
THE PARALLEL EXE~ERT PARSER (PEP):

A THOROUGHLY %~IVISED DESCENDAN'~ OF

THE WORD EXPERT PARSEI% (WEP)

M. DEVOS
Katholieke Universiteit Leuven
Campus Gasthuisberg
Neurophysiology Lab
Herestraat 49

B-3000 Leuven, Belgium

G. ADRXAENS
Siemens NLP Research

& Katholieke Universiteit Leuven
M. Theresiastraat 21
B-3000 Leuven, Belgium

(siegeert@kules.uucp or
siegeert@blekul60.bitnet)

Y.D. WILLEMS
Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A

B-3030 Heverlee, Belgium
(ydw@kulcs.uucp)

~H>st z'act

in this paper we present PEP (the Parallel

Expert Parser~ Devos 198'7), a radically
revised descendant of WEP (the Word Expert
Parser, Small 1980) . WEP's idea of
linguistic entities as interacting processes
has been retained, but its adherence to the
word as the only entity has been rejected.
Experts exist at different levels,
communicate through rigidly defined protocols

and are now fully designed to run in
parallel. A prototype of PEP is implemented
in Flat Concurrent Prolog ar{d runs in a Logix
environment.

of information is more complex tl~an a node in
a connectionlst model (it may be a rule, for
instance)~ but in which one attempts to keep
the parallel, computation involving the items
of information mere under control than can be
done in a connectionist.model. (For examples
of coarse-grain parallel NLU, see Hirakawa

1983 or Matsumoto 3.987).
The research we present here is of the

latter type of parallel NI.U. A potentially
parallel NLU system (the Word Expert Parser,
Small 1980) has been drastically revised so
as to allow a truly parallel implementation
(viz. in Flat ConCurrent Prolog, using the

Logix environment (Silverman et al. 1986));
we call the resulting system the Parallel

Expert Parser (PEP, Devos 1987).

Io Introduction

Work on parallel natural language
understanding (NLU) is only starting to

emerge. (This even holds for work on any kind
of parallel AI (see e.g. Kowalik 1988)). In
general, there seem to be two kinds of
approaches to parallel NLU. On the one hand,

there is what we call fine-grain
parallelism; on the other hand, there is
coarse-grain parallelism. With
fine-grain parallel NLU we refer basically
to the connectionist approach and its
decendants. Connectionist models feature
huge networks of small nodes of information;
computation is represented by fluctuations of
the activation levels of nodes and by
(parallel) transmission of excitation and
inhibition along connections. (For
connectionism in general, see Feldman &
Ballard 1982, VanLehn 1984, Hillis 1986,
McClelland & Rumelhart 1986; for

connectionist models of NLU, see Cottrell &

Small 1983, Cottrell 1985, Pollack & Waltz
1985, McClelland & ~melhart 1986) o With
coarse-grain parallel NL~ we refer to a
more modest kind, in which the smallest item

2. The WoEd Expmrt Parser (WEP)
b~iefly described

The Word Expert Parser (WEP, Small
1980) i s a natural language understanding

program in the AI tradition of semantic
parsing (see also Hirst 1983v Hahn 1986,
Cottrell 1985, Adriaens 1986a/b for
WEP-inspired or -related work). The
organization of the model differs strongly

from that of a "classical" NLU system.
Rather than having a number of components of

rules that are applied (serially) to
linguistic input by a general process, WEP
considers the words themselves as active
agents (word experts) that interact with each
other and with other knowledge sources in
order to find the meaning of a fraQT~ent of
text. Words are implemented as coroutines~
i.e. processes that run for a while

(broadcasting information or performing
side-effect operations to refine the

representation of the meaning of a text
fra~nent), and suspend when they have to wait

for information from other experts. The
information they send or wait for are either
signals relating to the status of the parsing

147

process (broadcast on a dedicated signal

channel) or concepts .that represent the
meaning of parts of the linguistic input
(broadcast on a dedicated concept channel).
The experts coordinate the understanding
process in turn, eventually converging
towards a conceptual structure that
represents the meaning of a text fragment,

30 Fz'Om ~ to PEP

In general, the idea of interacting
processes is a very attractive one if one
wants a flexible parser capable of using any
type of information at any moment it needs
it. This basic principle of WEP has been
retained [or PEP. Yet, although the design
of the sy:3tem seemed to lend itself easily to
a parallel implementation, linguistic and
computational flaws in the model have made
drastic revisions necessary before this could
actually])e done.

