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A b s t r a c t  

We descrlbe a general parsing m e t h o d  for systemic gram- 
mars. Systemic grammars contain a paradigmatic analysis of 
language in addition to structural information, so a parser 
must assign a set  o f  grammatical features and functions to  
each constituent in addition to producing a constituent struc- 
ture. Our method constructs a parser by compiling systemic 
grammars into the notation of Functional Unification Gram- 
mar. The existing methods for parsing with unification gram- 
mars hace been e x t e n d e d  t o  handle  a fuller range of paradig- 
matic descriptions. In particular, the PATR-II system has been 
extended by using disjunctive and conditional information in 
functional descriptions that are attached to phrase structure 
rules. The method has been tested with a large grammar of En- 
glish w:hich was originally developed for text generation. This 
testing is the basis for some observations about the bidirec- 
tional m~e o f  a grammar. 

1 Introduction 

Many computational linguists have found systemic grammar (SG) 
to be quite useful, because it provides an explicit representation of 
features that determine how a sentence functions in the context of 
communication. SG has been used directly as the basis for several 
computer tex~ generation programs [Mann 82], but it has only been 
used indirectly for computational parsers. Winograd used principles 
from SG in designing SHRDLU [Winograd 72], a successful natural 
language understanding program, but his program did not contain 
an explicit representation of the grammar's system network. Instead, 
he used a special purpose programming language to encode gram- 
matical knowledge in a procedural form tailored specifically to the 
language understanding task. Another procedural implementation of 
SG was developed by McCord [McCord 77]. Both of these methods 
would require a significant progranmfing step before a parser could 
be produced for a different grammar. Our goal has been to develop 
a general parsing method using a declarative representation of SG, 
and to determine to what extent a grammar that is adequate for 
text generation can also be used for text analysis. Our parser has 
been developed and tested using Nigel [Mann 83], a large grammar 
of English that has previously been used as part of a text generation 
system. 

Systemic l;nguistics builds on the foundation of Hailiday's con.. 
cept of the system Setwork [Halliday 76]. A systemic grammar is 
organized around choices between grammatical features that reflect 
the structure and content of aconstituent. Each choice between fea- 
tures is called a system. Thus, a systemic grammar has two major 
components: 

I. a system network of feature choices, and 

2. structurM realization statements corresponding to each feature. 

The feature Choices define the options available to be expressed in 
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a language, and may be regarded as "hooks" into a semantic 
component. The realization s tatements  determine the constituent 
structure. There are realization statements to declare the presence 
of constituents,  conflate constituents, specify feature constraints on 
constituents, and specify ordering constraints among constituents. 

Consider, for example, the fragment of a grammar of English 
clauses shown in Figure 1. There are two systems, labeled by 
Mood-type and Indicative-type. Each system has  an input condition 
to its left, specifying when its options are applicable. The input con- 
dition for Indicative-type is the single feature, Indicative, but  input 
conditions may also be expressed by boolean combinations of fea- 
tures. In each system, exactly one of the features to the right of the 
vertical bar must  be chosen. For example, in the Indicative-type sys- 
tem, either Declarative or Interrogative must  be chosen. Under each 
feature are realization statements,  such as SUBJECT A FINITE un- 
der the Declarative feature. This s tatement  specifies that  the SUB- 
JECT constituent must  precede the FINITE constituent in declara- 
tive clauses. Each realization s ta tement  is associated with a particu- 
lar feature, so that  structural constraints are distributed throughout 
the system network. The distributed nature of structural informa- 
tion in SG presents a challenge to the design of a parser, which we 
will address in Section 3. 

In addition to building a constituent structure for a sentence, as 
do most  syntactic approaches to natural  language parsing, a parser 
for SO must  also perform the following tasks: 

1. determine the set of systemic features for each constituent, 

2. assign grammatical functions to each constituent. 

Other theories of grammar also make use of features and grammat-  
ical functions, however they have a distinct significance in systemic 
theory. The feature set associated with a constituent plays an impor- 
tant  role in specifying its meaning (i.e., the features are not simply 
discarded after syntactic analysis), so a relatively I~,rge number (e.g., 
over 50) of features may need to be assigned to eac!, constituent. 
Each constituent may also be assigned to several grammatical  func- 
tions, because of the multifunctional nature of systemic analysis. For 
example, it is common to describe a single constituent simultaneously 
as SUBJECT, ACTOR and TOPIC. Therefore, in order to determine 
tha t  a clause has an ACTOR, it may be necessary to check whether 
the clause has a SUBJECT and whether the SUBJECT of the clause 
is conflatable with the. ACTOR function. 

