SAGE :
& Sentence Parsing and Generation System

Jean-Marie Lancel, Miyo Otani, Nathalie Simonin

Cup Sogeti Innovation
118 rue de Tocqueuille, 75017 Pavis, France

B-maidl: lancel@csinn.uucp, otani@esinn. uucp, simonin@csinn.uucp

Laurence Danlos
LADIL - CNRS

Tousr Centrale, Université Paris VII, 4 place Jussieu, 75005 Paris, France

Abstracts:

SAGE (Sentence Analysis and GEneration system)
is an operational parsing and generating system. It
is used as a Natural Language Frontend for Eaprit
project Feteam-—-316, whose purpose is to advise &
novice user through a cooperative dialogue.

The aim of our system is to validate the use of a
Lexicon—-Grammar {drawn from the LADL studies)
for sentence-parsing and generation, and to imple-
wnené linguistic knowledge in a declarative way ug-
ing a formalism based upon Fanctional Deserip-
tions {FD). We have also developed the parser and
the generation module so that they share informa-
tions and knowledge bases as much as possible:
they work on the same semantic dictionary and
the same linguistic knowledge bases, except that
they biave their own grammar, We have also im-
plemented a tracking of semantic objects that have
been instantiated during a dialogue session: the so-
called Token History is provided for semantic ref-
erence and anaphor resolution during parsing and
for pronoun production during generation.

After introducing to Fsteam-316, this paper de-
acribey the linguistic knowledge bases required by
SAQGE, and then focuses on the Generation Mod-
ule. Section 4 explains how pronouns are handled.
‘The last section is a brief evaluation of our present
work, ‘

1 Introduction to the appli-
wation of SAGE

The porsing and generating system described here
is usec as o Natural Language Irontend for Ee-

prit project Esteam~316, which is an Advice-Gi-
ving system [Decitre 87) [Bruffaerts 88]. A coopera-
tive interactive Man-Machine Interface carries out
dialogue functionalities such as recognition of user
queries, explanation of domain-concepts, explana~
tion of solutions proposed by the Problem Solver,
ete. To describe it briefly, this Dialogue Manager
handles the pragmatic level of a dialogue, whereas
the Natural Language Frontend SAGE deals with
linguistic inferences. The chosen language is En-

glish.

The Dialogue Manager and SAGE share the same
semantic objects, using a formalism based upou
Functional Descriptions (F1Js) [Kay 81]. ‘The Parser
of BAGE exiracts the meaning of the user’s query
and represents it with nested FDds. On the other
hand, the Dialogue Manager sends the Generator
FDs which describe the semantic contents of the
answer.

Our previous work [Lancel 86] was based on a uni-
que dictionary and a grammar shared by both a
parser and a generation module. The grammax
formalism required the mixing of syntactic and se-
mantic informations in the same structure, which
implied the complete rewriting of grammar when
changing from one application domain to another,
It could not handle transformational processes such
as interrogative and imperative transformations.
The system presented here fulfills the four follow-
ing requirements:

1. definition of linguistic knowledge bases suit-
able for both parsing and generation;

2. integration of lexicon-grammar theory into
the previous formalism, in order to provide
precise syntactic information;

8. modularization: a change of application

should not lead to a complete rewriting, bat
only to an extension of the semantic levels;

4. proper pronoun handling, both when parsing
reference resolution) and when generating
pronoun synthesis).

The section 2 describes the linguistic dictionaries
of SAGE. The section 3 explains how those dictio-
naries are exploited by the generation module. In
the section 4, we will detail what kind of processes
are required by pronoun handling.

2 Linguistic knowledge base
for parsing and generation

There are three linguistic levels handled by our sys-
tem: morphological, syntactic, and lastly semantic.
The first one will not be explained here, since the
nost innovative aspects of our linguistic knowledge
bases are provided by the two other levels: we are
able to take into account a wide range of cons-
tructions of a given language using the lexicon-
grammar and we use a totally declarative formal-
ism.

2.1 Parsing versus generation

The main feature of SAGE is that the Parsing
and Generation processes are carried out using the
same dictionaries.

These dictionaries are interpreted by two separate
grammars, one for parsing and one for generation,
both of them being language-dependent but not

domain~dependent. This is a major conclusion drawn

from our studies: a parser and a generation mod-
ule can hardly share the same grammar rules, for
the heuristics required by these two processes are
fundamentally different. Unlike parsing, a gener-
ation process has nothing to do with a sequence
of “left-to-right” procedures [Danlos 87a, Danlos
87b]. Moreover, a given heuristic of clause trans-
formation is strongly dedicated to a parsing or to
a generation process (see section 3).

