
A NEW DESIGN OF PROLOG-BASED
BOTTOM-UP PARSING SYSTEM

WITH GOVERNMENT.BINDING THEORY

Hsin-Hsi Chen*,**, I-Peng Lin* and Chien-Ping Wu**

* Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.

** Graduate Institute of Electrical Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.

abstract

This paper addresses the problems of movement
transformation in Prolog-based bottom-up parsing system.
Three principles of Government-Binding theory are employed
to deal with these problems. They are Empty Category
Principle, C-command Principle, and Subjacency Principle. A
formalism based upon them is proposed. Translation
algorithms are given to add these linguistic principles to the
general grammar rules, the leftward movement grammar rules,
and the rightward movement grammar rules respectively. This
approach has the following specific features: the uniform
treatments of leftward and rightward movements, the arbitrary
number of movement non-terminals in the rule body, and
automatic detection of grammar errors before parsirlg. An
example in Chinese demonstrates all the concepts.

1. Introduction

The movement transformation is one of the major
problems encountered in natural language processing. It has
relation to the empty constituents (traces) that exist at various
levels of representation in natural language statements.
Consider the following example in Chinese:

~] [~ , ~ ~ N T o (That book, I read.)
The word "N" (read) is a transitive verb, which should take a
direct object. However, the object " J J l ~ " (that book) is
topicalized to the first position of the sentence. For the
treatment of this phenomenon, we cannot just write down the
rules:

sentence --> noun-phrase,verb-phrase.
verb-phrase --> transitive-verb,noun-phrase.
verb-phrase --> transitive-verb.
verb-phrase --> intransitive-verb.

This is because many ungrammatical sentences will be
accepted. Thus, we must provide some mechanisms in the
grammars in order to capture them. It is still a hard work to do.
Several difficulties are listed as follows:

(1) The determination of movement is difficult. That is,
an element may be in a topicalization position, but it is not
moved from some other place in the sentence. For example,

(Fruit, I like.)
z k ~ , ~ ~ g t ~ o
(As for fruit, I like banana.)

the first can be considered to be a movement phenomenon, but
the second cannot.

(2) The empty constituent may exist at many possible
positiofis. For example, given an n-word sentence such as

Cl Wl e2 w2 e 3 ... e(n_l) W(n-1) e(n) W(n) e(n+l)
where w i is the i-th word and e i is an empty

constituent, there am (n+l) possible positions from which the
moved constituent may originate. That is, for a moved
constituent (if there is any), there are so many possible empty
constituents to co-index.

(3) Since the gap in between the moved constituent and
its corresponding trace is arbitrary, it is implausible to list all
the possible movements exhaustively, and specify each
movement constraint explicitly in the grammars.

112

The Government-Binding (GB) theory [1] provides
universal principles to explain the movements. Some of them
are shown as follows:

(1) Empty Category Principle [7] -
A trace must be properly governed.

(2) C-command Principle [7]-
a c-commands B iff every branching node
dominating a dominates/3.

(3) Subjacency Principle [7] -
Any application of move - a may not cross more
than one bounding node.

Summing up the above principles, we have to find a movezl
constituent to c-command a trace. The constituent can neither
relate to a u'ace out of its c-command domain, nor match a trace
when more than one bounding node is crossed. Such
principles nan'ow down the searching space to some extent.
For example,

(El) ~]l~ tN J~ ~ ti~t'~ ~ - ~ To
(The student that the man saw t i came.)

(E 2) * t m ~ - N t n ~ N ~ ~ T ~9~[~ff~J~o
(* The man that the student who t m saw t n came.)