3.1 True]~arallelism

Although WEP claimed to be "potentially
parallel", it heavily (and implicitly) relied
on sequentiality to make its principles work.
Especially for the restarting of suspended
experts, a last-in first-out regime (stack)
took care of contention for messages: the
expert that placed an expectation for a

message 16.st~ mostly got it first. Also, to
avoid com~lications in expert communication,
no new e~perts were initialized before the
queue of leady-to-run experts was empty. The

adherence to this sequentialization, not to
mention the side-effects involved, obviously
made WEP's claim of being "potentially
parallel" invalid.

Ir~ a truly parallel environment,
sequentiality can no longer be relied on.

PEP uses [parallelism whenever possible: for
the execution of expert code AND for

initializing new experts (initializing all of
them as soon as they are read and
morphologically analyzed). In order to
realize this, the most important departure
from the original model is that experts are
no longer only associated with words (the
only linguistic entities acknowledged by
WEP) ° We will now discuss what experts are
associated with, and how the new view of
experts leads to clearer and more explicit

concepts o~ waiting and communicating in a
parallel environment.

3.2 Wo~d-o:~pQztJ vozsus concopt-e~8
on different levels

A major item of criticism uttered against

WEP has been that it considers the word as
the only entity to be turned into an expert
process. Linguistically speaking, the
existence of larger constituents is
undeniable and must be taken into account,
whatever]aodel one advocates. From the

computational viewpoint, squeezing all
interactions into words makes it almost
impossible to figure out what is going on in
the overall parsing process. Words have to
decide on everything, from morphological
issues to pra~natic issues, with jammed
communication channels as a result.

In PEP, experts are associated with

concepts rather than with words, it is very
natural to do so: words are only used to
evoke the concepts that conshitute the
meaning of a fra~lent of text. St:i.l i ~
concepts have a concrete link to words and
can be regarded as being associated with hhe
group of words that evokes them. E.g. in
"the young girl" three concepts can be

discovered, associated with the b~sic
word-groups "the", "young" and "girl ~'. At: a
higher level a compound concept constituting
the meaning of the entire construc~ "the
young glrl" is invoked.

Concretely, in PEP a specific data

structure (the expert ~rame) is associ~ted
with every expert. The hierarchy that

originates from the concepts is reflected by
the interconnection of the expert fraracs.
These are vertically related by].eve].
interdependencies, and horizonta]ly by the
relative role the concepts of the frames play
in the frame that is being built out of them
one level higher. Besides its level~ a~
expert frame has three attribute slots: a
function attribute (stating what the role is
the expert concept plays at a spec.i.fJc

level), a concept attribute (representing
the contents of the expert) and a lexical
attribute (simply correspondin~ to the gr<~u~>
of words associated with Lhe conc<~pt) .
Below, we will see that this definition of e:~
expert frame is crucial for the rest~:/<:!t~:!<l

cormmunication protocol among experts.
The "analysis process" consists of the

collection of currently active experts tha[+
try to establish new concepts. ~f a ne~
concept can successfully be formed, the
corresponding expert is added to the analysis
process, while the combined concepl r s expe~t~
may die. They pass their expert frames~ a~0
so the contained information, to the new
expert, which will usually incorporate them
in its own expert frame. Notice that hh~
view has interesting software engineering
aspects not present in WEP: by having a
leveled approach expert code becomes more
local, modular and adaptable. The dynamic
process hierarchy enables the linguist/expert
writer to write generic experts that can be
parameterized with the value of the concept
they represent (cp. object-oriented
programming).

