
Feature Graphs and Abstract Data Types:
A Unifying Approach

Christoph BEIERLE and Udo PLETAT
IBM Deutschland GmbH

Science and Technology - LILOG
P.O. Box 80 08 80

7000 Stuttgart 80, West Germany
(electronic mail on EARN/BITNET:

BEIERLE at DS#LILOG, PLETAT at DS#LILOG)

Abstract:

Feature graphs appearing in unification--based grammar formalisms and
algebraic specifications of abstract data types (ADTs) are both used
for defining a collection of objects together with functions between
these object sets. Starting from this observation we define an
algebraic semantics for feature graphs by assigning an algebraic
specification to each feature graph. This opens the rich world of
semantical foundations for abstract data types to the area of
feature graphs and thus to unification grammar formalisms. Using
results from ADT theory we define a sim~le and fast syntactic
decision procedure testing the usual consistency conditions on
feature graphs like constant consistency, constant/complex
consistency and acyclicity on the algebraic specification assigned
to a feature graph. With this machinery at hand feature graph
unification becomes union of feature graph specifications followed
by the consistency test.

1. Introduction

Unification-based grammar formalisms have
become a popular field o'f research. The
subject has attracted the interest not only
of (computer) linguists but also of computer
scientists, especially in the area of logic
programming, see e.g. [Pe 87]. Due to the
formality of grammars we also observe
activities developing foundations for the
formal semantics of various approaches on
unification grammars, e.g. [PS 84], [KR 86],
[RK 86], [Pe 87], [Jo 87].

In this paper we investigate the relationship
between feature graphs on the one hand and
algebraic specifications of abstract data
types (ADTs) on the other hand. There is a
natural correlation between both these areas
since a feature graph as well as an abstract
data type defines a collection of objects
together with functions relating the objects.
We present a formal semantics for feature
graphs by assigning to each feature graph G
an equational ADT specification ~(G), called
fg--specification. This opens the rich world
of ma'thematical foundations of ADT
specifications (e.g [GTW 78], [EM 85]) in
order to obtain a better - not only - formal
understanding of the nature of feature
graphs.

In particular, we provide a model-theoretic
characterization of various consistency
conditions for feature graph specifications
reflecting the consistency concepts usually
imposed on feature graphs such as
clash-freeness and acyclicity. These

40

model-theoretic characterizations have
proof-theoretic counterparts in terms of
syntactic conditions on the deductive closure
of the set of equations of r(G)o

Although the proof-theoretic consistency
characterizations are of syntactic nature, a
test of their validity requires to examine
the deductive closure of the set of equations
of a fg-specification. Our objective is to
restrict consistency checks to equations
explicitly mentioned in a fg-specificationo
In the ADT-world there is a well-known tool
for such tasks: the Knuth-Bendix algorithm
([KB 70]). We present a Knuth-Bendix like
completion procedure transforming any
fg-specification into a reduced normal form.
We show that the model-theoretic consistency
characterizations for G are equivalent to the
presence resp. absence of certain types of
equations in this reduced normal form.

These results are used for defining the
semantics of the unification of two feature
graphs GI and G2 as the (set-theoretic
componentwise) union of ~(GI) and x(G2)
followed by the normalization process using
the completion algorithm and the consistency
check on the resulting set of equations°

2. Featuregraphs

A feature graph is a directed graph with a
distinguished root node. The edges of the
graph are called features. An atomic graph is
just a symbol; it contains no features. A
complex graph is a set of feature-value pairs

where each value is either an atomic graph or
again a complex one. Two paths starting at
the root and ending at the same node are said
to co-.refer. Feature graph unification is a
binary eperation taking two graphs and
returning[a graph containing exactly the
informat J.on of both graphs if they are
unifiabl~. ~, and fails otherwise. An atomic
graph is unifiable only with itself and the
empty graph. A complex graph G~ is unifiable
with the, empty graph, and G~ is unifiable
with a complex graph G2 if for all features
in both G: and G2 the respective vahles are
unifiab](~°

