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Abstract: The formal device of functional uncertainty has been
introduced into linguistic theory as a means of characterizing
long-distance dependencics conventional
phrase-structure based approaches. [In this paper we briefly outline
the uncertainty concept, and then present an algorithm for
determining the satisfiability of acyclic grammatical descriptions
containing uncertainty expressions and for synthesizing the

alternative to

grammatically relevant solutions to those descriptions.

1. Long-distance Dependencies and Functional Uncertainty

In most linguistic theories long-distance dependencies such as are
found in topicalization and relative clause constructions are
characterized in  terms of categorics and confipurations of
phrase-structure nodes. Kaplan and Zaenen (in press) have compared
this kind of tin analysis with onc based on the functional organization
of sentences, and suggest that the relevant generalizations are instead
best stated in functional or predicate-argument terms. They defined
and investigated a new formal device, called "functional uncertainty”
that permits a functional statement of constraints on unbounded
dependencies. In this paper, after reviewing their formal specification
of functional uncertainty, we present an algorithm for determining the
satisfiability of grammatical descriptions that incorporate uncertainty
specifications and for synthesizing the smallest solutions to such
descriptions.

/Kaplan and Zaenen (in press) started from an idea that
/Kaplan and Bresnan 1982/ briefly considered but quickly rejected on
mathematicid and (/Kaplan and Zaenen/ suggest, mistaken) linguistic
grounds. They observed that cach of the possible underlying positions
of an initial phrase could be specified in a simple equation locally
associated with that phrase. In the topicalized sentence Mary John
telephoned vesterday, the equation (in LI'G notation) (1 ToPrIC)=
(1 oBJ) specifies that Mary is to be interpreted as the object of the
predicate telephoned. In Mary John claimed that Bill telephoned
yesterday, the appropriate equation is (T TOPIC)=(1 COMP OBJ),
indicating that Mary is still the object of telephoned, which because of
subsequent words in the string is itsclf the complement (indicated by
the function name COMP) of the top-level predicate claim. The sentence
can obviously be extended by introducing additional complement
predicates (Mary John claimed that Bill said that ... that Henry
telephoned yesterday), for each of which some equation of the general
form (T 10F1C)=(1 COMP COMP ....0BJ) would be appropriate. The
problem, of course, is that this is an infinite family of equations, and
hence impossible to enumerate in a finite disjunction appearing on a
particular rule of grammar. I'or this technical reason, Kaplan and
Bresnan abandoned the possibility of specifying unbounded
uncertainty diveetly in functional terms.

Kaplan and Zaenen rcconsidered the general strategy that
Kaplan and Bresnan began to explore. Instead of formulating
uncertainty by an explicit disjunctive enumeration, however, they
provided a formal specification, repeated here, that characterizes the
family of cquations as a whole. A characterization of a family of
equations may be finitely represented in a grammar even though the
family itself has an infinite number of members. They developed this
notion from the elementary descriptive device in LFG, the
functional-application expression. This has the following
interpretation: /

[} (f $)=v holds if and only if fis an f-structure, s is a symbol,
and the pair <s,v> € f.

An f-structure is a hierarchical finite function from symbols to either
symbols, semantic forms, f-structures, or sets of f-structures, and a
parenthetic expression thus denotes the value that a function takes for
a particular symbol. This notation is straightforwardly extended to
allow for strings of symbols, as illustrated in expressions such as
(1 comp oBJ) above. If x==sy is a string composed of an initial symbol s
followed by a (possibly empty) suffix string y, then
(2) (Fa=Wfs)y

(fe)=f, where e is the empty string.
The crucial extension to handle unbounded uncertainty is to allow the
argument position in these expressions to denote a set of strings.
Suppose a is a (possibly infinite) set of symbol strings. Then Kaplan
and Zacnen say that

(3) (f @y =v holds if and only if ({(f$) Suff(s,a))=v for some symbol
s, where Sulf(s,a) is the set of suffix strings y such that sy € a.

Thus, an equation with a string-set argument holds if it would hold for
a string in the set that results from a sequence of left-to-right symbol
choices. This kind of equation is trivially unsatisfiable if a denotes the
empty set. If aisa finite set, this formulation is equivalent to a finite
disjunction of cquations over the strings in a. Passing from finite
disjunction to existential quantification enables us to capture the
intuition of unbounded uncertainty as an underspecification of exactly
which choice of strings in a will be compatible with the functional
information carried by the surrounding surface environment.