There is a t race t i in the example (El). Two NPs, i.e. " N ~ "
(the student) and "~]g~lA. " (the man), may co-index with it,
but only the former is acceptable. The reason is specified as
below:
(ZI') In,, [s]~. (the man)~ (saw) q }~J (de)~-~i (the student) 1~ (cane)? (asp)

L.~o~

([~i' ') ~,~the man)[n, ,[st}~ (saw)tl ~ (de}~-i (the student)]~ (came)]' (asp)

x ~ J L.- o . - I
The (El") interpretation violates the subjacency principle
(assuming that s and n" are two bounding nodes). Two traces
exist in the example (E2). The traces t m and t n may co-index
with the two NPs "~J~=" (the student) and "~]I~{NA." (the
man), and vice versa. However, both are wrong because of the
snbjacency principle:

i-7- ° - -a (E2') .[s In' latm~ (saw)tn]~J (de}~ nlthe student)15 (came)~ (asp)]~ (de]~[~)~. m (the man)
]

L ×-

~ o .-=--~
(F,2' ') Is [n' ~ tm~ (saw)tn]/@ (de)~m(the student)]~ (came)T (asp)]IfJ {de)~[l~L n (the man)

I X~ _ ._ I

2. A Government-Bindlng based Logic Grammar
Formalism

2.1 The specifications of grammar formalism
The Government-Binding based Logic Grammar

(GBLG) formalism is specified informally as follows:
(I) the general grammar rules -

(a) c(Arg) --> Cl(Argl),C2(Arg2),...,cn(Argn).
where c(Arg) is a phrasal non-telrninal, and may

be also a bounding non-terminal,
c.(Arg.) (l < j < n) is, a lexical terminal or
J J - _ .

a phrasal non-terrmnal.

(b) c(Arg) --> Cl(Argl),C2(Arg2),...,ei(Argi),
trace(TraceArg),c(i+ I) (Argo+ 1)),'",cn(Argn)"

where the definitions of c(Arg) and
cj(Argj) (l<j < n) are the same as above,
trace('rraceArg) is a virtual non-terminal.

The special case i=O is common. For example, a
noun phrase is topicalized from a subject position. It is
represented as s -- > trace,np.

(2) the leftward movement grammar rules -
c(Arg) --> c 1(Arg I),c2(Arg2),-",ei(Argi),

m(Argm)<<<traee(TraeeArg),

c(i+ 1)(Arg(i+ 1)),...,cn(Argn).
where the.definitions of c(Arg) and

cj(Argj) (l< j < n) arc the same as l(a),
m(Argm)<<<trace(TraceArg) is a movement
non-terminal.

When i=0, the movement non-terminal is the first
element in ~he rule body.

(3) t he rightward movement grammar rules -
(:(Arg) --> c i (Arg 1),e2(Arg2),'",ei(Argi),

trace(TraceArg)>>>m(Argm),

e(i+ 1)(Argo+ 1)),'",en(Argn)-
Except that the operator '>>>' is used, the other

definitions are the same as those in the leftward movement
rules. It is apparent because of the uniform treatments of the
leftward and the rightward movements.

2.2 A sample grammar
A sample grammar GBLG1 for Chinese shown below

introduces lhe uses of the formalism:
(r l) slbm'(slbar(Topie,S)) -->

topic(Topic) <<< traeeT(Topic),s(S).
(r2) slb~t,-(slbar(S)) --> s(S).
(r3) s(s(N2bar,V2bar,Par0) -->

z~2bar(N2bar),v2bar(V2bar),* part(Part).
(r4) s(s(N2bar,V2bar)) --> n2bar0N2bar),v2bar(V2bar).
(r5) s(s(tt aceR(Trace),V2bar)) -->

t raceR(Traee),v2bar(V2bar).
(r6) topic(topic(N2bar)) --> n2bar(N2bar).
(r7) n2bar(n2bar(Det,CL,Nlbar)) -->

* det(Det),* cl(CL),nlbar0Nlbar).
(r8)n2bar(n2bar(Nlbar)) --> nlbar(Nlbar).
(19) nlbac(nlbar(Rel,N2bar)) -->

tel(Rel),traceR(N2bar) >>> n2bar(N2bar).
(riO) nlbar(nlbar(N)) --> * n(N).
(rl 1) rel(rcl(S,De)) --> s(S),* de(De).
(r12) v2bar(v2bar(Adv,Vlbar)) --> * adv(Adv),vlbar(Vlbar).
(r13) v2bac(v2bar(Vlbar)) --> vlbar(V1 bar).
(r14) vlbar(vlbar(TV, N2bar)) - > * tv(TV),n2bar(N2bar).
(r15) vlbat'(vlbar(TV,traceT(Trace)))-->

