
A Constructive View of GPSG
o r

How to Make It Work

Stephan BUSEMANN

Christa HAUENSCHILD

Technical University of Berlin

Institute for Software and Theoretical Computer Science

Project Group KIT

Sekr. FR 5-12

Franklinstr. 28/29

D-1000 Berlin 10

E-mail: busemann@ db0tui 11.bitnet

Abstract

Using the formalism of generalized phrase structure

grammar (GF~SG) in an NL system (e.g. for machine translation

(MT)) is promising since the modular structure of the

formalism is very well suited to meet some particular needs of

MT. However, it seems impossible to implement GPSG in its

1985 version straightforwardly. This would involve a vast

overgeneration of structures as well as processes to filter out

everything but the admissible tree(s). We therefore argue for a

constructive version of GPSG where information is gathered in

subsequent steps to produce syntactic structures. As a result,

we consider it necessary to incorporate procedural aspects into

the formalism in order to use it as a linguistic basis for NL

parsing and generation. The paper discusses the major

implications of such a modified view of GPSG. 1

1 Introduction

Any attempt to build a multi-lingual MT system as in

EUROTRA [King, Perschke 1987] must provide for massive

modularization in order to avoid developing 9 parsers, 9

generators and 72 transfer components for the 9 languages

involved, not to mention the different but redundant

formulations of linguistic knowledge embodied in them. The

most obvious approach consists in developing one single

parser, one single generator, and one single transfer

component, the first two being capable of dealing with

grammars for different languages and the latter with transfer

1 This work has been developed in the project KFr-FAST (KIT = Kilnstliche
Intelligenz und Textverstehen (Artificial Intelligence and Text
Understanding); FAST = Functor Argument Structure for Translation), which
constitutes the Berlin component of the complementary research project of
EuroWa-D. It receives grants by the Federal Minister for Research anti
Technology under contract 1013211.

rules for different pairs of languages. Moreover, an MT system

must be based on a linguistically justified theory of grammar.

This theory has to be implemented in the system, where it

determines the construction of a syntactic representation of a

sentence during the parsing of some input string as well as

during the generation based on the output of the transfer

component.

The theory of GPSG (see [Gazdar et al. 1985], henceforth:

[GKPS]) has been tested for its usefulness for MT

[ttauenschild/Busemann 1988]. It offers the high degree of

modul,'u'ity that is required. For instance, an implementation of

the GPSG formalism would be able to run with different

grammars, and linguistic generalizations would either evolve

from the formalism (in the case of universals), or be

expressible within the grammars (in the case of language-

specific generalizations). We shall distinguish between the

formalism and the grammar in the following way; the

formalism consists of the Feature Instantiation Principles

(FIPs), the formal definition of syntactic features, categories,

Feature Co-occurrence Restrictions (FCRs), Immediate

Dominance (ID) rules, Linear Precedence (LP) statements,

admissible trees, etc. The grammars consist of actual sets of ID

rules, LP statements, FCRs, and the lexicon.

However, a closer look at the axiomatic way GPSG has

been defined reveals severe problems for an implementation of

GPSG. In the next section we shall outline these problems, and

in section 3 present our change in perspective towards a GPSG

formalism that overcomes these problems. Some consequences

of this are discussed in the last section.

The rest of the paper concentrates on GPSG and its use for

processing of representations of natural language sentences.

Nothing can be said here about the necessity of including

textual knowledge for translation or about the transfer step

itself (but cf. [Hauenschild 1986]).

77

2 Problems With the Implementation of GPSG

In this section we want to justify why we had to develop a

constructive version of the GPSG formalism although it might

seem that the "classical" version of it (as defined in [GKPS])

can be implemented. We want to show that this is only true in

theory but not in practice.

What would it really amount to if we tried to implement the

axiomatic version of GPSG in a straightforward way? In order

to find all admissible trees corresponding to a given sentence,

we would have to do the following things for every local tree

(i.e. trees of depth 1):

* build every possible extension for every category in an ID

rule, which means that every feature that is not specified in

the rule may be either absent or specified by any of its

values,

. filter out the illegal categories with the aid of the FCRs,

. build all the possible projections of ID rules with the

remaining legal categories, thereby creating every possible

order of the daughters,

• filter out those combinations of categories that are

inadmissible according to the Foot Feature Principle (FFP),

Control Agreement Principle (CAP) or Head Feature

Convention (HFC),

. filter out those projections that are unacceptable because of

some category contradicting a Feature Specification Default

(FSD),

° filter out all those projections that contradict any LP

statement applicable to the daughters.