An example of the type of output  produced by the parser is shown 
in Figure 2. This example shows only the functional structure that  
the parser assigns to the sentence. In addition, each constituent 
is assigned a set of grammatical features, such as Indicative and 
Declarative. These features are also accessible in the da ta  structures 
produced by the parser, but  they are too numerous to display in this 
short  paper. 

t 
-Imperative 

NONFINITIVE~Stem 

~ -Declaratlve 
SUBJECT A FINITE 

-Indicative- INDICATIVE 
TYPE 

SUBJECT:Nominatlve 
-Interrogative 

Figure I: The Mood-type and Indicative-type Systems. 
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/TOPICAL / SUBJECT / MEDIUM GOAL 7 ,./,DEICTIC-- --thlsdet 
/ ~".THING-- --document 
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II, PROCESS / LEXVERB / VOICEDEPENDENT---v --crQate 

--/e 
FD-- ~""'AGENT / ACTOR-- .-(-'wAGE-'-/ - - r ,  sw 

~,' .,SUBJECT / J / 
<"ON'TE/ / /  / 

~PREDIOATOR-- ../VOIOEI / 
"'. LEXVERB 

Figure 2: Functional Structure of: "This document was created by 

a new computer." 

2 CompUat lon  into Funct ional  Uni f icat ion  
G r a m m a r  

The basic method used to construct the parser has been to develop 
a compiled representation of systemic grammars in the notation of 
Functional Unification Grammar (FUG). The parsing process itself 
is then derived by extending methods already developed for pars- 
ing With FUG [Kay 85]. In FUG, a grammar can be regarded as a 
special kind of logical formula [Rounds 87], and the parsing prob- 
lem is reduced to finding the set of feature structures that  satisfy 
the formula subject to the constraints of the words in a particular 
sentence. Using the feature description logic (FDL) of Kasper and 
Rounds [Kasper 86], the types of formula used to define a grammar 
include: 1 

NIL denoting no i~formatloa; 
a where a E A, to describe atomic values; 
l : ~b where I E L and ~ E FDL~ to describe structures 

in which the feature labeled by l has a value described by ~; 
ql or l : ANY where l E L, to describe a sliructure in which I has 

a substantive (non-NIL I value; 
< p > where p E L*, to describe a structure that shares 

a common value with the path p; 
[~bl . . .  ~ ]  where ~b~ E FDL, denoting conjunction; 
{~bl . . .  ~b,~} where ~b~ E FDL, denoting disjunction; 
~1 --* ~ where ~b~ E FDL, denoting classical implication. 

The last type of formula, denoting implication, is an extension to 
FUG that enables a more efficient modeling of systemic descriptions 
than is possible in Kay's version of FUG IKasper 87d]. 

The compilation of systems into FUG is relatively straightfor- 
ward. Each system is represented by a disjunction containing alter. 
natives for each feature that  can be chosen in the system. These al- 
ternatives also contain attributes that  represent constraints on gram- 
matical functions imposed by realization statements. For example, 
the Mood-type and Indicative-type systems can be represented by 
the description shown in Figure 3. System input conditions are bidi- 
rectional: they are represented by the embedding of descriptions, 
and also by feature existence conditions. 

In the FUG representation there is one functional description 
(FD) corresponding to each m~ior constituent category of the sys- 
temic grammar. Major constituent categories for English include 
clause, nominal-group, and prepositional-phrase. The method of rep- 
resenting a systemic grammar as a set of FDs in FUG is described in 
greater detail in [Kasper 87b,Kasper 87d]. A program has been im- 
plemented to automatically translate any system network into FDs, 
verifying the effectiveness and generality of this compilation proce- 
dure. This program has been used to compile the entire Nigel gram- 
mar, which contains over 500 systems, into FUG many different times 
as changes to the grammar have been made. 

:Let A and L be sets of symbols used to denote atomic valueJ and feature 
labels, respectively. 

Rank : Clause 
Mood-type : Imperative 
NONFINITIVE : [ Form : Stem ] 1 
Mood-type : Indicative 
SUBJECT : [ Case : Nominative ] 

pattern : (. ,. SUBJECT FINITE ...) 
[ Indlcatlve-type : Interrogative ] 

3 M-cod-type ----* [ Rank : Clause ] 
3 Indicative-type ~ [ Mood-type : Indicative ] 

Figure 3: The Mood-type and Indicative-type Systems in  ex- 
tended-FUG notation. 

3 Parse r  Implementa t ion:  
Extending  PATR-II  

Our early experiments using the Nigel grammar showed that  the 
existing methods for parsing with FUG had several shortcomings 
when applied to a large grammar. Kay's method for parsing with 
FUG [Kay 85] cannot be applied directly to our grammar because it 
requires: 

1. expanding the grammar FD to disjunctive normal form (DNF); 

2. creating a disjunct for each possible ordered combination of 
constituents that  is compatible with pattern features. Each of 
these dlsjunets can be regarded as equivalent to an annotated 
phrase structure rule. 