* tvOW),traeeT(Trace).
(r16) vlbac(vlbarfrV,traeeR(Traee)))-->

* tv(TV),traeeR(Trace).
(r17) vlbac(vlbar(iv)) --> * iv(IV).
Among tlu;se grammar rules, (rl) deals with the leftward
movement (topiealization), (r9) treats the rightward movemen ~
(relafivization), and the others am normal grammar rules. The
heads of the grammar rules (r3), (r4), (r5), (r7), and (r8) are
bounding nodes. The virtual non-terminals traceT(Trace) and
traceR(Trace) appear in the rules (r5), (r15), and (1"16).

2.3 Tramtsitive .relation of c.command theory
For a phrasal non-terminal X, a virtual non-terminal Y

and a transitive relation TR, X TRY if
(1) X is the rule head of a grammar rule, and Y is an

element in its rule body, or
(2) X is the rule head of a grammar rule, a phrasal

non-terminal I in its rule body, and I TR Y, or
(3) there exists a sequence of phrasal non-terminals I 1,

12 I n, such that X TR I I TR 12 TR ... TR I n.
The transitive relation TR is also a dominate relation.

The c-command theory is embedded implicitly in the
GBLGs if ~very grammar rules satisfy the following property:

for a rule X 0 --> X1,X2,...,X m where X i is a terminal
or a non-terminal, l a i ~ m, if Xi=(A<<<B) then there must

exist some Xj (i< j < m); such that Xj dominates the virtual
non-terminal B in other grammar rule. That is, Xj TR B. The
phrasal non-terminal X 0 is the first branching node that
dominates A and Xj, and thus also dominates B. Therefore, A
c-commands B. Xi=(B>>>A) has the similar behavior. Rules
(rl) and (r9) in grammar GBLGI show these <<< and >>>
relations respectively.

2.4 Comparison with other logic programming
approaches

Compared with other logic programming approaches,
especially the RLGs [8,9], the GBLGs have the following
features:

(1) the uniform treatments of leftward movement and
the rightward movement -

The direction of movement is expressed in terms of
movement operators <<< or >>>. The interpretation of
movement non-terminals A <<< B or B >>> A is

If A is a left moved constituent (or a fight moved
constituent), then the corresponding trace denoted by B should
be found after (or before) A <<< B (or B >>> A). It is
illustrated in the Fig. 1. The two trees are symmetric and the
corresponding rules are similar. However, the rules are not
similar in RLGs. That is, the two types of movements are not
treated in the same way. For the rightward movement, a
concept of adjunct node is introduced. It says that the right
moved constituent is found if the rule hung on the adjunct node
is satisfied. The operation semantics is enforced on the writing
of the logic grammars. It destroys the declarative semantics of
logic grammars to some extent.

(2) the arbitrary number of movement non-terminals in
the rule body -

In our logic grammars, the number of movement
non-terminals in a rule is not restrictive if the rule satisfies the
property specified in the last section. The RLGs allow at most
one movement non-terminal in their rules. The position of
movement non-terminal is declared in the rule head. It is
difficult for a translator to tell out the position if different types

~he moved

i
onst it u o n t ~ / ~ ~

i AA±AA A

k
trace

[the empty constituent)

XO the moved constltucnt

Xl ... XJ n

zx A A ±
el c).

A A
trace

(the empty constituent)

Fio. I Symmetric tree for leftward and riohtward movement

of elements are interleaved in the rule body . Thus, our
formalism is more clear and flexible than RLGs'.

(3) automatic detection of grammar errors before parsing

For significant grammar rules, a transitive relation
TR must be satisfied. The violation of the transitive relation
can be found beforehand during rule translation. Thus, this
feature can help grammar writers detect the grammar errors
before parsing.