After this, the subset of admissible local trees has to be

identified which yields the desired complex structures in the

following way: two (locally) admissible trees may be

combined into a larger tree iff one of the daughters of one of

them is identical with the mother of the other one.

The whole process can be regarded as divided up into three

major steps. The first step consists in constructing all the

possible projections (possible according to ID rules and FCRs).

The second step consists in filtering out local trees that are not

admissible according to the restrictions imposed on them by

the FIPs, the FSDs and the LP statements. Though these

devices are not filters in the Chomskyan sense, 2 they behave in

an analogous way by preventing previously generated

structures from becoming locally admissible trees. The last

step consists in forming complex structures out of locally

admissible trees.

In order to show the complexity of such an approach, it is

necessary to give a rough idea of what the first step really

mnounts to; it yields a combinatorial explosion of the set of

categories. Assuming the 25 atomic and the 4 category-valued

2 This was pointed out to us by John Nerbonne (electronic mail).

features defined for file English grammar in [GKPS], a lower

bound for the number of categories to be checked by the FCRs
is 10 774 [Ristad 1986].

'['he second of the above mentioned steps is riot trivial

either, though its problems might be solvable after allo For a

purely axiomatic view of the GPSG formalism it may be

permissible to neglect the order in which the different filtering

components are to be applied, akhough their seem to be some

problems with the definitions of the different FIPs with respect

to their logical independence of each other. For an effective

implementation however, the ordering problem becomes

crucial. There are some hints in [GKPS] referring to

interdependencies between the different filters, but they are not

fully specified. The most problematic case is the order in which

the HFC and the CAP have to be applied:

• the HFC seems to presuppose the effects of the CAP (and of

the FFP) because it must not force feature specifications that

are excluded by the CAP on categories in local trees;

• the CAP presupposes the FlEC in the sense that it is based

on semantic types, which are dependent on HEAD features,

the distribution of which is in turn governed by the HFC.

One possible way out of this dilemma is suggested in

[Shieber 1986], but it is based on the assumption that HEAD

features may be split up into two disjoint sets: those HEAD

features which are prerequisites for the assignment of semantic

types and thus for the applicability of the CAP, and those

HEAD features that can safely be applied after the CAP has

done its work. However, it is not clear whether such a

distribution is possible. Of course, you can always make your

ID rules much more informative with respect to feature

specifications than is suggested in [GKPS] and thereby

guarantee a proper functioning of the FIPs; but that would

probably not be in the spirit of GPSG, where the main point is

to capture the universal as well as the language-specific

generalizations.

There m'e a number of problems with the CAP; we waut to

outline just one of them, which has led us to modify this

principle. The definition of control in [GKPS] implicitly

restricts the functioning of CAP to structures where the functor

has no more than one argument (with the exception of those

very special cases of control mediators). This cannot be seen

from the definition of control [GKPS:88] alone, but may be

derived from the interaction of this definition with the

conditions on correct type assignment that are imposed on

syntactic structures by the principle of functional realization

[GKPS, chapter 10]: it follows from beth pm~s of the theoly

taken together that a functor can be controlled by its argument

only in the case where there is no further argument; otherwise

the functor would have to be of a type that differs from what is

assumed in the definition of control (intuitively, the type of a

functor depends on how many arguments the functor takes).

78

This diffictllty seems quite hard to cope with; if we assume

rather flat structures (as we do, on independent grounds, in our

German syntax [Preug 1987], see also [Uszkoreit 1984]), then

it is not clear which of the different arguments of a functor is to

control it; in the case of subject-predicate agreement in

German, the subject would have to be marked as the controllc~',

which can b~a:dly be done on the basis of the semantic types

alone (becaose there seems to be no semantic reason to

distinguish ,;ubjects and objects by their semantic type unless

we treat subjects as functors operating on VPs as arguments,

which would reverse the conlrol relation between them and

thus cause all sorts of other problems). The only possibility we

can conceive of would be analogous to the concept of

argument order as defined in [GKPS] :in oi~er to obtain

correctly the interpretations of direct attd indirect objects, but

this is a language-particular concept (cf. [GKPS:214], which

would not fit ittto a universal principle.

