual rule itself. In
addition, we can activate move than one rule at a time; in
this way we can access several contexts inside a main
context.

5. MESSAGES

‘We suggest a method to make possible asynchronous
operations, 1.e., how two independent rules can interact
with each other in order to perform long distance
operations. All this is based on the fact that we must be
sure that a certain rule will be applied after another and
the earlier rule wants to communicate some information
to the other one. To this end we have adopted a
commmunication mechanism, that we call message
pagsing, which is not based on matching as all the
previously explained opexations, but on executing two
basic tasks: sending and receiving, The sending task is
firstly performed by the sending rule that sends a
message to a recetving rule; afterwards the receiving rule
must perform the receiving task to recelve the message.
These two tasks are executed by the two rules at two
independent times, i.e., when the rules are applied. In the
following we denote the sending rule as Rs and the
receiving rule as Rr, and we assume they are standard
rules: so we denote with SN the node built by Rs and with
RN the node built by Rr.

We state two different approaches for what a message is:
1) the rules access a global feature structure where they
store global features. Each rule can access this structure
and whatever feature value in it; 2) a Message-Box exists
where a rule can send amessage to another specified rule.
The Message-Box is accessible from every rule but the
messages are accessible only by receiving rules. A
message 1s comnposed as follows: a refererice to the feature
structure of SN: Rs makes available its feature steucture
to Rr; a sequence of operations, possibly empty, that Ry
must execute.

It is not necessary that both these items are present in a
message,

In the case of the global feature siructure all the rules
have access to it. We recall that all the feature structures
included in the nodes of the graph are local to their own
node, Kach rnile can store in or get from the global
stracture features that are global for the sentence: then
the messages are feature structures and the same type of
operations allowed on the feature structures of the nodes
of the graph is possible on this structure.

The Message-Box Is a structure referred to by all rules
that want to send or receive messages. Arule Rs, bullding
the node SN, sends a message which is automatically
inserted in the Message-Box specifying: its name Rs, the
recelving rule Rr, areference to the feature structure of SN
which is made available to Rr, a list of operations, possibly
empty, to be performed by Rr. Until the messages are sent,
they are the exclusive property of Rs. When they are sent
Rs loses 1ts property rights, and only the rule Rr specified
in the messages is authorized to get them. In addition, Rr
finds in the message a reference to a feature structure and
this structure is available only to it and always local to its
own node.

Message passing, in either of the two realizations, is a
way to facilitate the individuation and treatment of
existing relations among phrases or parts of them. It is
certainly flexible and not expensive because it avolds
searches, L.e., matches, inside the graph, and it can be a
valid alternative to NOP rules that require a ceriain
number of matches to find particular nodes in the graph.,

It fact, if there was not overlapping of the sub-trees rooted
i1 SN and RN, then we can solve relations between SN and
RN by applylng a proper NOP rule, but, more efticlenitly,
message passing allows us to avold a certaii
computational overhead performing proper operations
directly 11 Rs and Rr.

‘When NOP rules are applied they act upon a structure
already built. It is also possible to activate rules that
perform further bullding (contextual rules) and/or
featuring operations within a context. This process of
activation: can be nested many times inside a certain
structure. This analysis performs a kind of operation that
is virtually directed toward the bottom, in depth. If there
was a partlal or total overlapping between the sub-trees
rooted in SN and RN, then - in this case - when Rs sends
amessage, assumes that Re will be applied above its node
SN in this way it is possible to evaluate the consequences
of certain operations on a structure which is not yet but
it could be buili. In this case we act toward the top of the
parsing siructure, through as many levels as we want. In
contrast, using NOP rules, we only act on an existing
structure representing deeper levels.

So we can distinguish two ways of operation for long
distance analysis among phrases or parts of them:
breadth analysis, using both NOP rules or message
passing; depth analysis which can be top-down with NOP
rules or bottom-up with message passing.

The mechanism of the messages so described is
performed through functions that can be used within the
augmentations,

8. THE PARSER

Our parser is a CF-based one, derived from the ICA
{immediaie Constituent Analysis) algorithm described in
/Grishman 1976/, designed to run CGU rules, carrying
out the gyntactic and semantic analysis in paraliel. It is
a bottom-up algorithm, and it performs left-to-right
scanning and reduction in an immediate constituent
analysis. ‘The data structure it works on is a graph where
all possible parse trees are connected. The complete parse
tree(s) is (are) extracied from the graph in a subsequent
step. Therefore, the parser is also able to create structure
fragments for ill-formed sentences, thus returning, even
in this case, partial analyses. This is particularly useful
for diagnosis and debugging.