I13

3. A Bottom-up Parser in Prolog

3.1 Problem specifications
The Bottom-Up Parsing system (BUP) [2,3,4] uses the

left-coruer bottom-up algorithm to implement Definite Clause
Grammars (DCGs) [5]. It overcomes the problems of
top-down parsing, e.g. the left-recursive invocation, and
provides an efficient way as Earley's and Pratt's algorithms
[3]. However, it does not deal with the important syntactic
problem - movement transformation. Extraposition Grarmnars
(XGs) [6] propose extraposition lists (x-lists) to attack the
movement problem, but when to extract traces from x-lists
becomes a new obstacle [8,9]. Restricted Logic Grammars
(RLGs) [8,9] based upon GB try to tackle the unrestricted
extraction from the x-list. They emphasize the importance of
the c-command and the subjacency principles during parsing.
The extraction must obey these two principles. The parsing
strategies of XGs and RLGs are all depth-first and left-to-right,
thus they have the same drawbacks as DCGs do [4]. If the
parsing strategy is left-coruer bottom-up, the following issues
have to be considered in the translation of GBLGs:

(1) the empty constituent problem -
The first element in the rule body, which acts as a

left-corner, should not be empty in left-corner bottom-up
algorithm. However, the type 1 (b) of rules is common.

(2) the transfer of trace information -
From Fig. 1, we know that the positions of empty

constituents are usually lower than those of moved
constituents. Because the parsing style is bottom-up, the trace
information must be transferred up from the bottom. The
conventional different list cannot be applied here. Fig. 2 and
Fig. 3 illustrates the differences of data flow between top-down
parsing and bottom-up parsing.

e

: Cl 91 c(i41) cn k
HO 1' HI H(i-l) Hi Hi H{i+I} H(n-l) ~ H

,,' ";, A ,': A A \

, : ,, : ,. ,,
"cll c12 ~ toil el2 ., ~ :c(I+I)I,...% ~nl on2

FiG. 2 the data flow in tile top-down parsing

~ q r o ~ ([HI, H2 Hn})

HI "" H(i-I)---Hi H(i÷l)-,H(n-l)---Hn ~-~

A,, A \ ,, ,, ,,

Fig. 3 tho data flow in the bottom~uo parslnQ

3.2 Data structure
The transfer of trace information is through a list called

extraposition list (x-list) and denoted by a symbol H. The
transformation of x-list is bottom-up. Fig. 3 sketches the
concept. A special data structure shown below is proposed to
carry the information:

[In sequence of trace information/X],X]
Note a mii variable X is introduced. Based upon this notation,
an empty list is represented as [Z,Z]. An algorithm that merges
arbitrary number of lists in linear time is designed:

merge(X,Y) :- merge(X,Y,[Z,Z]).
merge([],L,L) :- !.
merge([[B,X]JT[,Y,[A,B]) :- merge(T,Y,[A,XD.

In the conventional list structure such as
[a sequence of trace information]

even though the difference list concept is adopted, the
computation time is still in proportion to ml+m2+. . .+mn,
where m i (1< i < n) is the number of elements in the i-th list.

114

Although our merge algorithm is the fastest, it is still a
burden on the parsing. In most cases, the predicate merges
empty lists. That is nonsense. To enhance the parsing speed,
the merge predicate is added in which place it is needed.
Observing the merge operation, we can find that it is needed
only when the number of lists to be merged is greater than one.
The following method can decrease the number of x-lists
during rule translation, and thus delete most of the unnecessary
merges:

Partition the basic elements in the logic grammars into
two mutually exclusive sets: carry-H set and non-earry-H set.
The elements in the carry-H set may contribute trace
information during parsing, and those in the non-carry-H set do
not introduce trace information absolutely. The transitive
relation TR defined in the section 2.3 tells us which phrasal
non-terminals constitute the carry-H set.