In bath cases our grammar contains too many alternatives to carry 
out the procedure: 

1. Our grammar of English clauses contains over 100 systems. 
Since each system is represented by a disjunction in PUG, the 
DNF expansion of the clause grammar might require over 2100 
disjunetsl 

2. Our grammar contains many optional grammatical functions. 
A particularly striking example concerns the large number of 
optional adjunct types that  may be used to modify an English 
clause. 2 These adjuncts occur most frequently at the end 
of the clause, although other orders are possible. Assuming 
that  there are at least 10 optional adjunct types, "we have 2 l° 
different combinations of adjuncts, not counting any additional 
combinations resulting from order variation. 

The first problem has been solved by a new unification algorithm for 
disjunctive descriptions that  does not require expansion 
to DNF [Kasper 87c]. The second problem has been solved by adding 
a small phrase structure component to the grammar and using the 
PATR-II active chart parsing algorithm, which was developed by 
Shieber et al. 
at SRI [Shieber 84]. 

3 .1  S k e l e t a l  P h r a s e  S t r u c t u r e  C o m p o n e n t  

The role of phrase structure (PS) rules in our parser is similar to 
their role in Lexical Functional Grammar [Kaplan 83], however they 
have less theoretical significance in our parser, We use the PS com- 
ponent to recognize possible patterns for each major constituent cat- 
egory, but the unification component builds the functional structure 
and assigns a feature set to each constituent. The PS component is 
something like a skeleton tha t  cannot be seen in the final descril~. 
t ions  produced by the p~ser .  Not  very many PS rules are required, 
because they only need to encode broad category distinctions. Fine 
category distinctions are encoded by the FDs that  are attached to 
rules. Each major constituent category of the grammar has a special 
rule that  is annotated with the FD produced by compilation from 
the systemic grammar for that  category. For example, the category 
CLAUSE has a rule of the form: 

=A partlal lilt of adjunct types lnclude~: MANNF_~ CAUSE, ACCOMPA- 
NIMENT, SPACE-LOCATIVE, SPACE-EXTENT, TIMF~LOCATIVE, TIME- 
EXTENT, MATTER, ROLE, ATTITUDE. 
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CLAUSE --~ CLAUSE~PS: 
<CLAUSE> = <OLAUSF_,-PS fd> 
<CLAUSE> = [ compiled FD for CLAUSE ]. 

CLAUSF~PS is a non-tarminal that  can derive any valid constituent 
pat tern for cl~.uscs. The first unification of this rule identifies any fea- 
tures tha t  are known from the constituents derived by CLAUSF~'PS 
with features of the CLAUSE nonterminaL The second unification 
provides the functional description tha t  must  be satisfied for any 
clause. 

Consider again the problem of optional adjuncts. Instead of pro- 
ducing a distinct disj'unct for each combination of adjuncts, it is much 
more efficient to describe all possible combinations using a single re- 
cursive PS rule. This rule is annotated with a disjunctive description 
that  contains a single alternative for each adjunct type: 

CLAUSE-PS~ --* CLAUSE-PS2 ADJUNCT: 
<CLAUSE-PS-I> = { [ MANNER : <ADJUNCT> 1 

[ CAUSE : <ADJUNCT>] 
. . .  other alternatives }. 

The PS component is the only part  of the grammar used by the 
PATR-II parser that  is not produced automatically from a systemic 
grammar.  The pars!ng grammar for Nigel currently contains about 
6D PS rules. 

3 . 2  E x t e n s i o n s  t o  P A T R - H  

The PATR-II sys tem has been extended in several significant ways 
to carry out  c~ur implementation: 

1. handling disjunctive and 
conditional descriptions [Kasper 87c,Kasper 87d]; 

2. using t~bles compiled from the realization s ta tements  of SG. 
These tables include the possible confiations for each gram- 
matical function, and lexical items that  are associated with 
particular features in the grammar. 

The compiled tables and skeletal phrase structure component enable 
the parser to directly deduce structural information about  a sentence, 
despite the distributed nature of structural constraints in SG. 

grammar tha t  require an inordinate amount  of time to resolve. Sys- 
temic grammars can exhibit ambiguity between grammatical fea- 
tures, in addition to the well known types of lexieal and structural  
ambiguity. 