2.2 Syntactic Knowlédge Base

This syntactic level is domain—independent: cons-
tructions of verbs, predicative nouns and adjectives
along with their corresponding valency are listed in
a lezicon-grammar.

This lexicon~grammar is based on the theory devel-
oped by [Groes 75, Gross 86] and the studies carried
out by the LADL on French constructions. It pro-
vides accurate specifications of the acceptable va-

360

lencies, with different levels of correctness for puai
sing and generation. This allows a very wide range
of sentence structures in generation, and semantic
inferences to avoid ambiguities. The LADY Lexi-
con—-Grammar covers nearly all French construc-
tions. As far as we know, an squivalent amount
of work is still not available for English. There-
fore, we developed a Lexicon-Grammar containing
a few English verbs and noune. The corresponding
constructions are drawn from [LONGMAN 81].

To give an idea of this lexicon-grammar, we present
below the information stored for the verb wani.

e The standard construction is | Subject -+
Verb + Direct Object };

o The subject must be a human being; there-
fore, it is allowed to be a noun group, but not a
clause or a verb phrase;

e The dirsct object may be & human being ay
in “The mother wants her chdd”, 2 non—-human en-
tity o8 in “He wants tsme”®, or a that-cleuse as in
“Mary wants that John settles down in Paris”;

o The that-clavse can be reduced in the follow-
ing forms:

- [Noun group -+ Adjective] or NAdy if the
verb igs be (e.g “The teacher wants the esercise ready
for tomorrow®);

~ [Verb at the complete infinitive form --
complements] or To Vinf0 if the concept of the sub-
ject of this clause is the same as that of the sub-
ject of want (e.g. “Mary wants to seitle down sn
Paris.);

~ [Noun group -+ Verb at the complete infini
tive form -+ complements] or NTo Vinf when the
two subjects are different (e.g. “Mary wants her
Jriends to settle down in Paris.”);

e The whole clause may be transformed into
the passive form.

For the sake of readability and maintenance, verbs
are sorted into different tables. One table speci-
fies several standard features, syntactic construc-
tions as well as valencies that are common to ev-
ery verb of the same table. For instance, in our
lexicon-grammar, want belongs to the table to-
ble.NVS whose standard construction is a hwnan
subject in a noun group, with a non-human direct
object in a noun group, construction of which may
be transformed into the passive form.

Here is hpw one construction of the verb want is
coded, using Functional Descriptions (FD):

syntax.want ¢—s
| table = tab NV$
linguistic.definition == clause_want
verb = [word = want]
objectl =
[reduction = {('ToVinf0 100) (NAdj 100)}
clause = {(NToVinf 100)} |]

$ab.NVS ¢

[subject =
| distribution = {(*human 100)}
noun.phrase = {(noun_phrase 100)}]
objectl =
[distribution = { (*non.human 100)
*human 100) }
noun.phrase = {(noun_phrase 100)}]
transformation = {(passive 100}} |

The lexical codes (N7To Vinf, ToVinf0 and NAdj)
are specified in a FD, stating the conditions of va-
lidity of the code and the consequences on the com-
ponents: ToVinf0 should be chosen if the subject
of the current sentence and that of the main clause
represent the same concept; in this case the subject
should be omitted and the verb should be in the
infinitive form.

The wumeric values ranging from 0 up to 100, is a
coefficient on the correctness of the corresponding
constructions. When generating a syntactic com-
ponent, lexical codes that are allowed are the ones

< with u coefficient greater than a certain value, 70
in ow implementation. When parsing sentences,
acceptied constructions would be of a coefficient
greater than another milestone, 30 for instance.
The values 0, 30, 70, 100 are of course quite arbi-
trary. But they allow the parsing of constructions
that are often understood by most of the people
but are syntactically incorrect: the corresponding
lexical codes will have a coefficient between 30 and
70.

2.3 Semantic knowledge base

The semantic level is highly domain-dependent since

it deals with concepts. The application domain

chosen by the Esteam-3186 project is financial advice~

giving for non—expert users. Therefore, the Man-
Machine interface handles intention concepts such
as *surface_request and *surface.snform which are
the sniention of asking for somethsng and the snien-
tion of stating something, financial concepts such

as Yemergency.fund which is a certasn amount of

money avaslable at any time and provided for emer-
gency cases, and lastly domain—-independent con-
cepts such as *want'.