3.3 The translation of grammar rules
The translation of basic elements in the GBLGs are

similar to BUPs. Only one difference is that an extra argument
that carries trace information may be added to phrasal
non-terminal if it belongs to carry-H set. Appendix lists the
translated results of the grammar GBLG 1.

3.3.1 The general grammar rules
The general grammar rules are divided into two types

according as a virtual non-terminal disappears or appears in the
rule body:

(a) c(Arg) --> Cl(Argl),C2(Arg2),...,cn(Argn)"
When c is not a bounding node, e.g. rule (r2), the

translation is the same as that in BUP [2,3,4], except that an
extra argument H (if necessary) for x-list and a built-in
predicate merge are added in the new translation algorithm.
This predicate is used to merge all the x-lists on the same level.
The transformation of x-lists is bottom-up (only one direction)
as shown in Fig. 3, Thus, the rule (a) is translated into

cl(G,Argl,H1,X1,X) :-
goal(c2,Arg2,H2,X1,X2),

goal(cn,Argn,Hn,X(n- l),Xn),
merge([H1,H2 Hn],H),
c(G,Arg,H,Xn,X).

When c is a bounding node, e.g. rule (r4), the
information is used to check the x-list transferred up. Thus, an
extra predicate bound is tagged to this type of rules:

cl(G,Argl,H1,X1,X) :-
goal(c2,Arg2,H2,X1,X2),

goal(cn,Argn,Hn,X(n- 1),Xn),
merge([HI,H2 Hn],H),
bound(c,H),
c(G,Arg,H,Xn,X).

The predicate bound implements the subjacency principle. Its
definition is:

bound(C,[X,Y]) :- (var(X),!;boundaux(C,X)).
boundaux(C,X) :- var(X),l.
boundaux(C,[x(Trace,B ound,Direction)lXs]) :-

(var(Bound),! ,B ound=C,boundaux(C,Xs);
Bound=s,C=s,!,boundaux(C,Xs);
fail).

A variable Bound which records the cross information is
reserved for each element in the x-list. When a bounding node
is crossed, this variable is checked tO avoid the illegal
operation.

(b) c(Arg) --> e 1 (Arg 1),e2(Arg2),...,ci(Argi),
trace(TraceArg),c(i+ 1)(Arg0+ 1)),'..,cn(Argn).

where i >= O. The rules (r5) and (r15) are two
examples.

If the left-coruer bottom-up parsing algorithm is used,
the grammar rules should free of empty constituents. When
i=0, the grammar rule considers a trace (an empty constituent)
to be the first element in the rule body. It overrides the
principle of the algorithm, but we can always select the first
element c(i + 1) that satisfies the following criterion:

(i) a lexieal terminal, or
(2) a phrasal non-terminal, or
(3) a phrasal non-terminal in a movement non-terminal,

to be the left-comer and put the trace inforumtion into an x-list
before this non-terminal. Thus, the translation is generalized as
follows (assume that cl is a left-comer).

ci(G,ArgI,H1,X1,X) :..
goal(c2,Arg2,H2,X 1,X2),

goal(ci,Argi,Hi,X(i- 1),Xi),
goal(c(i+l),Arg0+l),H(i+l),Xi,X(i+l)),

goal(cn,Argn,Hn,X(n-l),Xn),
merge([H1,H2 Hi,

[[x(trace(TraceArg),Bound,D)lZ],Z],
H(i+I),...,Hn],H),

c(G,Arg,H,Xn,X).
Here, the trace information is placed between Hi and H(i+l).
Summing up, the virtual non-terminal is represented as a fixed
fommt:

x(trace(l'raceArg),Bound,Direction)
and placed into x-list via merge operation. The position in
x-list is reflected from the original rule.

3°3.2 The leftward movement g r am m ar rules
The leftward movement grammar rnles can be

generalized as below:
c(Arg) o-> c 1 (Arg 1),c2(Arg2)

ci(Argi)<<<trace(TraceArg),c(i+ 1)(Arg(i+ 1))
cn(Argn).