3 A Constntc t ive View of GPS(~,

Aa the previous section shows, the GPSG formalism in

its original version is not suitable for computer

implementation. From a processing point of view, it is an

obvious rcqt&ement that the components of GPSG should

only conslru,zt the well-formed categories and trees, i.e. no

garbage should be produced. In order to utilize GPSG for

parsing artd generation in a computer system, a change in

perspective becomes necessary; instead of deciding for all fully

specified categories and all local trees whether they are legal

or admissible respectively, we start from a highly

underspecified local tree that is admitted by an ID rule and

gather information by subsequently applying FCRs and FIPs.

Eventually we sttall have a fully specified local tree that is

admissible b7 definition.

We shall call this view of GPSG constructive since it

allows for the construction rather than the selection of a

syntactic structure. In a conslructive version of GPSG, FCRs

and F1Ps mainly act as principles of feature transport rather

than of t'c~atu re distribution.

One of d~e most important questions for the constructive

version is ir~ what order the components of GPSG have to be

applied. Since each of them may add further feature

specifications to a category in a local tree, the order of

application ought to depend on what information must be

present for a component to work properly. This can be

determined in general by using a monotonic operation such as

unification for making categories more and more specific.

This has led us to dispense with any assertions about

categories as they are often used in [GKPS]. For instance, the

predicate ~ with the meaning that some feature is undefined

(i.e. it is nn~: contained in the category) is replaced by a feature

value, ~, which is subject to unification. We shall thus say that

a featurefi~', undefined if it is specified as <f, ~>.

Tire predicative character of FCRs is also modified

towards a functional one by including the assignment of values

to features. Formally, an FCR is written catl ~ cat2, where

cat1 and cat2 are categories. An FCR applies to a category

C iff C is an extension of cat1. C must unify with cat2,

otherwise C is not legal.

Let us now discuss the role of the FIPs in a constructive

version. We shall start with HFC. In [GKPS], HFC is based oil

the free feature specification sets, which are utilized to prevent

HFC from rejecting local trees because of HEAD features

specified differently at the mother and tile head daughter(s) by

virtue of ID rnles, FCRs, the FFP, or file CAP. To generate

these sets would again require all possible projections from an

ID rule to be produced. As was shown in the previous section,

this must lm avoided if a computer implementation is to be

supplied.

From the constructive point of view we suggest that the

effect of using the free feature specification sets can be attained

by ensuring that for a local tree, the work of the FCRs, the FFP

and the CAP has been completed before HFC comes into play.

t lFC then assures that the so far unspecified HEAD features at

the mother are ktentical with the corresponding HEAD feature

specifications at the head daughter(s) and vice versa thereby

never rejecting a local tree 3. IqFC proceeds as follows; every

head daughter that can unify with its mother with respect to

the set of HEAD features will do so. Typically, IJEAD

includes features for verb form or clause structure. A

constituent is marked as head by a binary feature, head, which

is specified in the ID rules, thus replacing the meta-notation H

in IGKPSI, the meaning of which is completely dependent on

its context.

This way HFC is supposed to work in an equally general,

but much simpler, fashion than it was possible with the

definition in [GKPS]. Moreover, IIFC is capable of coping

with multiple heads used for the treatment of certain

coordination phenomena; feature specifications are found in

the coordinated head daughters, the HEAD feature in question

has to be undefined at the mother. This parallels the way

multiple heads are treated in [GKPS].

The requirement that the CAP be prior to HFC raises,

however, the problem that the CAP cannot be based on

semantic types anymore because it is HFC which might

provide the major feature specifications necessary to

determine tile type of a constituent. Moreover, to be

applicable to local trees with more than one argument (in

those cases where no control mediator is present), the CAP had

3 After HFC has been applied to a local tree, FCRs may become applicable that
were not before, which in turn should cause the HFC to resume its work etc.
until nothing is specified anymore. Whether this repetition must actually
occur, depends on how the grammar is fonnulated.