Several notations for feature graphs have
been suggested° The graphical representation
of

NP
c o u l d a l ~ o b e r e p r e s e n t e d i n m a t r i x f o r m :

~Cat I
: VP

A g r

I A g r < 1 >

in the matrix notation coreference is
indicated by numbers enclosed i n brackets.
Another notation, which for instance is
employed in PATR, uses special equations
indicati[Lg coreference of paths and atomic
values aL the end of of paths, respectively:

< Cat > == VP
< Subj Cat > == NP

Subj Agr > : < Agr >

In the following we will discuss an
equatJon~l representation of feature graphs
in greater detail. This representation will
be oriented towards the equational
specification of abstract data types, thus
making ~.vai lable the powerful machinery
developed for such specifications°

Above we did not make a clear distinction
between the syntax for describing feature

graphs and feature graphs as semantical
objects. In fact, such a distinction has been
omitted to a large extent in the literature.
The situation changed with approaches that
formalize the concepts of feature graphs
since such a distinction is essential for a
formal treatment (see e.g. [KR 86], [Jo 87]).
In the area of ADT specifications the strict
separation of the syntactic and the semantic
level has ulways beet* a central aspect. Our
ADT-.based approach to feature graphs adopts
this two-level view in a natural way: Feature
graph specifications are the syntactical
means to describe feature graphs which are
the models (or structures) of such
specifications.

3._Equational Specifications

3oi ADT Specifications: Syntax and Semantics

We introduce the basic notions of abstract
data type specifications. More detailed
information can be gathered in [GTW 78] or
[EM 85].

A s.~gt_ure is a pair Z = <S, O> where S is a
set of sorts and O = <O >
a family of sets of ~erators w.r.t. S. We
write op: s~ ...s~ -> s for an operator whose
i-th argument is of sort s~ and which
delivers a result of sort s. The well-fermed
terms w.r.t. Z and S-sorted variables V form
an S-indexed family Tz (V), and an equation
over ~ and V is of the form i = r where 1 and
r are terms of the same sort. An al~@hraic
~gcifiqation is a pair SP = <Z, E> where Z
is a signature and E is a set of equations
over Z and some family of variables V.

Besides these syntactical concepts of ADT
specifications we provide the basic
semantical concepts of heterogenous algebras:

Given a signature ~ = <S, O>, a ~-algebra A
consists of a family of sets A = < A, >
and for each operator op e O there is a
function opA : A, ---> A~ . A satisfies an
equation 1 = r if for each assignment of
values from A to the variables of 1 and r the
evaluation of 1 and r in A yields the same
element of A. A is a <Z,E>-algebra if A
satisfies every e ~ E.

We say that E semantically implies an
equation e if every <~,E>-algebra satisfies
e. It is well-known that this model-theoretic
notion of satisfaction coincides with the
proof-theoretic notion of deduction (Birkhoff
theorem) where e can be proved from E iff e
can be deduced from E using the rules of the
equational calculus (e.g. [EM 85]). We let E e
denote the deductive closure of E.

The following theorem is one of the central
results of ADT theory and forms the basis fo]:"
defining the semantics of a specification.

Theorem:

For each algebraic specification
SP = <~, E> there is an initial algebra
Tsp satisfying the equations in E.

T~, is the so-called ~uotient term alqebr ~
consisting of congruence classes - obtained
by factorization according to the equations
in E - of constant terms over Z. The initial
algebra Tsp is 'the ADT specified by SP. It
can be characterized informally by two
conditions: all its elements are denoted by
some ground term ("no junk"), and it
satisfies a ground equation e iff every other
<Z,E>-algebra also satisfies e ("no
confusion").

3,2 Feature Graph Specifications

Feature graphs can be seen as particular
algebraic specifications (see also [Pe 87]):

41

There are only constants (representing atomic
values) and unary functions (representing the
features) in the signature. We assume that
ATOMS is the set of all atomic values and
FEATURES is set of all features occuring in
the feature graphs; both sets may be infinite
in general. An equation s = t is given for
paths having the same final node, or for
paths ending at an atomic value.