A final note about the levels. Each level
is intended to deal with a more or le~;s

independent part in the derivation and
composition of meaning. However, we leave i[:
up to the linguist writing the expe~-L

processes to declare (i) what levels he wants
to consider and (2) what the appropriate
functions are that-he wants to use at the
respective levels. By combining this

flexible filling in of a rigorously defined
model, we force the linguist to clearly

specify the experts and help him to keep the

experts relatively small (hence, more
readable) and to figure out more easily where

things could go wrong in the parsing process.
A possible hierarchy of levels might be:
morpheme, word, constituent, clause, sentence
(each level having its own function
attributes). In the somewhat oversimplified
example below we will be using three levels
(between brackets: the respective function
attributes), viz. word level
[article;adjective;substantive],
constituent_level [action;agent;object], and

sentence level.

3.3 Broadcasting vs.
explicit communication

Experts are the active components of the
analysis system. New concepts come into
existence only through their interaction.
Since parallelism was a major goal we have
based our communication protocols on explicit
identification of the expert frames involved
in some interaction, which allows us to keep

communication under control. Two kinds of
communication take place:

(I) attribute-refining:

Experts are allowed to refine the
attributes of ~xpert frames. The attributes
are considered to be information that is

accessible by all experts.

(2) attribute-probing:

Basing themselves on the attributes of
the probed expert frames, experts decide
which way to go in the analysis process. All

attribute probing is in ~ the choose_alt
command, that is described next.

3.4 Suspending/resuming:
explicit machinery vs.
declarative reading

Let us now turn our attention to the
command that allows• experts to decide which
way to go in their analysis process on the
basis of information they expect from other
experts. We have in fact localized all
possible choice-points in one command:

choose_alt([
alt(frame(frame-specification,

attrlbuteconditlon),
invoke(expert)),

alt(frame(frame-specification,
attribute condition),
invoke(expert)),

alse(invoke(e~q~azt))
]).

It consists of a number of alternatives and
an optional elsative. The alternatives
contain a test, which may fail, suspend or
succeed. In the last case the corresponding

expert may be invoked. If tests from several

14&

alternatives succeed, an arbitrary
corresponding expert is invoked, whereas the

others are not further considered (don't-care
committed choice; see also below and Devos
1987, however, for a suggestion of how to

realize non-determinism in view of possible
ambiguity). Only after failure of all
tests is the elsative-expert executed.
Tests consist of a frame- specification and
an attribute-condltion. The latter
constitutes the actual test on the attribute
of the frame selected by
"frame-specification". This frame can be
referred to with testframe in the

corresponding invoked expert. One will
already have noticed tha~ the choose alt
predicate does not contain any expl~cit
scheduling commands. Indeed, we intend to
entirely mask the program flow by a
declarative reading. However, flow control
remains necessary and St is realized by
suspending a n expert rou¢ine (or a branch in
the choose alt command, since the
alternatives in the choese_alt may be

executed in parallel), if it requires
information that is not yet available. Only
after this required information is filled in,
does the expert-routine resume. This can
cheaply be implemented using read-only

unification (Shapiro 1986). Intuitively,
predicates that probe for information
suspend, if the variable that supplies this
information is not yet instantiated. This
suspension takes place during unification of
the Flat Concurrent Prolog (FCP) predicate
(see below), into which expert routines are
compiled. Resumption occurs whenever the
required variable gets instantiated.
Suspension of a choose_alt branch may take
place in the following cases:

(i) If the search for the testframe requires
information that is not yet available, it
simply suspends. As a result the
frame-specification always leads to the
selection of a frame in a deterministic way.
Hence, explicit communication becomes
possible.

(2) The attribute-test suspends until the
information to be tested is available.