7~

to be reformulated, and its place is taken by a purely syntactic

mechanism, the Agreement Principle (AP), which is defined

~as follows [Weisweber 1987]; every daughter in a local tree

that is ~ marked for agreement must unify with its mother with

respect to a subset of features, called AGR. If an AGR feature

is undefined, it is ignored by the AP. Any local tree violating

the AP is rejected. AGR typically contains features for case,

gender, person, or number. A constituent is marked for

agreemen t by a binary feature, agr, that is specified through

FCRs, e.g. {<cas, hem>} ~ {<agr, +>} and {<vform, fin>} D

{<agr, +>}. The AP together with HEC provides for subject-

verb agreement on the basis of these FCRs. This way of

coping with agreement phenomena foregoes with any notion

of control. There are no semantic types involved; what

agrees with what need not be stated explicitly, it is simply the

consequence of the interplay of FCRs, AP, HFC, and the

This approach allows a category to contain feature

specifications arising from different agreement relations. An

important hypothesis underlying the revised AP is that this will

only be necessary if that category contains, by virtue of an ID

rule, category-valued features, which can by themselves be

specified for agr. These features are also inspected by the

revised AP in order to find members of some agreement
relation in a local tree. Figure 1 contains a local tree, (3), with

the feature slash (denoted by 7') specified at the mother as an

accusative NP by an ID rule. This expresses the fact that a

direct object is missing in local tree (3). The revised AP uses

the AGR specifications of the slash value to establish

agreement between the direct object and the reflexive pronoun.

The AGR specifications of the S, on the other hand, are used

to ensure subject-verb agreement.

S

NP[acc, S/NP[acc, agr2] 4--___

I
sic t ,j. S[agrll/NP[acc, agr2] ~,__
her ~gr l l ~ ~ ~

babe NP[no.m, 4/ V[psp] VP[zu-inf, agr2]
have agrl] ~ ~

/ / 3..
i'ch gebeten NP[agr2] . , , J V[zu- nf]

I asked I

sich zu beeilen
"She is the one I asked to hurry up." herself to hurry up

Fig. 1: Establishing Different Agreement Relations

definition of the feature sets AGR and HEAD. Note that the

AP does not presuppose HEAD feature specifications and can

thus be prior to HFC.

However, the AP as defined above cannot account for the

fact that a category may participate in some agreement

relations, but not in others (in 'raising' constructions a direct

object may have to agree with a reflexive pronoun, but not with

the finite verb). A more sophisticated version of the AP, which

is presently being developed, is based on different kinds of agr
values (e.g. agrl and agr2 instead of +). A direct object, as well

as the reflexive, is then specified with <agr, agr2> whereas

subject and finite verb both have <agr, agrl>. The revised AP

requires categories containing the same agr specification to

unify with respect to AGR as described above.

80

Note that this way of including category-valued features

specified in ID rules is independent of which syntactic

structures are used to describe a language, rather tile function

of category-valued features as indicators of long distance

relations is utilized.

The feature agr can still be specified by virtue of FCRs,

though there seem to be some characteristic exceptions where

the value is better provided within the ID rules. For instance, a

VP should not always contain <agr, agr2>, as in figure 1,

because in the case of 'equi' verbs it would have to agree with

the subject. 4

4 This relational information cannot be derived from the different subcategor-
izations of'raising' and 'equi' verbs alone.

Let us conclude tile discussion of the FIPs with the FFP,

tile functionir~g of which has by and large been taken over

from [GKPSI~ A special treatment is necessary for the wflue ,~.

All daughters unify with the mother with respect to a set of

FOOT feature, s, provided that the values ale not spe, cified in

the ID rules. Daughters that are undefined with respect to

some FOOT feature are ignored by the Flq ~ unless the FOOT

feature is untlefined at every daughter or at the mother; in

that case tile FFP requires all constituents to be undefined with

respect to that FOOT feature. If a local tree violates the FFP it

is rejected.

The FFP is only dependent on rite ID rules and is thus able

to be the first t,'IP to apply. It is in fact prior to the AP since its

point, we shall look at two rather obvious strategies, om

which is used in the Berlin GPSG system [Hauensct

Busemann 1988] for parsing and the other for generation.

The first one constructs the tree in a bottom-up mar,

thereby reducing admissible local trees by unifying tl

mothers with the daughters of another local tree. The bott(

up strategy starts from lexical categories, which are admissi

by the lexicon. Each reduction step is followed by

application of the FIPs to the newly created local tree. Thus

intormation contained in the lexical categories is percolated

higher levels of the tree, thereby constraining the set of furtl

reduction steps allowed by the grammar. This strategy is us

within tile parser in the GPSG system [Weisweber 1987].