Those concepts are organised in a semantic net-.

work, uging the links 1s.¢ and ezample. Moreover,
the sernantic sub-items are specified in a schema.
For instance, the concept *want is specified by:

*want ¢
[lsm == *position
schema ==
[actor == [is.a = *human]

1The chosen convention is to put a star at the begin-
ning of a concept identifier, but this is purely for the
sake of readability.

object]
synthesis =
([linguistic.definition = clause.want |) |

As seen in section 2.1, the semantic objects ac-
tually handled by the user and system during a
dialogue are called tokens. Inside the system, to-
kens are instances of concepts -— or more precisely
of schemata —,

2.4 Link between concepts and syn-
tactic structures

Mapping between semantic schemata and syntactic
structures is specified in FDs named Iingusstic def-
snitsons, This is an important feature of our KB: it
is the linguistic definitions that make explicit the
correspondance between token slots and syntactic
components of sentences, clauses and noun groups.
Using them, the same token may be synthesised
as a noun phrase or a clause, according to syntac-
tic constraints. A noun phrase or a clause require
different grammar rules in the generation process.

For instance, let us consider the following token :
| instance.of = *transaction

buyer = *Mary
object = *car |

It may be expressed with a clause Mary buys ¢ car:

| meaning =
| instance.of = *transaction
buyer = *Mary

object = *car |
subject = [meaning = *Mary |
verb = | word = buy]
object = | meaning = *car] |

or with a noun phrase Mary’s purchase of a car:

| meaning =
[instance_of = *transaction
buyer = *Mary

object = *car |
subjective_genitive = [meaning = *Mary]
predicative.noun = [word = purchase |
objective_complement = [meaning = *car | |

The last two FDs shown above are the syntactic
structures produced by two different linguistic def-
initions linked to the same concept *transaction.
The choice between the two is made by the genera-
tion module either under semantic constraints de-
clared in the semantic dictionary, or under linguis-
tic restrictions specified by the generation gram-
mar, or by the lexicon-grammar.

361

Linguistic definitions do not only allow the aynthe-
sis of totally different schemata using the same gen-
eration grammar rules, but also provide the parser
with extended capacities for handling complex noun
phrases or sentences and for extracting a specific
meaning with the specific slot identifiers (buyer,
object, year) out of a standard syntactical cons-
truction of the noun-—- or verb-predicate.

3 GGeneration

3.1 General heuristic of the Gener-
ation Module

The generation process is top—down, with back-
tracking. The generation algorithm consists of build-
ing a complex object of several nested FDs recur-
sively. '

The highest level deals with the surface syntac-
tic form: assertion, question, order. This level
corresponds to the intention concepts like *sur-
face_request. Then comes the inner structure of
the sentence: generally speaking, a subject, a verb
and objects with several optional adverbials. This
corresponds to domain-concepts (e.g. “emergen-
cy.fund) or general concepts (e.g. *want). Lastly
there is the noun group structure with preposition,
determiner, noun. There is a specific grammar rule
for each level. ‘

Briefly, a grammar rule specifies under what con-
ditions a given rule may be applied, what kinds
of rules are to be chosen for the synthesis of each
Syntactic Component, and what actions are to be
carried out on the structure (such as choosing the .
number and person of a verb according to the sub-
ject within a sentence).

The current level is built in a loop starting from its
semantic contents (a token): through the concept
corresponding to the token, the interpreter chooses
a linguistic definition, then a syntactic structure in
the lexicon—-grammar.

These FDs plus the corresponding grammar rule
are functionally unified® with the current object.
Then, one syntactic code such as To Vinf0 or noun..-
phrase is chosen according to the grammar rule and
the validity condition of the code. The FD of this
code is unified with the current object.

This is where our declarative KBs based on Func~
tional Descriptions prove to be efficient. The same
heuristic based on functional unification is used for
totally different structures such as noun phrase or
clause. Therefore, this loop is allowed to be totally
recursive,

%in the meaning of functional unification [Kay 81J.

At this stage of the process, the generation module
may add several modifiers to the current level, that
are adverbials in sentences, or adjectives in noun
groups: this adjunction is also carried through func-
tional unification since the modifiers are alse de-
scribed in 8 FD just like any grammar rule or lex-
ical code.

For instance after functional wnifications, the cur-
rent syntactic component corvesponding to *I want
@ car” is:

| meaning =
[instance.of = *want
actor == “user
object = | Instance.of = “car | |
subject =
[meaning == *user
distribution = {(*human 100)}
noun.phrase = {(noun_phrase 100)}]
verb = [word = want
objectl ==
[meaning = | nstancs.of == *ca]
distribution = { (*non.kuman 100}
*huthan 100)}
reduction = { (ToVinf0 100)
NAdj 100)}
clause = {(NToVinf 100)
noun.phrase = {(noun.phrass 100)} |
transformation = {(passivel 100)} |

Then transformations are processed whenever they
are needed, such as for questions (which puts the
verb in the interrogative form and inserts an aux-
iliary verb before the subject), or negations or pas-
sive transformations, Transformations are speci-
fied in FDs similar to grammar rules, with validity
conditions and actions, but also with a specific slot
stating whether they must be applied before or af.
ter the standard grammar rules,

This synthesis loop is carried out on every syntac-
tic sub—component, that is for instance on subject,
verb and objects of a clause.