Parsing (ermination occurs in a natural way, when no
more rule can be applied and the input string is
completely scanned.

Before entering the parser a preprocessor scans the
sentence jirom left to right, performs the dictionary look-
up for each form in the input string, and returns a
structure, the preprocessed sentence, with the syntactic
and semantic information taken from the dictionary.

The graph is composed of nodes: the nodes can be
either terminals or non-terminals. Terminal nodes are
built In correspondence to a scanned form, whereas non-
terminal ones are bullt whenever a rule is applied,
obviously the rule must not be a NOP rule.

As stated above the parser is seen as a processor and
it sees the rules as processes. It handles a queue of
waiting processes/rules to be executed. When the parser
takes a packet, for every rule it bullds a process descriptor
and insexis it in the queue. We call such a process
descriptor an application specification (AS), while the
queue is called the application specifications list (ASL).
ASs are composed of:

a node identifler, through this node the parser starts
the matching;

the name of the rule that the parser will apply:

- only in the case of an AS of an activated rule this item

is the contexi where the named activated rule will be
applied, i.e. the nodes that matched the right-hand side
of the activating rule, otherwise this item is left empty.

ASs In ASL are ordered depending upon the rule
involved in an AS, In general, if standard active rules have
to be executed, ASL is handled withi a LIFO policy. If we
consider the case of NOP rules, then these rules must be
ordered before the others, since feature modifications
they may produce can serve as fnput to othier rules of the
same packet, which are applied after them. An inactive
rule can be activated just for one application by means of
vule-activation function: the activated rules must be
applied immediately after the end of the activating rule. So
this kind of rules has the highest priority of execution with
respect to NOPrules and standard acttve rules. Thenyule-
activation inserts an activation specification on the
top of ASL for the activated rule. Summarizing, the rules
have the following decreasing priority order of execution:
1) activated rules; 2) active NOP rules; 3) standard active
rules.

Once a node i3 created, be 1t terminal (in
correspondence to a scarmed form) or non-terminal (in
correspondence to a reduction), the parser inserts in the
ASL an AS for every rule in the packet corresponding to
the category of the new created node: i.e. the new node is
the one specified In every inserted AS. The parser
performs all possible reductions building more than one
node if possible, extracting one AS at a time before
analyzing the next one. After an AS is extracted from the
ASL, the parser gets the specified rule: the first step is to
match the right-hand side on the graph. The nodes
matching a right-hand side are searched by the matcher:
it returns one or more sets of these nodes, called
reduction sets. For every reduction set, ihe application
of the current rule is tried. In this way we can connect
together all possible parses for a sentence in a unique
structure. Termination occurs wher the ASLis empty and
the preprocessed siring is completely scanned.
Afterwards the parser returns the graph, from which all
parse trees satisfying the following conditions are
extracted: a node covers the entire sentence and its
category is the root symbol of the grammar. Heve is the
complete algorithm of the parser:

¢ Until the end of the sentence 1s not reached:
¢ Scan a form:
» Build a new terminal node for the scanned form;
¢ For every interpretation of the node:
° get the packet corresponding to its category and for every
rule in the packet [ngcit the AS in the ASL ;
¢ For every AS In the ASL;
e get the first AS from the top of the ASL;
o get the specified rule in the AS, it is the current rule, and
access to the node specified in the AS, it is the current node;
e starting from the current node perform the match on the
graph using the production of the current rule;
o if at least one reduction set is found then:
° For_every reduction set:
- Apply the current rule;
- if a new non-terminal node is built then get the
corresponding packet to its category and for every rule
in it jnseri the AS in the ASL;
else: ° Apply recovery actions of the current rule;

In this algorithm by maich we mean the operation of
searching the reduction sets and by ‘apply the current
rule’ we mean the standard rule application starting from
the test checking as stated for the CGU model; particular
ways of applecation, e.g. NOP rules, depend on the
particular rule definition.