There is one other command that may cause

suspension of an expert, viz. begin_level
(a_level). The execution of an expert that
specifies begin_level(a_level), is only

resumed after all attributes of incorporated
expert frames are specified. This filling in

of attributes takes place between different
expert frames on the same level (intra-level
communication). With rigid rules as to which
expert fills in which frame, it is possible

to prove that the expert code is deadlock
free, We will further refer to these rules
as the d~adlook avoidance rules. It suffices
e.g. to prove that every frame that is at the
lowest level that still contains unfilled
frames, will eventually be filled in. It

must then not be difficult to construct a
deadlock analyser, that checks whether the
deadlock avoidance rules are violated. This
has not yet been further elaborated.

However,, to ensure flexibility (especially

from linguistic considerations) we are forced
to allow inter-level communication, e.g. in

sentences as "the little girl loved her toy",
where "her" is level equivalent to "little",

but anaphorically refers to "the little
girl", which will probably be at a higher
(hence, different) level than "her".v In

this case deadlock free code is not easy to

guarant~e, because of the possibility of
circular waiting of experts for one another.
It is o[~r hope that we can also incorporate
restr±cted and well-specified use of this
inter-level communication in the deadlock
avoidancy rules.

The system as yet designed, implements a
don't-care committed-choice between the
alternatives of a choose alt predicate. This
means that an arbitrary alternative that
succeeds, will be chosen to determine the
expert's behaviour. We are well aware of
the fact that don't-care committed-choice is
not always what one wants in AI applications.
We merely chose this (easy) option here in
order not to burden the design and
implementation with one more problem. We will

Just mention two alternatives we intend to
explore in the future.

The first is intermediate between
don't-care committed-choice and full
non-determinism. To each alternative in the

choose_alt command a Priority is assigned.
The alternatives are then tried Out by
descending priority, allowing the more likely

ones to succeed first. (These priorities will
often reflect frequency of occurrence of
specific linguistic structures.) A
prioritizing approach like this one will
however require more synchronisation among
the alte:rnatives of the choose alt to ensure
a unique semantics of the command.

The second is full non-determinism. NO
priorities are assigned to alternatives, and
the system is capable of undoing a wrong
choice during the analysis process. It can

go back to a choice point and try out another
alternative whose test succeeds. A
(costly) implementation of this strategy
should be based on Concurrent Prolog code
(Shapiro 1986) that contains a copy of the
global environment for each alternative in
the choose alt command. This Concurrent
Prolog code would then have to be flattened
to FCP (Codish & Shapiro 1985).

3.5 An Example

Below we present the code of some sample
experts that allow the analysis of the

sentence "the little girl eats the apple".
The example is simplified, but illustrates
well the crucial elements of PEp. First the

appropriate levels and functions are
declared. Then follows th~ code of the
actual experts. Remember that expframe
refers to the frame that is associated with
the expezt and testframe refers to the frame
that was referred to in the alternative of
the preceding choose_air command.
"begin frame" sets the appropriate level and

"refine function" and "refine_concept" do the
filling in of the attributes of the specified
frame. The lexical attribute is
automatically filled in when beginning the
frame. The example restricts itself to
choose_alt commands that only require

intra-level communication. When the sentence
is read, the corresponding experts are
initialized and start to run in parallel.
The rest of the code is self-explanatory.

declare(level[
word level

(functlon[article,adJectlve, substantive]),
constltuentlevel

(£unctlon[action,agent,obJect]),
sentence_level
(function[])

]).

the :-
begin frame(word level),
refine_fuzkction (expframe, 'article'),

reflneconcept (expframe, kled("defining")),
refine_concept (expframe, value("defined")).

little :-
begin frame(word_level),
refine_funetion(expframe, 'adjective'),

reflne_concept(expframe, kind("adjectival")),
reflne_concept(expframe, value("young, small")).

girl :-
beglnframe(wordlevel),

refine funotion(expframe, 'sestantive'),
refine_concept(expframe, kind("person"]),

refine concept(expframe, valee("female, child or maiden")),
choose alt

((alt(frame(minus(1),function(equal(,article,))),
invoke(articlelncorporation]),

alt(frame(minus(1),functlon[equal('adjeetive,))
invoke(adjective_incorporation)),

else(invoke(so_incorporatlon))]].