If every sub—component is correctly synthesised in
turn, the actions of the global rule are applied ou
the current component. '

Other transformations may be carried out, lead-
ing only to the re-ordering of objects in a clauss,
which may depend on whether the objects are ex-
pressed through promouns. A ditransitive/dative
transformation is a perfect example: starting from
a sentence whose meaning is “The postman gives
Magy the lettes”, the final sentence may become
“The postman gives her the letter” or *The post-
;m:;; gives it to Mary® or “The postman gives st io
efr .

There ends the body of the loop. If a failure oc-
curs during this loop, backéracking chooses another
linguistic definition and/or another grammar rule.

Oue example of fuput of 4 sen-
tence generation

Bod

Phe following tokeu, inade of several nested tokens,
is synthesised ap aiiﬁdc?’what delay do you want
your gmergency fund avaslable P in:

| hstasee.of = “exequest
sponker = “gystem
hoaver = *user
force == weak
propogition ==
[instence.of = *inform.cof
actor = user
proposition =
[instunce.of = *want
“actor = *umer
proposition =
[inetanceof = *euergency.fond
agent = “user
delay = *unknown]] |]

‘The combination of the tokens *surface veguest and
“mform.vef produces 8 Wh—question. The question
focuscs on the delay of the token *emergency.fund
a6 indicsted by the special object ‘unknown: this
transforms the adverbial of delay of the stracture
“the smergency fund is available dn dd deys” into
the compound intervogative pronoun ender whaet
deley. The aterrogative pronoun is moved to the
beginuing of the seutence, coming from the nested
infinitive clouse under whet delay 8 your emer-
gency fund evaidlable?. Ao the verb of the clause
expressing the tolien “emergency.-fund is to be, the
constraction adopted for the direct object of the
verb went is NAdy: the verb o be is vemoved. The
possessive your is synthesised from the slot agent
of the token Yemergency.fund.

4 Provoun bhaodling in pay-
sing and generation

4.9 Token History

Propoun handling requires the vecording of all ¢he
comcept instances (tokens). A token may be an
entity (e.g. en instance of the concept “car) or
o volation between ontities {o.y. an instance of
the concept *wand). In the sentence I know that
gou mede ¢ wyong investmentd., the tokens are the
agstemn (“V°), the wser {“you®), the snvestment (“a
wyong investingnt®), and also the relation intro-
duced by that {“you made & wiong investmens®),
and the velation corvesponding to the whole sen-
beman.,

Daving o dialogue, the system records these tokens
in @ Token History. Besides the tokens themselves,

othey linguistic information is needed for reference
vesolution. The characteristics stored for each to-
ken are the twn wuxber within the dialogue (a
durn 18 over whenever one of the two locutors has
finished speaking), the sentence number within the
turn, the locutor {daring parsing, the locutor is
the user, whereas duving generation, it is the sys-
tem), the iype of the token (entity or relation), and
the linguistic expression (noun phrase, pronoun,
demoustrative pronoun, clause).

The Token History is wpdated by three processes:
the parsing module, the application (here the Hs-
team-318 Dialogue Maneger) end the generation
wodule. Of course, it is very important for the
Dislogue Manager that if one token is produced by
the parsing of one sentence, then the generation
module would aynthesise the same sentence from
the same token,

After analysis of the user’s sentence, the History is
updated with the tokens of the sentence, which are
all first congidered as new. The Dialogue Manager
receives the new tokeus, sometimes with 2 lisi of
former tokens to which a given new one may refer:
& typical case i8 when a pronoun is found in the
user’s sentence; then the pavser hes to resolve vef-
erences on morphological, syntactic and semantic
grounds,; in order to prepare the dialoger’s prag-
matic inference. It is the Dialogue Manager which
is in charge of defining the final status of each new
token through pragmatic inferences:

© when it corregponds to a pronoun, the soken
to which it refers

o otherwise, whether it is a redefinition. of 2
token previously used, or a totally new one.

If & sentence generation succeeds, the gemeration
module updates the History with the linguistic in-
formation of the synthesised tokens,

4.2 Pronoun synthesis

The generation grammar checks whether each item
to be generated may be synthesised by & pronoun.

