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Abstract

The syntax, component of the speech recognition system I'KAROS! is
described. The usefulness of a probabilistic Lexical Functional Grammar
both for constraining bottom-up hypotheses and top-down predicting is
shown.

1. Introduction

The most important problem in all speech
recognition systems is the inherent uncertainty
associated with the acoustic-phonetic decoding
process at the basis of such a system. One approach
taken in many existing system to overcome these
difficulties is to integrate higher level knowledge
sources that have a certain a-priori knowledge
about specific problem areas. Following this line of
thought, the system architecture adopted in the
[IKAROS-project assumes different levels of
knowledge (representations) e.g. acoustic
parameters, phonemes, words, constituent
structures etc. The interaction between these
knowledge sources is controlled by a central
blackboard control module (like in HEARSAY II).
This whole system is embedded in an object-
oriented environment and communication between
the modules is realized by message passing.

Within IKAROS particular attention is given to the
problem of using the same knowledge
representations both for data-driven bottom-up
hypothesizing and expectation-driven top-down
prediction and to the problem of providing a
general framework of uncertainty management.
According to this rationale, the main purpose of the
syntax component is to constrain the number of
word sequences to be dealt with in the recognition
process and to predict or insert poorly recognized
words. Grammaticaless in itself is of no importance
to us. .Quite to the contrary, in a real-live
application a certain degree of error tolerance is a
desired “effect.

1 Research in IKAROS is partially funded by the ESPRIT
programme of the European Community under contract
P934
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In the syntax component of IKAROS we work
within the formal framework of a probabilistic
Lexical Functional Grammar. Certain modifications
to the formalism as expounded in /Bresnanl1982/
have been made to suit our purposes. We use as an
implementation an event-driven chart-parser that
is capable of all the necessary parsing strategies i.e.
top-down, bottom-up and left-to-right and right-
to-left parsing.

2. Probabilistic context-free Grammars

2.1. The event-driven parser

The interaction between the blackboard manager
and the syntax component is roughly as follows:
the blackboard manager sends a message to the
syntax component indicating that a particular word
has been recognized (or rather "hypothesized") at a
certain position in the input stream (or in chart-
parser terminology with starting and ending vertex
number) together with a certain numerical
confidence score. The syntax component
accumulates information about these (in arbitrary
order) incoming word hypotheses and in turn posts
hypotheses about predicted and recognized words
or constituents on the blackboard. The job of the
syntax component now is to decide between
several conflicting (or competing) constituent
structures stored in the chart i.e. to choose the best
grammatical structure.

2.2, The formalism

We assume a probabilistic context-free grammar
G=<VN, VLR, S >

VN denotes the nonterminal vocabulary
Nonterminals are denoted by A, B, C ..,
strings of these by X, Y, Z...
lexical categories by P, Q, . . .

VT denotes the terminal vocabulary
terminals (words) denoted by a, b, ¢, . . .,

strings of both types of symbols are
denoted by w, X, vy, z .

R denotes the set of rules {Rf, R2,... , Ry}
with each rule having the format
Ri=<Ai>Xi,qi>
where qj indicates the a-priori



probability for the application of this
rule

S denotes the initial symbol
Lexical rules have the format
Lj = < Aj->tj,qi>

In a probabilistic grammar, there is no clearcut
dichotomy between grammatical and
ungrammatical sentences. Rather, we can devise
our language model in such a way that more
frequent phrases receive a higher probability than
less frequent ones. Even different word orders will
have diffecrent probabilities.

Now we are able to compute the a-priori
probability of a (partial) derivation T starting
with the symbol S in the following recursive
manner :

p(S < 8= 1
p(xYz

<T- §)= p(xAy<- S)*q ,
ifthereisarle<A->Y,qginR

In our implementation, these a-priori probabilities
are weighted with the scores delivered for
individual] words by the -acoustic-phonetic
component to yield accumulated grammatical-
acoustic scores for whole phrases.

Quite the opposite problem arises in the analysis
context when we ask for the (relative) probability
of a given string y being derived by a particular
derivation Tk (when there may be several
different derivation histories Ti for the same
string).

We may compute the a-posteriori derivation
probabiliiy of a string y by using Bayes” Theorem

pl y <-Tk- S§)

Z p( y <-Ti- 8)
1

p(S<-Tk- y) =.

As a specialization, this formula is of particular
interest if we want to predict e.g. words or
categories following or preceding a already
recognized word etc. (This is useful for “island
parsing” when only the most promising parses
should be continued.)