Kaplan and Zaenen of course imposed Lhe further requirement
that the membership of a be characterized in finite specifications.
Specifically, for linguistic, mathematical, and computational reasons
they required that a in fact be drawn from the class of regular
languages. The characterization of uncertainty in a particular
grammatical equation can then be stated as a regular expression over
the vocabulary of grammatical function names. The infinite
uncertainty for the topicalization example above, for example, can be
specified by the equation (1 TOPIC)=(1 COMP* OBJ), involving the
Kleene closure operator. A specification for a broader class of
topicalization sentences might be (1 TOPIC)=(1 COMP* GF), where GF
denotes the set of primitive grammatical functions {SUBJ, OBJ, 0BJ2,
XCOMP, ...}. Various restrictions on the domain over which these
dependencies can operate-—-the equivalent of the so-called island
constraints—-can be casily formulated by constraining the uncertainty
language in different ways. [Por example, the restriction for English
and Icelandic that adjunct clauses are islands (Kaplan & Zaenen, in
press) might bhe cxpressed with- the equation (1 TOPIC)=
(1 (GF-ADY* GF).  One noteworthy consequence of this functional
approach is that appropriate predicate-argument relations can be
defined without relying on empty nodes or traces in constituent
structure.

In the present paper we study the mathematical and
computational properties of regular uncertainty. Specifically, we show
that two important problems are decidable and present algorithms for
computing their solutions. In LI'G the f-structures assigned to a string
are characterized by a functional description ("f-description'), a Boolean
combination of equalities and set-membership assertions that
acceptable f-structures must satisfy. We show first that the
verification problem is decidable for any functional description that
contains regular uncertainties. We then prove that the satisfiability
problem is decidable for a linguistic interesting subset of descriptions,
namely, those that characterize acyclic structures.
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2. Verification

The verification problem is the problem of determining whether or not
a given f-structure F satisfies a particular functional description for
some assignment of elements of F' to the variables in the description.
This question is important in lexical-functional theory because the
proper evaluation of LFG's constraint equations depends on it. It is
easy to show that the verification problem for an f-description
including an uncertainty such as (fa) = v is decidable if F is a noncyclic
f-structure. If F is noncyclic, it contains only a finite number of
function-application sequences and thus only a finite number of
strings that might satisfy the uncertainty equation. The membership
problem for the regular sets is decidable and each of those strings can
therefore bé tested to see whether it belongs to the uncertainty
language, and if so, whether the uncertainty equation holds when the
uncertainty is instantiated to that string. Alternatively, the set of
application strings can be treated as a (finite) regular language that
can be intersected with the uncertainty language to determine the set
of strings (if any) for which the equation must be evaluated.

This alternative approach casily generalizes to the more
complex situation in which the given f-structure contains cycles of
applications. " A cyclic F' contains at least one element g that satisfies
an equation of the form (g y) =g for some string y. It thus involves an
infinite number of function-application sequences and hence an
infinite number of strings any of which might satisfy an uncertainty.
But a finite-state machine can be constructed that accepts exactly the
strings of attributes in these application sequences, for example, by
using the Kasper/Rounds automaton model for f-structures (Kasper
and Rounds, 1986). These strings thus form a regular language whose
intersection with the uncertainty language is a regular set I
containing all the strings for which the equation must be evaluated. If
I is empty, the uncertainty is unsatisfiable. Otherwise, the set may be
infinite, but if F satisfies the uncertainty equation for any string at all,
we can show the equation will be satisfied when the uncertainty is
instantiated to one of a finite number of short strings in I. Let n be the
number of states in a minimum-state deterministic finite-state
acceptor for I and suppose that the uncertainty equation holds for a
string w in I whose length |w| is greater than n. From the Pumping
Lemma for regular sets we know there are strings x, y, and z such that
w=xyz, |yl 2 1, and for all m = 0 the string xy™z is in I. But these
latter strings can be application-sequences in F only if y picks out a
cyclic path, so that ({(fx) y)=(fx). Thus we have

(fwy=viff

(f xyz) = v iff

({((fo) y) D) =viff

((fx) 2) =viff

(fxz)=v
with xz shorter than w but still in I and hence in the uncertainty
language a. If vz is greater then n, this argument can be reapplied to
find yet a shorter string that satisfies the uncertainty. Since w was a
finite string to begin with, this process will eventually terminate with
a satisfying string whose length is less than or equal to n. We can
therefore determine whether or not the uncertainty holds by
examining only a finite number of strings, namely, the strings in [
whose length is bounded by n.

This argument can be translated to an efficient, practical
solution to the verification problem by interleaving the intersection
and testing steps. We enumerate common paths from the start-state of
a minimum-state acceptor for a and from the f-structure denoted by fin
F. In this traversal we keep track of the pairs of states and subsidiary
f-structures we have encountered and avoid retraversing paths from a
state/f-structure pair we have already visited. We then test the
uncertainty condition against the f-structure values we reach along
with final states in the a acceptor.