apple :- a0aloqoos to the code for girl.

adJective lncorporation :-
incorporate(testframe),
choose_alt

([alt(frame(minus(1),function(equal('article,))),
Invoke(artlcleincorporation)),

else(i~Ivoke(noincorporation))]).

articleincorporatlon :-
incorporate(testframe),
begin_frame(constltuentlevel[,
reflneconcept(expframe, kind("unused")),
refine coecept(expframe, value("unused")).

no_incorporation :-

begin frame(constituent level[,
refine concept(expframe, klnd("unused"]
refine_concept(expfra~e, value("unused"

eats :- begin_frame(constituent level),
refine_funetion(expframe, 'action'),
reflneconcept(expframe, klnd("ingest")),
refine concept(expframe, value("ingest_food"][,
choose_alt

([alt(frame(plus(3),concept(view('eatable'))),
invoke(eateomething)),

else(.....................))]).

145

eatsomething :~
refine_function(testframe, 'object'),
incorporate(testframe),
choose alt

([alt(frame(minus(1),concept(view('person'))),

invoke(someoneeatssomething)),
else(.))]).

someoneeatssomething :-
refine function(testframe, "agent'),
incorporate(testframe),
begin frame(sentence_level),
show soluhion.

4. A Parallel Implementation

In the last section of this paper we
will have a closer look at how all the
aspects of PEP discussed so far have been

implemented in a logic programming language.
For our implementation we have used Logix, a
Flat Concurrent Prolog environment (Silverman

et al. 1986).

4.1 General Model Organization

The prototype realization of OUr model
allowing for correct analysis of very simple
sentences (such as "The man eats", "A man
eats", "Man eats") consists of an expert
language (EL) to be used by the linguist when
writing his experts, a precompiler that
transforms the experts to FCP code and the

.... Logix FCP compiler/emulator, our programming
environment. The linguist is offered the EL,
which only contains predicates at a high
level of abstrac£ion. He may further tune
the expert levels we discussed earlier and
the function attributes he will be using at
each level to his own needs. He is only
allowed to use the EL predicates according to
his own specification of levels and function
attributes. The EL is then precompiled to
FCP. The main reason for the approach of
precompiling is that we have to use
flattening techniques on the predicates.

These techniques are the domain of computer
scientists and we do not want to bother the
linguist with them. (Precompiling also
offers important additional advantages such
as syntax checking, checking of potential

deadlock, etc.; these features are still
under development).

4.2 Data-structures: frame interconnection
and blackboard information

The lexical-morphological analyzer
schedules and invokes the experts
corresponding to the elementary lexical units
and outputs a blackboard, i.e. a matrix with

slots whose columns correspond to those units

and whose rows correspond to a level. Each

expert has one expert frame associated with
it; this expert frame fills one slot of the
blackboard. In the beginning of the analysis
process all frames and the blackboard contain
uninstantiated slots. Experts gradually

146

instantiate the slots. Referring to another
expert's expert frame requires walking to it

over the blackboard, The walk is defined in
a unique way. All slots on the path should
be instantiated, otherwise the walk suspends
and waits for the instantiation. This is
elegantly impiemented using the read-only
unification of the parallel Prolog versions.
Slots that will never be of any use any more,
are instantiated to dummy constants in order
not to indefinitely block suspended walks.

5. Conclusions and furthez res~aEch

In this paper we have presented a further
development of the procedural view of natural

language analysis (NLU) as proposed by
Small's Word Expert Parser. The Parallel
Expert Parser tries to present a truly
distributed and parallel model of NLU with
clearly defined experts on different levels,
hierarchically conceived expert frames and
rigidly restricted communication protocols.