Consequently, the a-posteriori probability that the
lexical category Q immediately follows the word “a’
can be calculated as

Y p( xiaQyi <-Ti- § )
i
zp( wjaPjzj <-Tj- § )
j

p(S < xaQy )==

All derivations appearing on the right side are
minimal derivations for the substring "aQ" or "aPj"
and the Pj’s range over all lexical categories in G
(In the formula, of course, we assume p(waPz <-- §)
= 0 if the substring "aP" isn’t derivable in G). This
formula reflects the common probabilistic
assumption that the derivation probability of a
substring is the sum of all distinct alternative
derivation probabilities of this string (if there is
more than one possibility).

2.3. Example Grammar G1

The following toy grammar is designed to
demonstrate the formalism. That it generates many
unwanted sentences need not concern us here.

Our grammar has the following rules

S > # NP V NP # , 1.0

NP > Q N , 0.7

NP > Q s 0.3
Lexical rules
N-> board 0.2 V-> board 0.3
N-> Dboards 0.2 V-> boards 0.3
N-> men 0.3 V-> boarded 0.3
N-> man 0.3 V-> man 0.1
Q> some 0.4 Q> the 0.6

Let us assume the word "board" has been
recognized somewhere in the input stream (but not
at its end). We obtain the following a-priori
probabilities for minimal derivations involving
"board” with a subsequent lexical category

p( #Qboard VNP # < S)=07 %02
p(  #NP board Q N # <« §=03%07
p(  # NP board Q # < §=03%03

Actually, there are no more minimal derivations of
the desired type. We may now calculate the a-
posteriori probability of V following the word
"board”

p(# x board V y # <- §) =

1% 0.2
3% 07103+ 03 =032

0.7 ¥ 0.2 +



The a-posteriori probability of the other
("conflicting") possibility i.e. that a Q follows the
word "board" is

p@# x board Q y # < S)= 1-032 =0.68

In our implementation these a-posteriori
probabilities can easily be computed from the

derivation probabilities attached to the active
edges in the chart parser.

3. Lexical Functional Grammar

LFG assumes two layers of grammatical description
of sentences i.e. the constituent structure level and
the functional structure level. The constituent
structure level caters for the surface oriented
realization of sentences (e.g. word order etc.)
whereas the fuctional structure level is concerned
with more abstract and supposedly universal
grammatical functions like SUBJect, OBJect, OBLique
object and the like. Lexical functional Grammars
use context-free rules (like in the example above)
coupled with functional schemata. These schemata
(normally) relate F-structures associated with
corresponding mother and daughter nodes in a c-
structure  (roughly speaking). The functional
schemata attached to lexical items so-called
semantic forms may include grammatical or
semantic features, but more important, they allow
a case frame notation (in particular important with
verbs). It is these case frames -(or valencies) that
make LFG in particular attractive for prediction
purposes in speech recognition. |

In the implementation of the LFG system F-
structures are incrementally constructed by using
unification, i.e. a process that accumulates
information in structures and never backtracks.
This process is independent of the particular order
in which these structures are constructed - an
important aspect in speech recognition where there
is inherently no predetermined order  of the
operations to follow. ,

3.1. Example Grammar G2

The following small grammar fragment should give
a rough impression of the basic features of our
approach. Trivial rules are omitted. Since we work
within a railway inquiry environment we take
special care of locative and temporal expressions.
As an example, we have a special lexical category
for place and station names (N-loc) and for time
intervalls like "day” and "week" etc (N-temp). A
particular problem in LFG is the treatment of
(oblique) objects and free adjuncts. In our context,
we assume all temporal modifiers to be free
~adjuncts and verbs to be subcategorizable for
oblique locative objects only (besides the
normal arguments SUBJ, OBJ etc.). Our approach
differs from /Bresnan 1982/ in various aspects.
(Technically speaking, functional schemata of the
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form ( T (L.)) = | pose certain problems for
structure prediction (generation). So we avoid
them.

S >[{AUX} NP VP
(TSUBJ)=1

{ PP-temp}
(TADIUNCT)={

Temporal propositional phrases are treated as
adjuncts.

S > XP AUX S
{ TOBJ =1 }
TOBLLOC =4

This is the rule for questions with a question
element in front.

VP > Vv { NP}

(T OBI)=1
VP > vV { PP-loc }
(T OBLLOC) =4

Verbs take a direct or oblique locative object.