3. Satisfiability

It is more difficult to show that the satisfiability problem is decidable.
Given a functional description, can it be determined that a structure
satisfying all its conditions does in fact exist? For trivial descriptions
consisting of a single uncertainty equation, the question is easy to
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answer. If the equation has an empty uncertainty language,
containing no strings whatsoéver, the description is unsatisfiable.
Otherwise, it is satisfied by the f-structure that meets the
requirements of any string freely chosen from the language, for
instance, one of the shortest ones. For example, the description
containing only (f TOPIC)=(f COMP* GF) is obviously satisfiable
because (fTOPIC) = (fSUBJ) clearly has a model. There is a large class of
nontrivial descriptions where the question is easy to answer for
essentially the same reason. If we know that the satisfiability of the
description is the same no matter which strings we choose from the
(nonempty) uncertainty languages, we can instantiate the
uncertainties with freely chosen strings and evaluate the resulting
description with any satisfiability procedure (for example, ordinary
attribute-value unification) that works on descriptions without
uncertainties. The important point is that for descriptions in this class
we only need to look at a single string from each uncertainty language,
not all the strings it contains, to determine the satisfiability of the
whole system. Particular models that satisfy the description will
depend on the strings that instantiate the uncertainties, of course, but
whether or not such models exist is independent of the strings we
choose.

Not all descriptions have this desirable free-choice
characteristic. If the description includes a conjunction of an
uncertainty equation with another equation that defines a property of
the same variable, the description may be satisfiable for some
instantiations of the uncertainty but not for others. Suppose that the
equation (f TOPIC)=(f COMP* GF) is conjoined with the equations
(f COMP SUBJ NUM)=8G and (f TOPIC NUM)=PL. This description is
satisfiable on the string COMP COMP SUBJ but not on the shorter string
COMP SUBJ because of the SG/PL iinconsistency that arises. More
generally, if two equations (f a)=vq and (f B)=vp are conjoined in a
description and there are strings in a that share a common prefix with
strings in {}, then the description as a whole may be satisfiable for some
strings but not for others. The choice of x from a and xy from f, for
example, implies a further constraint on the values vg and vg: (fx)=vq
and (fxy) =((fx) y) = vg can hold only if (vq y) = vp, and this may or may
not be consistent with other equations for vg.

We can formulate more precisely the conditions under which
the uncertainties in a description may be freely instantiated without
affecting satisfiability. For simplicity, in the analysis below we
consider a particular string of one or more symbols in a non-uncertain
application expression to be the trivial uncertainty language
containing just that string. Also, although our satisfiability procedure
is actually implemented within the general framework of a directed
graph unification algorithm (the congruence closure method outlined
by /Kaplan and Bresnan 1982/), we present it here as a formula
rewriting system in the style of /Johnson 1987/, This enables us to
abstract away from specific details of data and control structure which
are irrelevant to the general line of argument. We begin with a few
definitions. We say that :

(5) A descriptionis in canonical form if and only if
(a) Itisindisjunctive normal form,

(b) - Application expressions appear only as the left-sides of
equations,

(¢}  None of its uncertainty languages is the empty string ¢,
and

"(d) For any equation f=g between two distinet variables, one
of the variables appears in no other conjoined equation.

There is a simple algorithm for converting any description to a_
logically equivalent canonical form. First, every statement containing
an application expression (g B) not to the left of an equality is replaced
by the conjunction of an equation (g )=#4, for h a new variable, with
the statement formed by substituting h for (g p) in the original
statement. This step is iterated until no offending application
expressions remain, The equation (fa)=(g p), for example, is replaced
by the conjunction of equations (fa)=h A (gf)=h, and the
membership statement (g B)€f becomes h€f A (g f)=h. Next, every
equation of the form (f e)=v is replaced by the equation f=v in
accordance with the identity (2) above. The description is then



transformed to disjunctive normal form. Finally, for every equation of
the form f=g between two distinct variables both of which appear in
other conjoined equations, all occurrences of g in those other equations
are replaced hy f. Each of these transformations preserves logical
equivalence and the algorithm terminates after introducing only a
finite number of new equations and variables and performing a finite
number of substitutions.

Now lct X be the alphabet of attributes in a description and
define the set of first attributes in a language a as follows:

(5) First(a)={sin £| szis in a for some string z in %}
Then we say that
(6) (a)

Two application expressions (f a) and (g B) are free if and
only if

(i) fand g are distinct, or (ii) First(@)NFirst() =@ and ¢ is
in neither a nor f.