Fig. 2: Sequence of Application in a Constructional Version of GPSG

results may ~rigger FCRs that specify the agr feature. FCRs

have to be applied at each step where a feature might have

been specified in a local tree, namely after tile FFP, the AP,

and the HFC_ LP statements can only be guaranteed to apply 5

properly on fully specified categories. Thus they operate in the

last place (cf. figure 2) 6.

The next question to be addressed is how complex

structures arc built from local trees. Since in the constructional

version nothing forces a daughter of one local tree mid tile

mother of ~,nother one to have the same set of features

specified with the same values, the two categories are not

required to be identical, as in [GKPS], rather they must unify in
order to be combined into a larger tree.

For each of tile two categories involved in the unification,

additional features may be specified. This specification by
construction, when combined with the application of FCRs and

FIPs, makes the results of transporting feature specifications

within local trees immediately available to other locN treks.

Tile precise way of interaction with FCRs and FIPs depends on

the strategy adopted for tree formation. In order to clarify the

For parsing, LP statements work as filters whereas for generation, they
constructively order the branches in a local tree [Busemana 1987].

Note that a similar ordering discovered by Shieber [Shieber 1986] results from
investigations of underlying assumptions of [GKPS].

The second strategy consists of top-down tree formation

With this type of proces s, local trees are expanded by unifyin~

their daughters with mothers of other local trees. The top.

down strategy starts from a local tree (with mother S, foJ

instance), the categories of which have feature specifications

by virtue of all ID rule only. FCRs and FlPs cannot be applied

during tree expansion because there is too little information

available for deciding upon e.g. the value of agr (for the same

reason, FCRs attd FlPs are not applied to ID rules directly),

rather they apply in a bottom-up manner as with the first

strategy after the lexical insertion has been completed.

The latter strategy is utilized within the generation

component [Busemann 1987] in the GPSG system, which has

to introduce, for instance, number and case information into the

structure that it is about to generate. This takes place in the

course of tree expansion by adding relevant feature

specifications to categories in the tree (to an NP mother, for

instance). This information is usually not available in local

trees at a deeper level, especially at local trees with lexical

categories. Therefore the lexicon should contain word stems

(rather than word forms) and, con'espondingly, categories that

are unspecified for e.g. number and case. 7

This makes a situation possible that has not been discussed

yet; namely, that when FIPs apply to local trees at these deeper

levels they may have to cope with unspecified features. There

B]

is indeed no requirement that AGR or HEAD features must

have a value in order to unify. We should like the FIPs to work

properly even if features have not yet received a value. In these

cases, the feature values in question are co-specified, i.e. they

will have the same value as soon as one of them is specified. In

our example, number and case specifications are spread over

the sub-structure dominated by the NP as soon as the FIPs

apply to the local tree where they have been introduced.

However, such a delayed specification makes it more difficult

to maintain control over whether a category is still legal and

whether a local tree still complies with the LP statements. For

an elegant solution see [Weisweber 1988], in this volume.

In our present version of GPSG, we use neither metarules

nor FSD. However, the linguist ought to still have the

possibility of expressing elegantly language-particular

generalizations with the aid of metarules. They will be realized

in a preprocessing component in order to avoid having to apply

them during parsing or during generation.

As for FSDs, we adopt the working hypothesis that they are

superfluous if lexical entries are sufficiently specified and free

feature instantiation (in the sense of [GKPS]) is not allowed.

FSDs are needed in the GPSG version of [GKPS] because free

feature instantiation may assign nonsensical values to features,

which would never occur if the structure had been built orderly

on the basis of sufficient lexical information. In the long run it

might be desirable to use the device of FSDs in a

constructional version of GPSG, too; namely, for those cases

wbere features have not been specified, thougll the whole

structure has been completed. However, we shall have to avoid

the complexity of FSDs as defined in [GKPS]; a simplified

solution might be analogous to our version of HFC for HFC,

too, is a default device in the final account.

The constructional version of GPSG presented here

constitutes the linguistic basis for parsing and generation of

English and German sentences within the Berlin GPSG system.

The system is fully implemented in Waterloo Core Prolog

using the set of predicates defined by the KIT-CORE Prolog

standard [Bittkau et al. 1987], which makes it possible to run it

with several other Prolog dialects, too (e.g. Symbolics Prolog).

