
RUG: Regular Unification, Grammar

Lauri CARLSON
University of Helsinki

Research Unit tbr
Computational Linguistics

Hall i tuskatu 11
SF-00100 Helsinki

Finland

Abs t rac t

The paper describes a new unification based grammar
formalism called Regula r Unif icat ion G r a m m a r (RUG).
The formalism is under development at the Research Unit
of Computational Linguistics, University of Helsinki, In
outline, RUG can be described as a combination of an
extended graph unification formalism with a fixed
minimal finite state syntax.
Section I of the paper outlines the RUG formalism. Section
II describes some aspects of its current implementation.
Section III describes an experimental RUG grammar for
Finnish.

I. The RUG formalism

RUG constitutes a unification based grammar formalism
/Shieber86/. In outline, RUG can be described as a
combination of an extended graph unification formalism
with a fixed minimal finite state syntax. It shares with
categorial unification grammar (a) the use of graph
unification as the basic descriptive mechanism and (b)
association of combinatorial properties of words with
lexical entries. It differs from categorial grammar in
restricting string combinatorics to left associative
concatenation.1

1, Combina tor ia l syntax

The combinatorial syntax of RUG consists of the following
three rules2:

(S Words
)(I)) rd (((:PARSE) (I ini t ial next we))

I(I1 final) @ FinaIstate)
next) (I final current))
final preceding) (I current)))

(Words Words W

I(
0) (z))

(2) OlnternalState)
(2 preceding) (1 current))
(I next) (2 current))

((1 ini t ial)(2 in i t ia l)))

(Words W
o 1)) I/,/ ,ntornal tate)

((1 i n i t i a l) @Init ia lState)
((1 preceding) (1 i n i t i a l current))
((1 i n i t i a l next) (1 current)))

In brief, a grammatical string consists of words and words
consist of one or more words. Each word has a state
associated to it, i.e. a feature structure which can be used
to store information about the word and the state of the
parse up to that word. In addition, the syntax provides
dummy initial and a final states which can be used to state
constraints common to all strings. Each state has a pointer
to its own current contents and to the contents of the
preceding and next states. Using unification, features of

neighboring words can be accessed directly and features of
more remote states through sharing.

2. Fea ture s t ruc ture

A characteristic of the RUG unification ~bnnalism is the
use of cyclic feature structures, in general, the graph
associated to a sentence in a RUG grammar is not a tree
nor a dag, but a connected graph. Dependency relations are
shown over the list of words in a sentence bottom up, each
word pointing to its head. In addition, a head can constrain
its subcategorized complements through appropriate
attributes. This reflects predictability: a head selects its
complements (constrains their number), while adjuncts are
not subject to selection and hence cannot be identified on
the basis of the head.3
The graph unification tbrmalism used in RUG contains
facilities tbr expressing indeterminate functional
dependencies among words using regular path expressions.
An example of an indeterminate functional dependence is
the dependence of a preposed quesLion or relative word on
some verb complement to its right. The class of possible
heads of the word can be defined in terms of a regular
expression over attribute names, say (re rb mai n VC0MP*)
for "some verb complement of the main verb of the
clause".4

RUG allows disjunctions and negations of atomic t~ature
values. (ANYOF A B) unifies only with A and B and
(NONEOF A B) with any atom except A and B.
Nonmonotonic extensions of unification are available for
completeness checking. ANY values/Shieber 1.986/allow
testing for the presence of obligatory constituent at the end
of a parse. Analogous tests for feature instantiation after
each successful unification are available.5
RUG allows specifying default values through the reserved
attribute name DEFAULT. DEFAULT features are unified
like any other features. During parse final completion, a dg
is overwritten over the value of its own DEFAULT and the
result replaces the original dg.

3. Tools for g rammat ica l abs t r ac t ion

The RUG grammar formalism starts out with lower level
primitives than other unification based grammar
formalisms. In particular, the notion of a phrase
(constituent) built in to context free grammar must be
reconstructed in terms of unification. On the other hand,
the absence (or optionality) of the requirement of proper
nesting can be a help in dealing with free word order.
The development of the grammar formalism involves
defining suitable abstractions in terms of the primitives of
the unification formalism which can be used in actual
grammar writing. The template abbreviation facility of'
PATR/Shieber et al. 1983/with a few extensions is used i~
RUG for this purpose.