(b}  Two equations are free if and only if their application
expressions are pairwise free.

(¢) A iunctional description is free if and only if it is in
canonical form and all its conjoined equations are pairwise
frec.

If all the attribute strings on the same variable in a canonical
description differ on their first element, there can be no shared
prefixes. The free deseriptions are thus exactly those whose
satisfiability is not affected by different uncertainty instantiations.

3.1 Remouing interactions

We attack the satisfiability problem by providing a procedure for
transforming. a functional description 1) to a logically equivalent but
free description D' any of whose instantiations .can be tested for
satisfiability by traditional algorithms. We show that this procedure
terminates for the deseriptions that usually appear in linguistic
grammars, namely, the descriptions whose minimal models are all
acyclic. Although the procedure can detcct‘thét a description may
have a cyclic minimal model, we cannot yet show that the procedure
will always terminate with a correct answer if a cyclic specification
interacts with an infinite uncertainty language.

The key ingredient of this procedure is a transformation that
converts a conjunction of two equations that are not free into an
equivalent finite disjunction of conjoined equations that are pairwise
free. Consider the conjoined equations (f a) = v, and (f ) =vp for some
value expressions v, and vp, where (fa) and (f B) are not free. Strings x
and y arbitrarily chosen from a and B, respectively, might be related in
any of three significant ways: Either (a) x is a prefix of y (y is xy' for
some string »'), (b} v is a prefix of x (x is yx'), or (¢) x and y are identical
up to some point and then diverge (v is z5,x' and y is 2s,y" with symbol
s, distinet from sy). Note that the possibility that x and y are identical
strings is covered by both (a) and (b) with either y' or x' being empty,
and that noninteracting strings fall into case (¢) with z being empty.
In each of these cases there is a logically equivalent reformulation
involving either distinet variables or strings that share no first
symbols:
() (a) =xisa prefixofy:

(Fy=va N\ (fxy)=vp iff
fy=vg A ((fx) y)=vp iff

(fxY=va A\ (vay)=vp (by substituting v, for (fx)

(b)  yisaprefixofx:
(Fy)=vg A (fyy=vg "iff
(vg D=va A (fy)=vp.
(¢)  x and y have a (possibly empty) common prefix and then
diverge:
(Fzs,x") =v  Alfzs,y) = vp iff
(F2)=g N (g5xY=0a N\ (g sy =vg
for g a new variable and symbols s, sy
All ways in which the chosen strings can interact are covered by the
disjunction of these reformulations. We observe that if these specific
attribute strings are considered as trivial uncertainties and if p, and vy

are distinct from f, the resulting equations in each case are pairwise
free.

In this analysis we transfer the dependencies among chosen
strings into different branches of a disjunction. Although we have
reasoned so far only about specific strings, an analogous line of
argument can be provided for families of strings in infinite uncertainty
languages. The strings in these languages fall into a finite set of
clagses to which a similar case analysis applies. Let <Qq, 84, Gu, Fq,
L> be the states, transition function, start state, final states, and
alphabet of a (perhaps nondeterministic) finite-state machine that
accepts a and let <Qg, 8p, qp, Fg, £>> be an acceptor for . Let §* be the
usual extension of § to strings in £* and define
(8)  Prefix{a,q) = {x| q €6*,(qq,0)}

(the prefixes of strings in a that lead to state q)

it a) o (]5M@0NE, = 0} ifgeq,
Suffix(a,q) U Suffix(a,p) ifqCQq
peq

(the suffixes of strings in a whose prefixes lead to states q)

and note that Prefix(a,q) and Suffix(a,q) are regular sets for all ¢ in Q,
(since finite-state acceptors for them can easily be constructed from the
acceptor for a). Further, every string in a belongs to the concatenation
of Prefix(a,q) and Suffix(q,q) for some state q in Q,. The prefixes of all
strings in « thus belong to a finite number of languages Prefix(a,q),
and every prefix that is shared between a string in o and a string in 8
also belongs to a finite number of classes formed by intersecting two of
regular sets of this type. The common prefix languages fill the role of
the prefix strings in the three-way analysis above. All interactions of
the strings in a and f that lead through states q and r, respectively, are
covered by the following possibilities:

(9) (a)  Strings from a are prefixes of strings from B;