At present, it runs on an IBM 4381 under VM/SP, on a

Symbolics 3640 Lisp machine, and on an IBM AT.

4 Conclusion

It has been shown how our constructive version of GPSG

avoids the: problem of combinatorial explosion that would have

arisen if we had tried to implement the GPSG formalism in its

axiomatic version [GKPS] in a straightforward way. Our

A stem-form lexicon complemented with lemmatization and inflection
procedures is better suited to NL processing anyway, at least if sa'ongly
inflecting languages such as German are involved.

change in perspective also leads to an impoitant simplification

of the HFC because it is no longer necessary to build all the

projections of an ID rule for the determination of the free

feature specification sets.

The dilemma over the ordering of the CAP and the HFC

has been removed too, which is crucial for any implementation

of the formalism. But, for this to be achieved, we had to

sacrifice part of the generality that characterizes the treatment

of control in [GKPS]; ke. although the qnestion of which

constituents have to agree with one another is ~Lot answered ir~

a purely idiosyncratic way by the ID rules (because most of the

cases can be accounted for by FCRs, which are, as it were,

language-specific generalizations), the fact that agreement

depends on functor-argument structures is no longer integrated

iuto the formalism.

This loss, however, is compensated for by the fact that we

can treat agreement in cases which the original CAP could not

account for (as in the case where a functor is cont,oiled by one

of several arguments).

Although we have had to concentrate our presentation on

just a few aspects of the eonsu-uctive view of GPSG, we hope

to have made plausible that our modified formalism is, in

contrast to the original one, suitable for parsing and generation

within an NL processing system.

References

Bittkau, Oliver; Haider, Christi,'m; and Kietz, Jgrg-Uwe (1987), KI'I•CORE-
PROLOG Description (Version 1.0), KIT Internal Working Paper No.
17, Fachbereich Informatik, Technische Universitat Berlin.

Busemann, Stephan (1987), Generierung mit GPSG, in K. Morik (ed.), l'rocs.
llth German WorL~hop on Artificial Intelligence, Berlin, Springer,
355-364.

Gazdar, Gerald; Klein, Ewan; Pnllum, Geoffrey; and Sag, Ivan (1985),
Generalized Phrase Structure Grammar, Oxford, Blackwell.

Hauensehild, Christa (1986), KIT/NASEV oder die Problematik des Transfers bei
der maschinellen (lbersetzung, in I. S. B~ftori and H. J. Weber (eels.),
Neue Ansiitze in maschineller ~lbersetzung. Wissensrepr?isentation und
Textbezug, Tiibingen, Niemeyer, 167-185.

Hauen~hild, Christa, and Busemann, Stephan (1988), A Constructive Version of
GPSG for Machine Translation, to appear in E. Steiner, P. Schmidt, and
C. Zelinsky-Wibbelt (eds.), From Syntax to Semantics -lnsights From

Machine Translation, London, Frances Pinter, 1988.
King, Mm'garet, and Perschke, Sergej (1987), EUROTRA, in M. King (ed.),

Machine Translation Today: The State of the Art, Edinburgh, Edinburgh
University Press, 373-391.

Preug, Susanne (1987), GPSG-Syntax ffir ein Fragment des Deutschen, KIT
Internal Working Paper No. 20, Fachbereich Informatik, Techni.~che
UniversitlR Berlin.

Ristad, Eric Sven (1986), Computational Complexity of Current GPSG Theory, in
Procs. 24th Annual Meeting of the ACL, New York, 30-39.

Shieber, Stuart M. (1986), A Simple Reconstruction of GPSG, in Procs. 11th

COLING-86, Bonn, 211-215.
Uszkoreit, Hans (1984), Word Order and Constituent Structure in Gerte~an, Ph.D.

Dissertation, University of Texas, Austin.
Weisweber, Wilhelm (1987), Ein Dominanz-ChartoParser fiir Generalisiecte

Phrasenstrukturgrartm~atiken, KY~' Report 45, Fachbereich Iu~brmalik,
Technische Universit/lt Berlin.

Weisweber, Wilhelm (1988), Using Constraints in a Constructive Version of
GPSG, in Procs. 12th COLING-88 (this volume), Budapest.

82