The rule (rl) is an example. Its translation is shown as
follows:

cl(G,Argl,H1,X1,X) :-
goal(c2,Arg2,H2,X1,X2),

goal(ci,Argi,Hi,X(i-1),Xi),
goal(c0+l),Arg(i+l),H(i+l),Xi,X(i+l)),

goal(cn,Argn,Hn,X(n- 1),Xn),
merge([H(i+l) Hn],T1),
cuLtrace(x(trace(TraceArg),Bound,left),

T1,T2),
merge([H1,H2,...Hi,T2],H),
c(G,Arg,H,Xn,X).

Comparing this translation with that of general grammar rules,
we can find a new predicate cut_ .trace is added. The cut trace
implements tile c-command principle, and its definition i~.

cnLtrace(Trace,[Y,X],[Y 1,X]) :-
(var(Y),!,
(l'race=x(TraceIn fo,Bound,left), !;fail);
cut traceaux(Trace,Y,Y1)).

cnLtraceaux(Trace,[TracelXs],Xs) :- !.
c u t traceaux(Trace,[HIX],[HIY]) :-

(vat(X),!,
(Trace=x(TraceInfo,Bound,left),!;fail);
cut_traceaux(Tracc,X,Y)).

The cut trace tries to retract a trace from x-list if a movement
exists. ~landarin Chinese has many specific features that oilier
languages do not have. For example, topic-comment structure
does not always involve movement transformation. The first
cut traeeauz chmse matches the trace information with the x-list
~ransferred f,'om the bottom on its right part. The second
cut traceatrc tells us that if the expected leftward trace cannot
ma~h one of the elements in the x-list, then it will be drop out.
The x-list is not changed and transferred up. The concept is
demonstrated in Fig. 4. It also explains why we can detect
grammar errors before parsing. In summary, each movement
non-terminal is decomposed into a phrasal non-terminal and a
vimml non-.tet~ninal. The phrasal non-terminal is translated the
'same as before. The vktual non-terminal is represented as

x(tr ace(l YaceA r g),Bound, left)
in this case, however, cut_trace is involved instead of merge.

3.3 .3 The r ightward movement g rammar rules
Because we treat the leftward and the rightward

movement grammar rules in a uniform way, the translation
algorithm of both are similar. The rightward movement
gr~n~nar ruks are wifll the following format:

c(Arg) --> c l(Arg l),C2(Arg2)
lxace(TraceArg)>>> ci(Argi),

c(i+l)(Arg(i+l)), '",cn(Argn)"
The rule (r9) is an example. "Itle corrsponding translated result

cl(G,[Argl],HI,X1,X) :-
goal(c2,[Arg2],H2 X 1 ,X2),

e

Hk.. H(i-l) Ill

1

if there is a t r a c a the e x p e c t e d
in thls range, left-moved

the corresDondln Q constltuent
moved elemsnt is

on the uDDer level

e (l + l)

A A
I

a trace should be found in
this range if the

oxpoctat I on succeeds

Flg. 4 the sketch o~ the translation
of the leftward production rules

goal(c(i-1),[Arg0-1)],H(i-1),X(i-2),X(i_l)),
merge([H1,H2 H(i-1)],T1),
cut_trace(x(trace(TraceArg,Bound,right)),

TI,T2),
goal(ci,[Argi],Hi,X(i- 1),Xi),

goal(cn,[Argn],Hn,X(n-1),Xn),
merge([T2,Hi Hn],H),
c(G,[Arg],I-t,Xn,X).

The translation is very apparent for the symmetric property of
the leftward and the rightward grammar rules illustrated in Fig.
4 and Fig. 5. A slight difference appears in the definition of the

c

c(i-l)

i A
< p

1

a trace should be
found in this range

e n

1

the right-moved if there Is a trace
constituent in this range,

the corraspondlng
moved element is

sn the upper level

Fioo f. 5 the sketch of the translation
the rightward production rules

predicate cu t t race . It shows an important linguistic
phenomenon in-Mandarin Chinese: 'Relativization is always a
movement transformation. ' Thus, if we expect a trace and
cannot find a corresponding one, failure is issued. The
direction information in x(trace(TraceArg),Bound, right), i.e.
fight, tells out the difference between the leftward and the
rightward movements.](n general, we allow both leftward
movement and rightward movement to appear in the same rule.
A new predicate intersection is introduced to couple these two
translations.