(f anPrefix(B,rN)=vy A (vy Suffix(,n)=uvg
(b)  Strings from f are prefixes of strings from a:
(f BNPrefix(a,g))=vp A (vp Suffix(a,q))=uvq
(¢)  Strings have a common prefix and then diverge on some s,
and spin X
(f Prefix(a,q)NPrefix(B,r =g, N
[{gq.r saSuffix(a,8.(g,5a)=vq A
(gq.r spSuffix(B,8p(r,5p))) = vgl
where the g, in (9¢) is a new variable and sq#sy.  Taking the
disjunction of these cases over the cross-product of states in Qq and Qg

and pairs of distinct symbols in 2, we define the following operator:
(10) Free((fay=ve, (fP)=uvp) =

[(f aNPrefix(B, ) = v A (vg Suffix(B, r) =vg) (a)
v Kf BNPrefix(a, ¢)) = vg A (vg Suffix(a, ) = vq] (b)

\/ v L(f Prefix(a, Q) NPrefix(B, r) =gq, A

¢ (e)
(rle 8; \/ [(gy,r seSuffixla, 84(q, sa))=vq A
%
] s:;s:ﬂésﬂ (gq.r spSuffix(B, 8p(r, sp))=vgl]

This operator is the central component of our satisfiability
procedure. It is easy to show that Free is truth-preserving in the sense
that Free((f a)=uq, (f B)=vp) is logically equivalent to the conjunction
(fa)=vqa A (fB)=vg. Any strings x and y that satisfy the uncertainties
in the conjunction must fall into one of the cases in (7). If y=xy" applies
(case 7a), we have (fx) Zug N\ (vq ¥') = vp. But x leads to some state ryin
Qp and therefore belongs to Prefix(8,r,) while y' belongs to Suffix(B,r,).
Thus, x satisfies (f oaNPrefix(B,ry))=vq and y' satisfies
(vg Suffix(B,r) =vg, ana (10a) is satisfied for one of the r, disjunctions.
A symmetric argument goes through if case (7b) obtains.

Now suppose the strings diverge to syx' and s,y' for distinct s,
and sy after a common prefix z (case 7c) and that z leads to q in Qg and r
in Qg. Then 2 belongs to Prefix(a,q)NPrefix(,r) and satisfies the
uncertainty v(f Prefix(a,q)NPrefix(B,) =g, Since x' belongs to
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Suffix(a,8,(q,sy))) and y' belongs to Suffix(,83(r,s,))), the g4 equations
in the sq,5p disjunction also hold. Thus, if both original equations are
satisfied, one of the disjunctions in (10) will also be satisfied.
Conversely, if one of the disjunctions in (10) holds for some particular
strings, then we can find other strings that satisfy both original
equations. If (f anPrefix(B,r)=uv, holds for some string x in a leading
to state r in B's acceptor and (v, Suffix(B,r)) = vg holds for some string y'
in Suffix(B,r), then (f a)=uv, holds because x is in a and (f ) =vg holds
because ((f x) Y)=vp=(fxy") and xy'is in . The arguments for the
other cascs in (10) are similarly easy to construct. Thus, logical
equivalence is established by reasoning back and forth between strings
and languages and between strings and their prefixes and suffixes.

If the operands to Free are from a description in canonical
form, then the canonical form of the result is a free description—all its
conjoined equations are pairwise free. This is true whether or not the
original equations were free, provided that the value expressions vy
and vg are distinet from f (if either value was f, the original equations
would have only cyclic models, a point we will return to below). In the
first two cases in (10), the resulting equations are free because they
have distinct variables (if neither vy nor vgis /). In the third case, the f
cquation is free of the other two because g, is a new variable, and the
two g, equations are free because the first symbols of their
uncertainties are distinct. In sum, the Free operator transforms a
conjunction of two non-free equations into a logically equivalent
formula whose canonical form is free.

The procedure for converting a description D to free form is
now straightforward. The procedure has four simple steps:
(11} (&)
(b)  If all conjoined equations in D are pairwise free, stop. D is
free.

Place D in canonical form.

(c) Pick a conjunction C in D with a pair of non-free equations
(f W=vq and (f B)=vp, and replace C in D with the
canonical form of its other equations conjoined with
FFree(((fa) = vg, (FB)=vp)

(d)  Go tostep (a).