Unintended ambiguities between grammatical features often arise 
from underspecified parts of the grammar,  i.e., the grammar contains 
an alternation between two or more features with insufficient realiza- 
tion information to determine which features apply in many eases. 
Usually the solution to this problem is to add realization information 
for those features. Sometimes the realization of those features may 
depend on other features and the modification is somewhat complex. 
In such cases, it is possible to temporarily disable the underspeeifiad 
alternatives while parsing until a more complete solution is devel- 
oped. 

Some features may have realizations that  are formally adequate 
and efficient for generation, but  quite inefficient for parsing. For ex- 
ample, the Nigel grammar for nominal groups contains the Pronomi- 
nal feature to indicate tha t  the head constituent is a pronoun. There 
is no explicit realization s ta tement  associated with this feature, but  
the system network contains more specific features for each of type of 
pronoun. These more specific features have realizations that  specify 
particular lexical items for the head constituent. Since English pro- 
nouns are a closed class, there is a finite number of features that  need 
to be examined to determine whether a nominal group is pronominal. 
However, it is quite inefficient to consider each member of the c lass  
individually. Obviously, we can improve the parsing efficiency of the 
grammar by adding a realization to the Pronominal feature that  con- 
strains the head to be a member of the class of pronouns. We have 
found a significant number of similar cases, where the grammar was 
adequate for generation, but  was missing some useful generalization 
for analysis. 

It seems reasonable to expect that  most  grammars that  are orig- 
inally developed specifically for generation or parsing tasks will need 
similar kinds of tuning before they can be used effectively for the 
inverse task. A bidirectional grammar seems to be a reachable goal, 
bu t  it will probably have some specifications that  are superfluous for 
either parsing or generation. These specifications can be marked if 
necessary for efficiency, so that  the parser or generator does not have 
to examine unnecessary information. 

5 C o n c l u s i o n s  

4 B i d i r e c t i o n a l  G r a m m a r  

Bidirectional grammar,  i.e. using the same grammatical knowledge 
tbr both parsing and generation of a language, has been a real but  
sometimes elusive goal in computational linguistics. The goal of bidi- 
rectional grantmar was clearly a motivation for Kay's  formulation of 
FUG [Kay 85 I. Kay has shown that  if a declarative representation 
is used to encode the grammatical  knowledge of a language, then it 
should be possible to compile that  knowledge into appropriate da ta  
structures for parsing or generation. We have followed this method in 
constructing ~ parser for systemic grammars by compiling the gram- 
mar  into a notation like FUG. Our discussion in this section tbcuscs 
on other issues besides compilation tha t  have been identified in our 
effort to dew.'lop a bidirectional systemic grammar. 

Our experience with the Nigel grammar  has indicated tha t  it 
is possible to develop a bidirectional grammar within the systemie- 
functional framework, although a substantial  amount  of effort may 
be required to tune the grammar for both parsing and generation. 
In other wordsj the framework of systemic grammars is potentially 
invertible, bui; particular grammars may require some modification 
before they cun be used effectively for both parsing and generation. 
Generally, parsing places greater demands on the realization com- 
ponent of the grammar,  while generation places greater demands on 
the systems of choice. The Nigel grammar  was originally developed 
for use i n s  text generation program, so our observations deal mostly 
with problenm tha t  can arise when inverting a grammar tha t  is ade- 
quate  for gem~ration but  untested for analysis. 

Most pnodifications tha t  we have made to enable parsing involve 
eliminating u~dntended ambiguities or disjunctive alternatives in the 

We have developed a general method for parsing systemic grammars 
by extending the techniques of FUG and the PATR-II system. The 
parser is reasonably efficient for grammar testing and use as a lin- 
guistic research tool, but  further refinement would be necessary for 
applications demanding real-time performance. Using the full Nigcl 
grammar,  it currently requires less than  a minute to parse simple 
single-clause sentences, and several minutes to parse more complex 
sentences. It should be noted that  parsing speed depends heavily 
on grammar size, and we are using a graznmar that  is significantly 
larger than most  grammars tha t  have been implemented to this date 
with unification-based methods. 

We have only investigated an exhaustive bottom-up strategy, in 
which the parser produces all possible parses for a sentence. This 
Strategy is well-suited to g r a m m ~  testing, bu t  other strategies should 
be developed for applications demanding more selectivity and effi- 
ciency. We have not yet at tempted to incorporate extra-grammatical 
(i.e., semantic and pragmatic) information for ambiguity resolution, 
but  this would also be necessary for most  practical applications. 

It would be very desirable to discover a way to produce the phrase 
structure component of the parsing grammar,  or some functionally 
equivalent mechanism, automatically from a systemic description. 
If accomplished, this would make it possible to fully automate the 
production of a parsing grammar,  bu t  this appears to be a difficult 
problem. It is currently much easier to 15reduce a small phrase struc- 
ture component manually from one's knowledge of the grammar.  
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