3 . 4 I n v o c a t i o n of the p a r s i n g s y s t e m
The parsing system is triggered in the following way:

goal(a start non-terminal,[a sequence o f arguments],
an empty :~-list,[a sequence o f input string],[]).

In GBLG1, the invocat ion is shown as follows:
goal(sl bar,[ParseTree],[Z~I,[input sentence],[]),
Par(Z).

Because an empty x-list is represented as [Z,Z] (Z: a variable)
in our special data structure shown in Section 3.2, var(Z)
verifies its correctness. For example, to parse the Chinese
sentence "~Jl~ ~ A. ~ t ~ [t.~ ~ 3K ? " (the student that that
man saw came), we trigger tile parser by calling:

?- goal(slbar,[S lbar] , [Z,Z] , [' JJ~ ' , '~ ' , ' J~ ' , '~ tE ',
' ~ ' , ' ~ ' , ' ~ ' , ' Y '],[]),vat(Z).

/* 7- goal(s 1 bar,[S 1 bar],[Z,Z],['that','man','saw',
'dc','student','ca me','aspect'],[]),var(Z) . , /

115

4. Conclusion

This paper addresses the problems of movement
transformation in Prolog-based bottom-up parser. Three
principles of Government-Binding theory are considered to deal
with these problems. They are Empty Category Principle,
C-comr0and Principle and Subjacency Principle. A sequence
of translation rules is given to add these linguistic principles to
the general grammar rules, the leftward movement grammar
rules, and the rightward movements grammar rules
respectively. The empty constituent problem is solved in this
paper to allow the trace to be the first element in the grammar
rule body. A special data structure for extraposition list is
proposed to transfer the movement information from the bottom
to the top. Based upon this structure, the fastest merge
algorithm is designed. Those unnecessary merge predicates
can be eliminated with the help of transitive relation. Thus, the
new design not only extends the original bottom-up parsing
system with the movement facility, but also preserves the
parsing efficiency.

References

[1] N. Chomsky, Lectures on Government and Binding.
Foris Publication, Dordrecht, Holland, 1981.

[2] Yuji Matsumoto, Hozumi Tanaka, et al., "BUP: A
Bottom-Up Parser Embedded in Prolog," New
Generation Computing, Vol. 1, No. 2, 1983, pp.
145-158.

[3] Yuji Matsumoto, Masaki Kiyono, and Hozumi Tanaka,
"Facilities of the BUP Parsing System," in Dahl, V. and
P. Saint-Dizier, Natural Language Understanding and
Logic Programming, 1985, pp. 97-106.

[4] Yuji Matsumoto, Hozurni Tanaka, and Masaki Kiyono,
"BUP: A Bottom-Up Parsing System for Natural
Languages," in Warren, D.H.D. and M. Canegham
(eds.), Logic Programming and Its Applications, 1986,
pp. 262-275.

[5] F. Pereira and D.H.D. Warren, "Definite Clause
Grammars for Language Analysis - A Survey of the
Formalism and a Comparison with Augmented~
Transition Networks," Artificial Intelligence, Vol. 13,
1980, pp. ~ ! -2 7 8 . ,,

[6] F. Pereira~,Extraposition Grammars, American Journal
of CompU~¢tion Linguistics, ~Vol. 7, No. 4, 1981, pp.
243-256.

[7] P. Sells, Lectures On Contemporary Syntactic Theories,
Center for the Study of Language and Information,
1985.

[8] E.P. Stabler, Jr,, "Restricting Logic Grammars," Proc.
of the AAAI Conference, 1986, pp. 1048-1052.