3.2 Termination

If D has only acylic models, this procedure will terminate after a finite
number of iterations. - We argue that there are a certain number of
ways in which the equations in each conjunction in D's canonical form
can interact. Initially, for a conjunction € of N equations, the maximal
number of non-free pairs is N(N-1)/2, on the worst-case assumption
that every equation may potentially interact with every other
equation. Suppose step (11¢) is applied to two interacting equations in
C. The result will be a disjunction of conjunctions each of which
includes the remaining equations from C and new equations
introduced by one of the cases in (10). In cases (10a) and (10b) the
interaction is removed from the common variable of the two equations
(/) and transferred to a new variable (either v, or vg). In case (10c), the
interaction is actually removed from the system as a new variable is
introduced. Since new variables are introduced only when an
interaction is removed, the number of new variables is bounded. Thus
each interaction is processed only a bounded number of times before it
is either removed (10¢) or transferred to a variable that it was
previously associated with (10a, b). However, it can only transfer to a
previous variable if the description has cyelic models. Suppose that f
is reached again through a series of (10a,b) steps. Then there is a
conjoined sequence of equations (f @=ve, (vg a)=Vay, -,
(v, an+1)=f But these can only be satisfied if there is some string x
in aaj...ay+1 such that (f x)=f and this holds only of cyclic models.
Since the number of variables introduced is bounded by the original
number of possible interactions, all actual interactions in the system
must eventually disappear either through the application of (10¢) or by
being transferred to a variable whose other equations it does not
interact with.
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As we argued above, the satisfiability of a free deseription can
be determined by arbitrarily instantiating the residual uncertainties
to particular strings and then applying any traditional satisfiability
algorithm to the result. Given the Free operator and the procedure in
(11), the satisfiability of an arbitrary acyclic deseription is thus
decidable.

The possibility of nontermination with cyclic deseriptions may
or may not be a problem in linguistic practice. Although the formal
system makes it easy to write descriptions of this sort, very few
linguistic analyses have made use of them. The only example we are
aware of involves modification structures (such as relative clauses)
that both belong to the element they modify (the head) and also
contain that element internally as an attribute value. But our
procedure will in fact terminate in these sorts of cases. The difficulty
with cycles comes from their interaction with infinite uncertainties.
That is, the description may have cyclic models, but the cyclic
specifications will not always lead to repeating variable transfers and
nontermination.  For example, if the cycle is required by an
uncertainty that interacts with no other infinife uncertainty, the
procedure will eventually terminate with a free description. This is
what happens in the modification case, because the cycle involves a
grammatical function (say RELCLAUSE or MOD) which belongs to no
infinite uncertainty.

For cyeles that are not of this type, there is a straightforward
modification to the procedure in (11) that at least enables them to be
detected. We maintain with each uncertainty a record of all the
variables that it or any of its ancestors have been associated with, and
recognize a potentially nonterminating cycle when the a transfer to a
variable already in the set is attempted. If we terminate the procedure
when this happens, assuming in effect that all subsequent disjunctions
are unsatisfiable, we cannot be sure that all possible solutions will be
accounted for and thus cannol guarantec the completeness of our
procedure in the cyclic case. We can refine this strategy by recording
and avoiding iteration over combinations of variables and uncertainty
languages. We thus safely explore more of the solution possibilities
but perhaps still not all of them. It is an open question whether or not
there is a satisfiability procedure different from the one we have
presented that terminates correctly in all cases. On the other hand, it
is also not clear that potential solutions that might be lost through
early termination are linguistically significant. Perhaps they should
be excluded by definition, much as /Kaplan and Bresnan 1982/
excluded ¢-structure derivations with nonbranching dominance chains
because of their linguistically uninteresting redundancies.

4, The Smallest Models

The satisfiability of a description in free form is independent of the
choice of strings from its uncertainty languages, but of course different
string choices result in different satisfying models for the description.
An infinite number of strings can be chosen from even a very simple
functional uncertainty such as (f COMP* SUBJ)=v, and thus there are
an infinite number of distinct possible models. This is reminiscent of
the infinite number of models for descriptions with no uncertainties at
all (just (f SUBJ)=v), but in this case the models are systematically
related in the natural subsumption ordering on the f-structure lattice.
There is one smallest structure; the others include the information it
contains and thus satisfy the description. But they also include
arbitrary amounts of additional information that the deseription does
not call for. This is discussed by /Kaplan and Bresnan 1982/, where the
subsumption-minimal structure is defined to be the grammatically
relevant one.

The models corresponding to the choice of different strings
from an infinite uncertainty are also systematically related to each
other but on an metric that is orthogonal to the subsumption ordering.
Again appealing to the Pumping Lemma for regular sets, strings that
are longer than the number of states in an uncertainty's minimal-state
finite-state acceptor include a substring that is accepted by some
repeating sequence of transitions. Replicating this substring
arbitrarily still yields a string in the uncertainty, so in a certain sense
these replications contribute no new grammatically interesting



information. Since all the information is essentially contained in the
shorter string that has no oceurrence of this particular substring, we
define this to be the grammatically relevant representative for the
whole class. Thus a description with uncertaintios has only a finite
number of linguistically significant models, those that result from the
finite disjunciions that are introduced in converting the description to
free form and from choosing among the finite number of short strings
in the residual uncertainties.