PP-loc-> P NP
(T OBI)=1{

Lexicon

call V (T PRED)="CALL<(TSUBJ) (TOBLLOC)>"

(TOBLLOC OBJ PCASE) = Loc

This lexical rule is viewed in the ‘bottom-up
analysis process as predicting a subject and an
oblique object to appear somewhere in the
sentence.

depart V (T PRED)="DEPART<(TSUBJ)XTOBLLOC)>"
(TOBLLOC OBJ PCASE) = Goal

This entry predicts a subject and an oblique object
which denotes a goal (like in “"depart ..for.." or
"depart...to...").

arrive V. (TPRED)="ARRIVE<(TSUBL)(TOBLLOC)>"
(T OBLLOC OBJ PCASE) = Source
at P-loc (TPRED) ="AT<(T OBJ))>"
(T OBJ PCASE )=Loc
to P-loc (TPRED) ="TO«(T OBJ )"
(T OBJ PCASE ) = Goal
for P-loc (TPRED) ="FOR<«(T OBJ)>"

(T OBJ PCASE ) = Goal



where XP (TPRED ) ="WHERE"
Loc}

(T OBLLOC OBJ PCASE ) = {G oal

This rule reflects the fact¢ that "where" may play
the role of an oblique location or goal object (like in
examples "Where does the. train stop" and "Where
does the wrain go" but not in "From where does the
train arrive").

Coventry N-loc (TPRED) ="COVENTRY"

This is an example entry for a place name.
day N-temp (TPRED) ="DAY"

For the analysis of the sentence "where did the
train call" we get the c-structure

[S [XPwherc] [AUX did][.S[NPthc train] [VP[ v call]l]]
and the f-structure

the train

"CALL<(T SUBJ) (T OBLLOC )>"

OBLLOC  PRED = "WHERE"
OBJ PCASE= Loc

e
v}
!

In order to demonstrate the hole-filling capabilities
of this formalism we consider the phrase "call *
Coventry” with * indicating a word that was not
recognized by the acoustic-phonetic component. We
would get the c-structure

[VP [V call [PP-loc [P—loc *] [N~loc Coventryll]
and the f-structure

PRED ="CALL<(T SUBJYT OBLLOC )>"
OBILLOC  PRED = "Coventry"
OBJ PCASE= Loc

This little example shows how our LFG-approach is
capable to predict certain features of constituents
that might appear somewhere in the sentence.

Now, another important point is that L F G
subcategorizes for grammatical functions not for
grammatical categories. That means we have a
certain flexibility at hand in that the same
grammatical function (e.g. the Location deep case)
may be vealized in different ways (compare for
instance the example sentence in L(G2) "Where did
the train call" with a WH-Adverb vs. "The train
calls at Coventry" with an oblique object). As the
example c¢learly shows, grammatical functions in
LFG provide an additional intermediate level of
description  between a  semantic feature

approach("semantic grammars”") and a purely
surface oriented word order approach.

Since there are sentences that are syntactically
quite acceptable (i.e. on the constituent structure
level) but devious in semantic terms LFG imposes 3
additional well-formedness conditions on F-
structures. We have to assess these conditions from
the pragmatic viewpoint of a real-life application
(e.g. with respect to predictive power and error
tolerance)

(i) Functional Unigueness (no conflicting values for
an attribute allowed)

This is a useful principle since we want to exclude
feature “clashes". So we would like to exclude
"Where did the train stops” (tense clash) but we
would not want to undertake great an effort in
order to exclude "Where does the train stops”
("since it is clear what is meant!").

(ii) Completeness (A f-structure must contain all
the governable grammatical functions that its
predicate governs)

This is an awkward condition. First of all, given the
uncertainty in speech recognition it is hard to
decide at any rate when the analysis of several
(conflicting) utterances is complete. In addition, we
believe that there are never ending problems with
the distinction between obligatory and optional
arguments of a verb. Hence we decided that all
arguments in a semantic form should be regarded
as optional (Only SUBJ is obligatory). A f-structure
that contains more grammatical functions (out of
the list given in the predicate) is grammatical
better than one with less functions in itself.

(iii) Coherence ( There must be no grammatical
function in a f-structure that is not governed by a
predicate)

This is a good principle since we want to exclude
superfluous arguments.

4. Conclusions

We showed the usefulness of a probabilistic lexical
functional grammar for a speech recognition
system by demonstrating its two relatively
independent  constraining and predicting
mechanisms : the constraining power of a context-
free grammar (which allows global predictions
from a global point of view) and of valency-
oriented lexicon (which allows bottom-up
predictions from a local point of view). In addition,
we gave an account of the probability treatment
within this framework.
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