393

7. AN EXAMPLE

The example concerns a simple fragment of a LFG
written in SAIL according to the CGU model. Our example
is taken from /Kaplan 1982/and /Winograd 1983/.
The lexical entries for this grammar in SAIL are the
following:

a ((Determiner NIL (Definiteness) (Indefinite}
(Number) (Singular)))
baby ((Noun NIL (Number) (Singular)
(Predicate) (Baby)))
girl {{Noun NIL (Number) (Singular)
(Predicate) (Gir))
handed ((Verb NIL (Tense) (Past)
(Predicate) (Hand)))
the {(Determiner NIL (Definiteness) (Definite)))
toys {(Noun NIL {Number) (Plural)

(Predicate) (Toys)))

Rules in SAIL are written using a defrule format where
all the fields appearing in the CGUs can be defined; in
addition two fields are devoted to the state definition
{STATUS field) and the rule type definition, that is if the
rule is a standard rule or a contextual or a NOP rule
(CNTXTLORNOPR field). The rules are the following:

(defrule NPRule
(STATUS active)

(CNTXTLORNOPR NIL}
{PRODUCTION (NP (Determiner Noun)))
(SYN-TESTS T)
(SEM-TESTS T)
(SYN-ACTIONS
(raisef °(* Definiteness Determiner)
;raise the values of the specified features from the
:son node into the parent node -
“(* * Noun))})
: second * means all features of the son node
Jfirst * means the storing of the features as they are
;in the son node into the parent node
(defrule VPRule ; VP — Verb NP NP
(STATUS active)
(CNTXTLORNOPR NIL)
(PRODUCTION (VP (Verb NP NP)))
{SYN-TESTS T)
(SEM-TESTS T)
(SYN-ACTIONS
(raisef “(* * Verb)

: NP — Determiner Noun

;all features of the Verb node are
;copied in the parent node

“((Object Definiteness) Definiteness NP) ;1st NP
“({Object Number) Number NP)

“((Ohject Predicate) Predicate NP)
“((Object-2 Definiteness} Definiteness NP 2) ;2nd NP

((Object-2 Number) Number NP 2)
. "({Object-2 Predicate) Predicate NP 2)))
(defrule TOPRule ; S —NP VP

(STATUS active)

(CNTXTLORNOPR NIL)

(PRODUCTION (S (NP VP)))

(SYN-TESTS T)

(SEM-TESTS T)

{SYN-ACTIONS

(ralsef “({Subject Definiteness) Definiteness NP)

‘((Subject Number) Number NP)
“((Subject Predicate) Predicate NP)
(**VP)

(SEM-ACTIONS
(put-sem-val ;stores the EVALuation of the following
iexpression as the semantic value of the
;parent node S

394

{append (getf-pn ‘Predicate)
(getf-pn “(Subject Predicate))
(getf-pn “(Object Predicate})
(getf-pn “(Object-2 Predicate))))))
; getf-pn gets feature values from the parent node

The graph built by the parser applying these rules to the
sentence ‘a girl handed the baby the toys’ is equivalent
to the c-structure built by the corresponding LFG as
shown in /Winograd 1983/. The top node S contains the
following feature structure:

3 nDeﬂmteness : Indcﬂniteww
Subject : Number : Singular
|_ Predicate : Girl N
Object : 3 Definiteness : Definite
Number : Singular
L Predicate . Baby
Object-2 : " Definiteness : Definite |
Number : Plural
Predicate : Toys
Tense : Past
Predicate : Hand)

with the semantic value: (Hand Girl Baby Toys).
Comparing the solution of the LFG version with the
feature structure and the semantic value of the SAIL
version we have that the LFG solution is equivalent to the
above feature structure plus the semantic value.

8. THE SAIL INTERFACING SYSTEM

The SAIL Interfacing System (S.1.S.) is the framework
where a user can interact with SAIL in developing NL
applications. In fact SIS is organized in Interface Levels
(I.L.s): in SIS we commonly speak of Interface Level
Applications (I.L.A.s) which are the association of an IL
with a grammar.

If IL-Name is the name of an IL, and G-Name is the name
of a grammar which defines a particular language
through a dictionary and a set of CGU rules, then the pair
<IL-Name, G-Name> defines an ILA inside the SIS: this
application is a task performed by that particular IL.

In this way the development environment is based on
different layers of rules, which are processed by the same
parser and can handle the external interface, the
particular application, and any request issued by the
user. In fact, the grammar of an ILA defines a language
which can be used by the user for sending to the system
his requests so that are caught by the parsing system and
immediately satisfied.