5. Performance Congiderations

We have outlined a general, abstract procedure for solving uncertainty
descriptions, making the smallest number of assamptions about the
details of its operation, The cfficiency of any implementaiion will
depend in lurge measure in just how details of data structure and
explicit comprtlational control are fixed.

There are & number of obvious optimizations that can be made.
I'irst, although not required by the abstract procedure, performance
will clearly be better if deterministic, minimal-state finite-state
machines are used to represent the uncertainties. This reduces the
size of the state cross-products, which is the leading term in the
number of disjunctions that must be processed. Second, the cases in
the Frec operator are not mutually distinet: if identical strings belong
to the two uncertainty languages, those would fall into both cases (a)
and (b) and hence be processed twice with exactly equivalent results.
The solution to this redundancy is to restrict one of the cases (say (a))
so0 that it only handles proper prefixes, consigning the identical strings
to the other case. Third, when pairs of symbols are enumerated in the
(¢} case, there is obviously no point in even considering symbols that
are in the alphabet but are not First symbols of the suffix
uncertaintics. This optimization is applied automatically if only the
transitions leaving the start-stales are enumerated and the
finite-state machines are represented with partial transition funclions
pruned of transitions Lo failure states.

Fourth, a derivative uneertainty produced by the Free operator
will sometimes be empty. Since equations with empty uncertaintics
are unsatisfiable by definition, this case should be detected and that
digjunctive branch immediately discarded. Fifth, the same derivative
suffix and prefix languages of a particular state may appear in
pursuing different branches of the disjunction or processing different
combinations of equations. Some computational advantage may be
gained by saving the derivative finile-state machines in a cache
assoclated with the states they are based on.  Iinally, successive
iterations of the VFree procedure may lead to transparent
inconsistencies (an assertion of equality between Lwo distinct symbols
or equating a symbol to a variable that is also used as a function). It is
important to deteet these inconsistencies when they first appear and
again discard the corresponding digjunctive branch. In fact, if this is
done systematically, iterated application of the Free operator by itself
simulates the effect of traditional unification algorithms, with
variables corresponding to f-structures or nodes of a directed graph.

There are also some less obvious but also quite important
performance considerations. What we have described is an equational
rewriting system that is quite different from the usual recursive
unification algorithm that operates on dirccted graph representations.
Divected graph data structures index the information in the equations
s0 that related structures are quickly accessible through the recursive
control structure. Since our procedure does not depend for its
correctness on the order in which interacting equations are chosen for
srocessing, it ought to be easy to embed Free as a simple extension of a
sraditional algerithm. However, traditional unification algorithins do
not deal with disjunetion gracefully. In particular, they typically do
not expect new disjunctive branches to arise during the course of a
recursive. invocation; this would require inserting a fork in the
recursive eontrol structure or saving a complete copy of the current
computational context for each new disjunction. We avoid this
awlwardness by postponing the processing of the functional
uncertainty watil all simple unifications are complete. Before
performing a simple unification step, we remove from the data
structures all nncertainties that need to be resolved and store them

with a poiuter to their containing structures on a queue or agenda of
pending unifications.  Uncertainty processing can be resumed at a
later, more convenient time, after the simpler unifications have becn
completed. (Indeed, if one of the simpler unifications fails, the
uncertainty may never be processed at all) Waiting until simpler
unifications are done means that no computational state has to be
preserved; only data structures have to be copied to insure the
independence of the various disjunctive paths.

We also note that as long as the machinery for postponing
funetional uncertainty for some amount of time is nceded, it is often
advantageous to postpoue it even longer than is absolutely necessary.
in particular, we found that il uncertainlics are postponed until
predicates (semantic form values for PRED allributes) are assigned Lo
the Estructures they belong to, the number of cases that must be
explored is dramatically reduced. This g heeause of the coherence
condition that LI"G imposes on f-structures with predicates:  an
{structure with a predicate can only contain those povernable
functions that are explicitly mentioned by the predicate. Any other
povernable functions are considered unaceeptable. Thus, if we wail
until the predicate is identified, we need only consider the small
number of governable attributes that any particular predicate allows,
even though the initial attributes in an uncertainty may include the
entire set of governable functions (SUBJ, 0BJ, and various kinds of
abliques and complements), and this may be quite large. The effect is
to make the processing of long-distance dependencies sensitive to the
subcategorization frame of the predicate; we have observed cnormous
overall performance improvements from applying this delay strateg
Note that in a left-to-right parsing model, the processing toad therefore
increases in relative clauses just after the predicate is scen, and this
might have a variety of interesting psycholinguistic implications.