102

One extension of the template formalism is the ability to
define disjunctive templates using the reserved word OR. A
specification of form (OR speckist speckist ... specList) is
-compiled inhl a list ofdgs one for each disjunct. This helps
keeping the lexicon simple as different uses of the same
word can be listed under one template name.
Another extension is parametrized templates which allow
defining abstract operations on paths, values, or other
templates. A specification of form (@ Name argl ... argn) is
compiled in'a) whatever Name would compile to after arg~
... argn replace corresponding placeholders in the definition
of Name.
Using the template facility, higher level gramnmtical
abstractions can be defined, for instance word or
construction types such as subordinating connective,
premodifier, etc. As all syntactic information is stored in
templates, the property inheritance scheme implicit in the
lexical template formalism can be used to express
syntactic generalizations (say, to define a set of related
clause types).

II. Implemeatation

RUG is currently implemented in REGDPATR, an
extension of the D-PATR gl'ammar development
environment/Kart tunen 1986/.
Regular path expressions are implemented by allowing dgs
in attribute position of other dgs. Such an attribute dg
(attrDg) is in terpreted as the (possibly infinite) disjunction
of the paths contained in it. For instance, the R attribute of
the following a t t rDg is equivalent to the regular path
expression (VCOMP*) :

(1)
/ l a b e l - - A n y V C o m p

@---- count T
~ " p a t h s - - ~ l i m i t 3"

,_~ / F I N A L - - - T

An attrDg can be defined and named in a template
definition like any dg. Once defined, the name can be used
in a path specification preceded by an @ sign. It is decoded
and compiled into the corresponding attrDg. For instance,
(1) can be defined in the lexicon as

(2) (AnyVComp ((VCOMP) NIL) (FINALT))

We shall call dgs containing attrDgs regular dgs (regDgs).
When a regl)g is displayed, its attrDgs are labeled with
their template names:

(3)

/OBJ CASE NOM

~ -VCOMP---NONE

\AnyVComp OBJ CASE ---.GEN

RegDgs are not guaranteed consistency by unification
alone. The regDg in (3), for instance, is inconsistent, with
the attrDg AnyVComp as shown in (1).
To supplement unification, another operation of unit path
resolution is provided. Unit path resolution is very much
like unit resolution in propositional logic. Recall that
attrDgs are interpreted as disjunctions of paths. Likewise,
we can inte:cpret a simple dg as a conjunction of paths with
given values. A regDg like (3) can thus be interpreted as a
conjunction of disjunctions of paths, some of which (those
consisting of atomic attributes) constitute unit
disjunction'~ This sets the stage for resolution.

In unit path resolution, paths contained in each attrDg are
matched with unit paths in the conjunctive "part" of the
regDg looking for inconsistencies in the values at the end
of identical paths. When an inconsistency is found, the
corresponding path is removed from the attrDg. If all of the
paths in the attrDg are thus removed, the regDg was
inconsistent to s tar t with. Otherwise, we obtain a
consistent regDg with fever alternative paths left in it.
This operation is undoable just as unification itself.
Path resolution can be incorporated as a stage in the
unification of regDgs. Alternatively, it can be performed
after each successful match or only after a parse is
concluded. Unit path resolution is not complete, so all
inconsistencies are not guaranteed to be detected by it.