The fivst step is to choose the appropriate pronow,
The second step consists of verifying that the che-
sen pronoun will not be ambignous for the user
according to the History of Tokens.

The computing of the morphological form of the
prououn and the checking of ambiguity are very
complex and require the handling of semantic, syu-
tactic and movphological constraints. For precise
explanations and comparison with other studies,
see [Danlos 88].

365

5 Evaluation of SAGE and its [Danlos 88] Laurence Danlos, Fiammetta Namer,

» : Morphological and cross dependencies in the
generatlon Module synihesis of personal pronouns in Romance lan-

guages, Coling’88.
The parsing and generation grammar formalism ,
are il?tendecgl to su%port a ch:fnrging from English [Danlos 87a] Laurence Danlos, A French and En-
to French. For instance, both the order of syn- ghish Syntactic Compon.cntfar Gcncratzogz, Nat-
thesis of the syntactic components of a clause or a u.ral.Languag'e Generation: New Results.m A‘r-
tificial Intelligence, Psychology and Linguis-

noun phrase and the pronoun synthesis control are tics. K
. . . - , Kempen G. ed, Dortrecht/Boston, Mart-
specified declaratively. This allows the reusability inus Nijhoff Publishers, 1987,

and adaptability of this Natural Language Fron-

tend through the creation of an adapted seman- [Danlos 87b] Laurence Danlos, The linguistic ba-
tic dictionary and the extension of grammars, pro- sis of text generation, Cambridge University
vided that the application is able to make infer- Press.

i ical levels (which)
B O e o B e Mo " [Decitre 87] Paul Decitre, Thomas Grossi, Cléo Juk
lien, Jean-Philippe Solvay, Planning for Pro-
SAGE runs on Sun workstations. It is able to parse blem-Solving in Advice~Giving Dialogue, ACL
complex assertions (I want to buy a car in five European Chapter, Copenhague, 1987.
years.), Yes/No questions (Could I put 500 dol-

lars into my emergency—fund?), and acknowlege-
menv expressions (Yes. No. OKJ).

[Gross 86] Maurice Gross, Lezicon-Grammar, The
Representation of Compound Words, 11th In-
ternational Conference on Computational Lin-

It can synthesise complex assertions with infini- guistics, Proceedings, Coling’86, 1986.

tive clauses and adverbials, imperative sentences, .

Yes/No—questions, and Wh-questions. The inter- [Gross 75| Maurice Gross, Méthodes en syntaze,

rogative pronouns of Wh~questions may stem ei- Régime des constructions complétives, Hermann,
ther from the main clause (as in What do you buy?) 1975.

or from nested clauses (as in How much do you [Jacobs 85] Paul S. Jacobs, PHRED: A Qenera-
want to investf). As far as we know in the genera- tor for Natural Language Interfaces, Compu-
tion realm, it seems that the most similar work is tational Linguistics, Vol. 11, No 4, 1985,

the synthesis system PHRED citejacobs. Sentence
production in PHRED is a recursive process di- [Kay 81] Martin KAY, Unification Grammars, Xe-
vided into three phases: 1) pattern—concept fetch- rox Publication, 1981,

ing, 2) pattern restriction, and 3) pattern interpre-
tation. Their objectives are similar to 1) the choice

of a linguistic definition, 2) the verification of se- sing and Generation, 11th International Con-

mantic distribution and the application of a lexical \ R
code on the Syntactic Component, 3) the genera- g;l;n%:l?ng’?s!gp;l;ggmnal Linguistics, Proceed-
)) M

tion of the syntact sub—components. Other studies
(Danlos, McKeown, Appelt) are more related to [Longman 81] Longman Dictionary of Contempo-

[Lancel 86] Jean—Marie Lancel, Franéois Rousselot,
Nathalie Simonin, A Grammar used for Par-

the strategies for text production than to sentence rary English, Longman Group Limited, 1978,
generation heuristics. Corrections 1981.

It can also synthesise complex assertions with in- [Simonin 87] Nathalie Simonin, An Approach of Cre-
finitive clauses and adverbials, imperative sentences, ating Structured Tezt, First European Work-
Yes/No—questions, and Wh—questions. The inter- shop on Natural Language Generation, Roy-
rogative pronouns of Wh—questions may stem ei- aumont Abbey, 1987. ’

ther from the main clause (as in What do you buy?)
or from nested clauses (as in How much do you
want to snvestf).

Pronoun handling is currently developed.

References

[Bruffaerts 86] Bruffaerts A., Henin E. and Mar-
lair V., An Ezpert System Prototype for Finan-
cial Counseling, Research Report 507, Philips
Research Laboratory Brussels, 1986.

364