[9] E.P. Stabler, Jr., "Restricting Logic Grammars with
Government-Binding Theory," Computational
Linguistics, Vol. 13, No. 1-2, January-June, 1987, pp.
1-10.

Appendix

Based upon the translation algorithms specified in
Section 3, the logic grammar GBLG1 is translated as below.
The clause (ti) is the relevant translated result of the grammar
rule (ri). Note the codes have been optimized. Those
unnecessary merge operations are deleted from the translated
results.
(tl) topic(G,[Topic],H1,X1,X) :-

goal(s,[S],H2,X 1 ,X2),
cut_trace(x(traceT(Topie),Bound,left),H2,T1),
merge([H1,T1],H),
slbar(G,[slbar(Topic,S)],H,X2,X).

(t2) s(G,[S],H,X1,X) :- slbar(G,[slbar(S)],H,X1,X).
(t3) n2bar(G,[N2bar],H1,X1,X) :-

goal(v2bar,[V2bar],H2,X1,X2),
lookup(part,[Part],X2,X3),
merge([H1,H2],H),
bound(s,H),
s(G,[s(N2bar,V2bar,Par t)] ,H,X3,X).

(t4) n2bar(G,[N2bar],H1,X1,X) :-
goal(v2bar,[V2bar],H2,X 1 ,X2),
merge([H1,H2],H),
bound(s,H),
s(G,[s(lq2bar,V2bar)],H,X2,X).

116

(t5) v2bar(G,[V2bar],H1,X1,X) :-
merge([[[x(traceR(Trace),Bound,righ01Z],Z],

HI],H),
bound(s,H),
s(G,[s(traceR(Trace),V2bar)],H,X I ,X).

(t6) n2bar(G,[N2bar],H,XLX) :-
topic(G,[topic(N2bar)],H,X I ,X).

(t7) det(G,[Det],X1,X) :-
lookup(cl,[CL],X1,X2),
goal(nl bar,[N lbar],H,X2,X3),
bound(n2bar,H),
n2bar(G,[n2bar(Det,CL,N 1 bar)],H,X3,X).

(t8) nlbar(G,[Nlbar],H,Xl,X) :-
bound(n2bar,H),
n2bar(G,[n2bar(Nlbar)],H,X1,X).

(t9) reI(G,[Rel],H1,X1,X) :-
eut_trace(x(tmeeR(N2bar),Bound,right),H1,T1),
goal(n2bar,[N2bar],H2,X 1,X2),
merge([T1,H2],h0,
nlbar(G,[nlbar(Rel,N2bar)],H,X2,X).

(tl0) n(G,[N],X1,X) :- nlbar(G,[nlbar(N)],[Z,Z],X1,X).
(t l l) s(G,[S],H,X1,X) :-

lookup(de,[De],X1,X2),
rel(G,[reI(S,De)],H,X2~X).

(t12) adv(G,[Adv],X1,X) :-
goal(vlbar,[V 1 bar],H,X 1,X2),
v2bar(G,[v2bar(Adv,V 1 bar)] ,H,X2,X).

(t13) vlbar(G,[Vlbar],H,X1,X) :-
v2bar(G,[v2bar(V 1 bar)],H,X 1,X).

(t14) tv(G,[TV],X1,X) :-
goal(n2bar,[N2bar],H,XI,X2),
vlbar(G,[vlbar(TV,N2bar)],H,X2,X).

(t15) tv(G,[TV],X!,X) :-
v 1 bar(G,[v 1 bar(TV,traceT(Traee))],

[[x(traeeT(Traee),Bound,left)lZ],Z],H,XI,X).
(t16) w(G,[TV],X1,X) :-

v 1 bar(G,[v 1 bar (TV,tr;aceR(Traee))],
[[x(traceR(Trace),Bound,right)lZ],Z],H,X 1 ,X).

(t17) iv(G,[IV],X1,X) :- vlbar(G,[vlbar(IV)],[Z,Z],X1,X).