For instance, consider the feature graph

% /
Following e.g. Pereira and Shieber ([PS 84})
this feature graph can be described by the
equations

< f g > = < h >
< g > = a

leaving the root symbol of the feature graph
implicit and using the order for the
attributes as in the examples of Section 2.
However, in equational ADT specifications it
is essential to state explicitly to which
objects an equation can be applied.

For simplicitly, we first assume that we have
only one sort which we call "universe", and
that we have a variable x of sort "universe'.
By using a functional notation for the
attributes and thus the reverse order of the
attributes as compared to e.g. [PS 84], we
would arrive at the specification

sorts universe
functions a: -> universe

f,g,h: universe -> universe
equations g(f(x)) = h(x)

g(x) = a

However, by simply introducing a universally
quantified variable x of sort "universe" we
run into problems: From

I, g(f(x)) = h(x)
2. g(x) = a

we can deduce
h(x) = a

by using the usual rules of the equational
calculus and substituting f(x) for x in
equation (2). The problem is that x should be
quantified only over all objects described by
the original feature graph. But f(x) is not
neccessarily in this set, so we must find a
way of avoiding such a substitution. A simple
way of achieving this is to switch to another
signature with an additional sort, say "soi',
denoting the "sort of interest" and
comprising all objects described by a feature
graph.

The sort "sol" is then a subsort of sort
"universe'. This could be expressed by
extending the algebraic specifications to
include also subsort relationships, thus
moving from many-sorted specifications (as
described in Section 3.1) to so-called
order-sorted specifications (e.g. [GM 87]).
Here, we want to stick to the simpler case of
many-sorted specifications.

A subsort relationship in a many-sorted
setting is expressed by an inclusion function

42

which we will. denote by
i: soi -> universe

in our case. In order to avoid problems with
empty sorts ([GM 87], [EM 85]) we assume that
there is a constant "const" of sort "sol'.
For the rest of this paper we also assume
that x is a variable of sort "seA'. Thus~ the
feature graph above gi~es rise to the feature
graph specification

sorts sol, universe
functions a: -> universe

f,g,h: universe ~> uz~iverse
const: .-> soi
i: soi ~> universe

equations g(f(i(x))) = h(i(x))
g(k(x)) = a

motivating the following definition:

A feature graph signature (fg-signature)
Z = <S,OP> is a signature with

S : {sol, ~lniverse}
OP : Atoms(Z) u Features(X)

u {const: -.> soi}
U {i: SOJ -> universe}

where :
Atoms(E) c {a: -> universe I

a s ATOMS]
Features(Z) c {f: universe -> universe [

f s FEATURES}

A feature graph specification
(fg-.specification) SP ~ <Z,E> has a
fg-signature Z and a set of equations over
Z and {x}.

With the definitions above it shoud be
obvious how to transform any feature graph G
into a fg-specification ~(G): The signature
of ~(G) contains all atoms and features
occuring in G as constants resp. unary
functions, and for any co-referring paths or
any path ending with an atomic value there is
an equation in ~(G). Thus, we have a
well-defined function

~: Feature graphs -> fg-specifications

making available the machinery that has been
developed for algebraic specifications.

4. Cons i s tency_

In [PS 84] the only inconsistency considered
is an equation of the form a ~ b where a and
b are distinct constants. Such a situation Js
called constant clash in [Pe 87] where
additionally a constant L_cpmP!exf~lash is
considered. Such a clash is "any set of two
equations e~ and e2 in which e~ equates some
path p to some other path or atomic value and
e2 equates a strict prefix of p to a
constant" [Pe 87].

Whereas [PS 84] also consider cyclic feature
graphs, Kasper and Rounds ([KR 86]), ~ome
PATR-II implementations, and also the STUF
formalism described in [Us 86], only allow
for 99~fclic feature graphs. We will show that
the absence of cycles in a feature graph car~
also be expressed as a consistency condition
on the corresponding fg-specification.