Finally, we observe that there is a specialization of the Free
operator that applies when an uncerlainty interacts with several
non-uncertainty cquations (cquations whose atiribute expressions
have singleton First sets). Instead of separating one interaction from
the uncertainty with cach application of Free, the uncertainty is
divided in a single step into @« miniwum number of disjunctive
possibilities cach of which interacts with just one of the other
equations. The disjunction contains one branch for cach symbol in the
uncertainty's First set that is an initial attribute in onc of the other
equations, plus a single branch for all of the residual initial syrabols:
(12) (fa)y=v iff (fs1Suffix(a,8(qy,510)) = v ..\ seSullix(a,blqge,sp)))=v

V(fa{sy,..s5}8*%) =v

The statement of the generic Iree algorithm (10) is simplified by
considering specific attributes as trivial regular languages, but this
suggests that complex finite-state machinery would be required to
process them. This alternative works in the opposite direction: it
reduces leading terms in an uncertainty to simple attributes before
pursuing their interactions, so that efficient atiribute matching
routines of a normal unification procedure ecan be applied. This
alternative has a sceond computational advanlage. The generic
algorithm unwinds the uncertainty one attribute at a time,
constructing a residual regular set al each step, which is then
processed against the other non-uncertain equations. The alternative
processes them all at once, avoiding the construction of these
intermediate residual languages. This is a very important
optimization, since we found it to be the most common case when we
cmbedded uncertainty resolution in our recursive unification
algorithm.

Uncertainty specifications are a compact way of expressing o
large number of disjunctive possibilitics that are uncovered one by one
as our procedure operates. It might seem that this is an extremely
cxpensive descriptive device, one which should be avoided in favor of
apparently simpler mechanisms. But the disjunctions that emerge
from processing uncertainties arc real: they represent independent
grammatical possibilities that would require additional computational
resources no matter how they were expressed. In theories in which
long-distance dependencics are based on empty phasc-structure nodes
and implemented, for cxample, by gap-threading machinery, ATN
HOLD lists, and the like, the exact location of these empty nodes is not
signaled by any information dircctly visible in the sentence. This
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increases the number of phrase-structure rules that can be applied.
What we see as the computational cost of functional uncertainty shows
up in these systems as additional resources neecded for
phrase-structure analysis and for functional evaluation of the larger
number of trees that the phrase-structure component produces.
Unlike phrasally-based specifications, functional uncertainties in LI'G
are defined on the same level of representation as the
subcategorization restrictions that constrain how they can be resolved,
which our coherence-delay strategy easily tukes advantage of. But the
fact remains that functional uncertainties do generate disjunctions,
and thus strongly highlight the already perceived need for efficient
disjunction-processing techniques if acceptlable performance is to be
achieved with LFG and related grammatical formalisms. Recent
disjunction proposals by /Kasper 1987/ and /Eiscle and Déirre 1988/ ave
important steps in the development of the necessary computational
technology.

6. Conclusion

The notion of regular functional uncertainty thus has very nice
mathematical properties. Our state-decomposition algorithm provides
a very attractive method for resolving functional uncertainties as
other phrasal and functional constraints are computed during the
parse of u sentence. This algorithm expands the uncertainties
incrementally, introducing at cach point only as much disjunction as is
necessary to avoid interactions with other functional information that
has already been taken into account. We have recently added this
algorithm and the functional uncertainty netation to our LFG
Grammar Writer's Workbench, and we can now rigorously but easily
test a wide range of linguistic hypotheses. We have also begun to
investigate a number of other computational heuristics for the
cfficient, controlled expansion of uncertainty.

Kaplan and Zaenen (in press) first proposed the idea of
functional uncertainty as sketched in this paper to account for the
properties of long-distance dependencies within the LFG framework.
In this framework, it has already shed new light on long-standing
problems like island constraints (see, e.g., /Saiki 1985/ for an
application to Japanese), But the notion is potentially of much wider
use: first, it can be adapted to other unification grammar formalisms
to handle facts of a similar nature; and second, it can be used to handle
phenomena that are traditionally not thought of as falling into the
same class as long-distance dependencies but that nevertheless seem
Lo involve nonlocal uncertainty. A discussion of its application in the
LFG framework to infinitival complements can be found in /Johnson
1986/ for Dutch and /Netter 1986/ for German; /Karttunen (In press)/
discusses how similar extensions to Categorial Unification Grammar
(CUQG) can account in a simple way for related facts in Finnish that
would otherwise require type-raising. Halvorsen has suggested that
scope ambiguities in semantic structures might also be characterized
by this device.
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