Besides polishing the implementation and
writing/testing more complex experts, we also
intend to look further into the necessary
model of knowledge (concept) representation
that has to con~lete our framework and how it
can be tuned to PEP's needs. We hope that our
attempt at realizing parallelism in the
domain of NLU will enhance our overall

understanding of the fascinating but as yet
still poorly understood domain of parallel
computing.

REFERENCES

ADRIAENS, G. (1986a) - Word Expert

Parsing Revised and Applied to Dutch. In
Proceedings of the 7th ECAI (Brighton, UK),
Volume I, 222-235.

ADRIAENS, G. (1986b) - Process
Linguistics: The Theory and Practice of a
Cognitive-Scientific Approach to Natural

Language Understanding. Phd. thesis, Depts of
Linguistics and Computer Science, University
of Leuven, Belgium.

CODISH, M. & SHAPIRO, E. (1986) -

ComPiling OR-parallelism into

AND-parallelism. Technical Report CS85-18,
Department of Applied Mathematics. The
Weizmann Institute of Science, Israel.

COTTRELL, G.W. (1985) - A
Connectionist Approach to Word Sense
Disambiguation. University of Rochester
Computer Science Phd (TR-154) . Rochester,
New York.

COTTRELL, G.W. & S.L. SMALL (1983) -

A Connectionist Scheme for Modelling Word
Sense Disambiguation. In "Cognition and
Brain Theory" 6 (i), 89-120.

DL~rO8, M. (1987) - The Parallel Expert
Parser. Realization of a Parallel and
Distributed System for Natural Language

Analysis In Logic Programming Languages.

Engineer's Thesis, Department of Computer
Science, University of Leuven, Belgian (in
Dutch).

- Connectionist Models and Their Properties.
In Cognitive Science" 6, 205-254.

HAHN, U. (1986} - A Generalized Word
Expert Model of Lexically Distri- buted Text
Parsing. In Proceedings of the 7th ECAI
(Brighton, UK), Volume I, 203-211.

HILL:£S, D. (1986) - The Connection
Machine. MIT Press, Cambridge Mass.

HZRR~/&WA, H . (1983) - Chart Parsing'in
Concurrent Prolog. Technical Report of the
ICOT Research Center (TR-008). Institute for
New Generation Computer Technology, Tokyo.

HXRSTe G. (1 9 8 3) ~ A Foundation for
Semantic Interpretation. In Proceedings of
the 21st ACL (Cambridge, Mass), 64-73.

KOWAL~X, J.S. (ed) (1988) - Parallel
Computation and Computers for Artificial
Intelligence. Kluwer, Dordrecht The
Netherlands.

MATSO~K)TO, Y . (1987) - A Parallel
Parsing System for Natural Language Analysis.
In "New Generation Computing" 5 (1987),
63-78.

McCLK LLAND, J. & R~LHART D. E.

(1986) - Parallel Distributed Processing.
MIT Press, Cambridge, Mass.

POLLACK, J. & D. WALTZ (1985) -

Massively Parallel Parsing: A Strongly
Interactive Model of Natural Language
Interpretation. In
Cognitive Science" 9, 51-74.

SXL~ItMAN, W. et al. (1986) - The
Logix System User Manual - Version 1.21.
Technical Report CS-21 , Department of
Computer Science. The Weizmann Institute of
Science,)~ehovot 76100, Israel.

SHAPIRO, E. (1986) - Concurrent Prolog:
A Progress Report. Fundamentals of
Artificial Intelligence, W. Bibel & Ph.
Jorrand. Lecture Notes in Computer Science,
Springer--Verlag, Berlin.

SMALL~ S.L. (1980) - Word Expert
Parsing: a Theory of Distributed Word-Based
Natural Language Understanding. Computer
ScienceTechnical Report Series. University
of Maryland Phd.

VANLE~, K. .(1984) - A Critique of the
Connectionlst Hypothesis that Recognition
Uses Templates, and not Rules. In
Proceedings of the 6th Annual Conference of
the Cognltive Science Society (Boulder,
Colorado)~ 74-80.

147