I I I. FREl)9: A RUG g r a m m a r for F inn ish

1. Examples

(4)

rACC-- -~

~,NIMATE--F

:ASE--PRT

CAT--N

COUNT--F

,DEF--F

,HEAD--On]
- IND--F

~NUMBER--SG
\PRT--T

q e f t - - ~

% x - - - l u n t a
read ing-- - -SameClause-- []
right----NON E
stem--lumi-

NEXT---

~COMP---NONE
kHEAD---NONE

i
oB,-q

I VFORM--FIN
comb1 --NONE

l
l e x - - s a t a a

reading----SameClause--[]
right---NONE

stem--sata-

FUNCTION---ADV

H EAD--~
left---NONE

l e x - - a i n a
reading-- - -SameClause-- []

right---~
stem--aina-

].03

FRED9 can be seen as an at tempt to cast some of the
granunatical ideas implicit in the procedural parser
FPARSE of/Karlsson 1986/into a declarative form.
The structural descriptions produced by FRED9 resemble
graphs used in t radi t ional grammar. (4) describes the
sentence aina satan lunta "it always snows" (lit. 'always
rains snow') . (4) is produced by unifying appropriate
entries of the part icipant words one after another as
directed by the syntax. (5) is the feature representation of
the appropriate reading for lunta 'snow (prt)'.
The regular path expressions GrmFn and Domain
AnyVComp characterize the ranges of possible functions
and heads of lunta respectively. GrmFn and Domain have
the definitions shown in (6).

2o Preb ie rns

Properties to account for in syntactic parsing include word
order, dependency, consistence, completeness, and
ambiguity. Word order and dependency together
characterize what is commonly understood as syntactic
surface structure. Notions of completeness and consistence
describe two complementary constraints on
grammaticality: consistence requires that a grammatical
string must not contain too much information (too many or
incompatible words), while completeness requires that a
grammatical string must not contain too litt le information
(missing or insufficiently specific words). The description
of FRED9 below is organized around these five headings.

(5)

cat W

lex l u n t a

readi ng-~--[~-~-~SameClause--- []

state

/ n o u n - - - ~

/ c u r r e n t - - ~

ANIMATE--F
CASE--PRT
CAT--N
:OUNT--F
,DEF--F

/ cAT- -V
HEAD---~Iex--ANY

"Grm Fh ---[-~
~ IND- -F
~NUMBER--SG
\PRT--T
qef t - - -~]

,lex--lunta
i reading--~

~right--~
Lstern--lumi.
Domai n-- - -AnyVCom p---~l

rlext word -- ---I eft ---[4]

_/~rb~
preceding -- 7-~j~ / N E X T - ~

w°rd--<-.r ight_ ~

previous--~]
stem---lumi-

1. Word order
Free word order presents no inherent difficulty in RUG, as
there is no built in connection between phrase structure
and l inear order like the proper nesting condition of
context free grammar. For instance, Finnish allows
scrambling dependents of a VCO M P chain anywhere iqside
the chain. This is described in FRED9 by ! the
indeterminate head specification AnyYComp. For instance,
in

(7) Aina voi luntajoku alkaa luoda
always can snow someone begin shoveling
"Someone can always begin shoveling snow"

joku is the subject of voi and lunta is the object o£ luoda.
What they have in common is that they depend on some
verb on the VCOMP chain of the main verb voi.

2. Dependency
The converse side of the coin is that properly nested phrase
structure does not come for free. Phrase structure has to be
reconstructed using unification. One way to proceed is to
use features acting as pointers to phrase heads, shared by
the members of a phrase and linked to one another to form
a phrase level projection of the string. Such projections
form domains within which words can look for appropriate
heads.
Center embedding can be managed with stack valued
features. Proper nesting can also be enforced by a separate
template Nested which requires that a word must not look
for heads beyond its adjacent words' heads :6

(6)
/ l abe(~GrmFn

@ - - / ~ . j c o u n t ~ 2
" - p a t h s ~ <'-Ii mit ~ 2

R / c o m p l ~ []
~ - c o m p 2 ~ []

/ l abe l - -Domain
@--~C.,. ~ c o u n t - - T

~ p a t h s - - ~ . l i m i t ~ T

. iTt,,, - 'FINAL~T

\ ~ jF INAL--T
" r i g h t - - r i g h t _ _ ~

lot,

(8) (Nested ((HEAD) (@Adjacent word @AnyHead))

In view oi' the difficulty of speakers to manage proper
nesting deeper than one level or two, RUG seems to get
into diffico lties in the right direction.