Below we use the machinery of abstract data
types in order to define several notions of
semantical, consistency for a feature grap[b.

Finest W(-: i n t r o d u c e a r i o _ t a t : i o r %
A t e x f a

: ; , , (. . . (f ~ (t)) ~ .) ~ 'r~([x])
w i t h
t ~ T, ([X]),,,i fl ~ Features(Y,),
and n k 0 will be writ'ten as

p (t)
w h e r e p := : , ! .o~o f~ e F e a t u r e s (} :) * o

N o t e t h a t t h e n o t a t i o n f . (. . . (f ~ (t)) . . .)
r e f l e c t s -the u s u a l mathematical notation for
function composition, whei'eas the ~)ath
notation amp Loyed for feature graphs as
sketched : i (l Section 2 u s e s the reverse order

Let S~' == -<}:~]!',> be cl .fg-;~pe<:ificatien.
A <}]~ E>-al.gebra A is

~ c p n [~ t t ~ . g ' h ~ g0nsiste~c J f f
for all a , b ~. Atoms(Z) w i t h a ~: b we
have :

u cons tagt/<'.omp.].ex cons.isten tiff
for all a~ b ~ Atoms(Z) and a]] pl, p2,
q ~ Feature~;(Z): tlhere exists ral element
o ~ A, , ,~ ,,¢:iti~:

7p]~ (i~ (o)) : : a,,
:: >

p2,,(p]., (i, (o))) + q^(i~(o))
&

) / , 2 a (p l ~ (i . (o))) ~- b^

ac yc l'i,/ iff
for all p~ q ~ Features(Z) ÷ there exists
an element o ~ A,o± with:

p~(q~(i^(o))) + q^(i^(o))

SP is . g _ g r n } i t a l r t c o n s : L s t e . l - t t , cor~staL~t/gpmplgx -
c o l l s i s t e _ l J t or" .gcycliq iff there is at least
one mode], of SP having the respective
propert? .

The a b o v e d e f i n i t i o n of [censJstency of a
fg-specifi~ation SP suggests that one has to
search through the entire (:lass of models of
SP in or, let to determJ ne whether SP :i s
consistent or net. T h e fol).owing theorem
shows the power ef initial models in the
sense of shrinking the search space: only the
initial model has to be considered.

Theorem :
The fg- speei ficaT-ion S P is constant
consistent, constant/complex consistent,
or acyclic iff the initial algebra Ts~, has
the respective property.

The above pz:opert:ies can be proven for the

initial model by using the deductive closure
E* of a set of equations E.

Theoz'em :
The i n i t i a l a l g e b l T a [I,',3 ~ of the
fg-spec[fication SP is

u constant consistent iff
for all a, b ~ Atoms(Z) with a + b
We h a v e : a :: 'b ~/ E*

~i coiL.~tar~t/complex consistent iff
f o r a l l a~ b ¢ A t o m : 3 (} ;) a n d a l l
t) [~ t :)2 , q ~ Features(Z)"
%'¥,~ h a v e :

pl('i(const)) = ;~. ~ E';,"
i t ~ p] . i e s
p2(pl(i(const))) ::: q(i(const)) / E*

a n d
p2(pl(i(const))) = b / E*

I

acyclic iff
for all p, q e Features(Z) ~
we have :

p(q(i(const))) --: q(i(const)) / E*

The equivalences established by these two
theorems show us that the consistency of a
fg-specification <Z, E> can be tested by
inspecting tile deductive closure E* for the
absence of certain equations, depending on
which consistency aspects one is interested
ill. Since E* may be too large for performing
these tests efficiently it would be desirable
to be able to perform the consistency tests
on E only. ill the next section we develop a
completion procedure for the set of equations
E which transforms E into a normalized set E"
such that it Js sufficient to check E'. The
complet.io~), procedure thus provides a simple
a n d fast decision procedure for our
consistency constraints.