SIS is structured in 2 main ILs: the Kernel Interface
Level (K.1.L.) and the Natural Language IL (N.L.L.L.).
When the system runs only two ILAs are active and
available to the user: the KIL, associated to the Kernel
Grammar (K.G.) and the Current Running Interface Level
(C.R.LL). The KIL is always active because it is the core
ILA of SIS and its purpose is to handle the overall system,
sowhen the system is started the user is introduced to the
Kernel Interface Level. The Kernel Grammar is a semantic
grammar assoclated with the KIL and defines a kernel
language of commands and through them the user can
use all the functionality of the system such as grammar
building, parse checking, running other ILAs.

When SAIL starts up, the KIL is also the CRIL, but when
the user wants to load as CRIL another ILA defined in the
system, for example a NLIL application, then a KIL
command allows this and NLIL becomes the CRIL by

loading a grammar assoclated to the NLIL: in this way the
CRIL is updated to the new application and the loaded
grammar becomes the current running grammar.

A subset of KIL commands defines a language through
which the user can examine the parsing structures
generated by the parser for all the sentences input until
that moraent. This tool, named ANAPAR (ANAlysis of
PARsing), is useful for the grammar and parse checking
in developing NL applications.

Finally, we want to point out that the particular structure
given to IS enables the user to modify the front-end to
SAIL by modifying the corresponding grammar of the KIL;
in fact, all the flles involved in their definition are
accessible to the user who can modify those flles as he
wishes, or extend the language by introducing new
grammar rules.

CONCLUSIONS

The example has shown the possibility of
implementing different grammar formalisms into the
frame of SAIL and also the searching of standard
procedures for building grammars in the CGU model
starting from Categorial Grammars is planned.

An experimental component has also been
implemented, which performs some diagnosis of ill-
formed input, and confirmed that the chosen parsing
algorithm easily supports such a component.

Afull evaluation of some of the described mechanisms
(such as message passing) bas not been carried yet, as
applicatiun to real linguistic cases has not been designed,
but theoretically.

However, a whole view of the system, and the
described example show that SAIL is a valuable tool for
the development of concrete grammars, even of large
coverage.

The whole system described in this paper is currently
implemented in Common Lisp and runs on Sun and
Orion workstations.

This work has been carried out within the framework
of the ESPRIT Project P527 CFID (Communication
Failure in Dialogue: Techniques for Detection and
Repair).

ACKNOWLEDGMENTS
The author is thankful to Glacomo Ferrarl and Irina

Prodanof for their helpful support. The author is also
grateful io Ronan Relilly who read the draft of the paper.

REFERENCES

/Aho 1972/ Aho, A. E. and Ullman, J. D. (1972). The
theory of parsing, translation and
compiiing. Vol 1: Parsing. Prentice-Hall
Inc.

/Grishman 1976/ Grishman, R. (1976). A survey of
syntactic analysis procedures for natural
language. AJCL, Microfichies 47, pp. 2-96.

/Kaplan 1982/ Kaplan, R. and Bresnan, J. (1982).
Lexical-Functional Grammar: A Formal
System for Gramrnatical Representation. In
The Mental Representation of
Grammatical Relations, Bresnan, J, Ed.
Cambridge, MA: MIT Press, pp.173-281.

/Marino 1987a/ Marino, M., Spiezio, A., Ferrari, G. and
Prodanof, 1. SAIL: a natural language
interface for the building of and interacting
with knowledge bases. In Proceedings of
the 2nd International Conference on
Artificial Intelligence: Methodology,
Systems and Applications (AIMSA '86),
Varna, Bulgaxia, 1986, Jorrand, P. and
Sgurev, V., Eds. North-Holland, 1987, pp.
349-356.

/Marino 1987b/ Marino, M., Spiezio, A., Ferrari, G. and
Prodanof, I. An efficient context-free parser
for augmented phrase-structure grammars.
In Proceedings of 1887 ACL Europe
Conference, Copenhagen, Denmark, 1987.

/Marino 1988/ Marino, M. (1988). The SAIL

Interfacing System: a Framework for the
Development of Natural Language
Grammars and Applications. Techunical
Report DL-NLP-1988-1, Department of
Linguistics, University of Pisa, Italy.

/Robinson 1980/ Robinson, J., J. {1980). Interpreting
natural-language utterances in dialogues
about tasks. Teechn. Note 210, SRI
International, Menlo Park, CA.

/Robinson 1982/ Robinson, J., J. (1982). DIAGRAM: A
grammar for dialogues. CACM, 25, 1, pp. 27-
47.

/Winograd 1983/ Winograd, T. (1983). Langunge as &
Cognitive Process. Vol.1: Syutax.
Addison-Wesley.