3. Consistence
Maintainiug consistence is in general easy given
unification. For instance, the functional uniqueness
principle (grammatical functions are unique per clause) is
practically built in. For another example, a verb can have
at most two grammatical case complements in Finnish. On
the other hand, each grammatical case can have a number
of function~ (SUB J, OBJ, PREDCOMP, OBL) depending on the
verb. These constraints are maintained in FRED9 by
allowing verbs two grammatical complement slots compl,
comp2 and specifying the function GrmFn of grammatical
cases as the alternation of these slots. Further matching of
verbs with cases is associated to the verbs. The two-way
transfer of information through cyclic pointers between
head and complement allows us to attach each constraint
on the more informative member of the pair.

4. Complet~;ness
Conversely, completeness is in general more difficult to
ensure. Completeness cannot be expressed in terms of
unification. Syntax can perform completeness checking by
imposing suitable constraints on strings of category S. In
particular, certain features can act as flags or stacks whose
values at the final state are checked in the S rule. More
directly, the nonmonotonic devices described in Section 1.2
allow expression of obligatoriness or default values. As a
general point, RUG grammars need not he restricted to
parsing complete sentences or even constituents. A string
of words L'; incomplete in some sense if the functions of
some words in it remain unresolved. The string can still
obtain a .,~tructural description specifying that fact in
addition to whatever definite information can be gleaned
from it.

5. Ambiguity
Since syntactic ambiguity is coded on lexical entries,
multiplication of lexical entries for a given word is to he
expected. In FRED9, the following policies are followed
with regards to constraining lexical ambiguity. First, the
use of unification makes it possible to replace some cases
of ambigui'i;y with underspecification.
Second, readings which are in complementary distribution
can sometimes be coded into one entry which is accessed
differently by the different contexts. FRED9 has just one
entry tbr the uses of the copula on as an auxiliary and as a

m a i n verb in both predicative and existential
constructions.
Third, ambiguities whose resolution has no effect on
surrounding context can be localized into regular path
expression.'~.
Fourth, art ambiguity which is resolved by immediate
context can be left as a lexical ambiguity. The main
consideration is that ambiguities do not begin to multiply
during the parse.

F o o t n o t e ~

1/Hausser] 986/imposes a similar restriction on categorial
grammar.
2The formst is that of D-PATR/Karttunen 1986/. :Lists of
form ((...)(-.)) represent path equations and atoms of form
@... refer t~, grammar specific template definitions.
3This is why in categorial gTammar, adjuncts are
construed as functors. Complements usually come out as
argument's. Cf. however Karttunen/1986/.

4Cf. /Kaplan and Zaenen 1986/. REGDPATR allows
expressing alternation and iteration of paths.
Complcmentation is not implemented.
5Such checks can sometimes do the job of features acting
as flags.
6Cf. the adjacency principle in/Itudson 1984/.

References

Hausser, R. (1986) NEWCAT: Parsing Natural Language
Using Left-Associative Grammar. Springer Verlag,
Berlin/Heidelberg/New York, 1986.

Hudson, R. Word Grammar. (1984) Basil Blackwell,
Oxford.

Kaplan, R. and Zaenen, A. (1986) Long-Distance
Dependencies as a case of Functional Uncertainty. In
Baltin (ed.), Alternative conceptions of Phrase
Structure, New York.

Karlsson, F. (1986) Process grammar, in DaM (ed.) Papers
from the iX Scand. Conf. of Linguistics, Stockholm.

Karttunen, L. (1986a) D-PATR: a development
environment for unification-based grammars.
Proceedings of COL[NG-86, Bonn, pp. 74-80.

Karttunen, L. (1986b) Radical lexicalism, in Baltin (ed.),
Alternative Conceptions of Phrase Structure, New
York.

Shieber, S. (1986) An Introduction to Unification-Based
Approaches to Grammar. CSLI Lecture Notes Series,
No. 4 (distributed by the University of Chicago Press,
Chicago, Illinois).

Shieber, S.M., It. Uszkoreit, F.C.N. Pereira, J.J. Robinson,
and M. Tyson (1933). The Formalism and
implementation of PATR-II. In Research on
interactive Acquisition and Use of Knowledge.
Artificial Intelligence Center, SKI International:
Menlo Park, California.

105