5o _Ti)9 completion pr~cedure

Our completion procedure is a variant of the
Knuth-Bendix algorithm ([KB 70]) which J.s a
well-known method for testing properties of
rewrite rule systems and for transforming
equations into a set of rewrite rules, which
then constitute a decision procedure for the
equality, in general, there are some
problems with the Knuth-Bendix algorithm:]it
may not terminate, or it may terminate with
failure. However, we csn show that due to
the restricted form of equations these
problems do not occur when dealing with
fg-specifications.

We first define an order relation ~ on the
set T~ ({x}) of terms over an fg-signature Z.
We assume that ATOMS (resp. FEATURES) is
linearly ordered by ~^To~ (resp. ~ u~:~).
Then we order T~ ({x}) using the lexicographic
ordering induced by NA~oMs and N~^TunE~ :

Let a, b ~ ATOMS, f~, g~ e FEATURES, and t
T~ ({x}).

a <,r b if a <^'roM~ b
" a <T f, (t)

t <~ f~ (t)
f~,(...(f~ (t))...) <.r g, (...(g~ (t))...)

-<-T is the reflexive and transitive closure
of <.~.

Let SP : <Z,E> be a fg-specification. We
assume that E does not contain any trivia]
equations of the form t :: t (otherwise we can
just eliminate such equations from E).

Le~na:
For all 1 = r ~ E we have either 1 <~ r or
r <.~]..

Thus, without loss of generality, we assume
that r <T 1 for all 1. = r s E (otherwise we
can just exchange the lefthand and the
righthand side of the equation). We call E a
directed set of equations and we may write
1-> r instead of 1 = r.

43

C~letion algorithm CP

Transform E into a directed set of
equations and apply successively any of
the two following rules until none is
applicable any more:

[] LHS reduction:

If there are two different equations
(I) p(1) -> r
(2) 1 -> r'

in E then:
Delete equation (I) from E
If r <T p(r')

then add p(r') -> r to E
- If p(r') <~ r

then add r -> p(r') to E
[Note: Nothing is added if p(r') and r

are identical!]

• RHS__!'9_d" u c t ion !_

If there are two different equations
(I) 1 -> p(l')
(2) 1" -> r

in E then:
- Delete equation (I) from E

If 1 <~ p(r)
then add p(r) -> 1 to E

If p(r) <T 1
then add 1 -> p(r) to E

[Note: Nothing is added if p(r) and 1
are identical!]

where: r, r', i, i" ~ T~ ({x}), and
p ~ Features(Z)*

Theorem :
For every fg-specification
completion procedure CP

SP the

• terminates on input SP = <Z, E>

delivers as output a fg-specification
SP" = <Z, E'>

and SP and SP'are equivalent in the
sense of

E* = (E')*,
i. e. E and E" have the same deductive
closure.

This theorem assures that the completion
procedure performs only syntactical
modifications on the fg-specifications, but
does not change their meaning. So we can use
SP" in order to test the consistency
constraints of SP. The next theorem shows
that stepping from SP to SP" simplifies this
task: instead of inspecting the deductive
closure E* it suffices to inspect the set of
equations E'.

Theorem:

Let SP = <Z, E> be a fg-specification and
SP" = <Z, E'> be the result of running the
completion procedure CP on SP. SP is

Constant consistent iff
E" does not contain an equation whose
lefthand side is an atom a ~ Atoms(Z)

constant/complex consistent iff
E" does not contain an equation in
which a term f(a) occurs where
f ~ Features(Z) and a ~ Atoms(Z)

acyclic iff
E" does not contain an equation
p(t) -> t where p ~ Features(Z)*

44

The proof of this theorem is based on the
fact that E" is a confluent and terminating
set of rewrite rules. Since the atoms are
smaller than any non-atomic term with respect
to the term order <~, for any equation a --> t
in E" with an atom a, t must also be an atom~
Therefore, any equation holding between atoms
must be contained directly in E', implying
the constant consistency property of the
theorem. The other parts of 'the theorem
follow from similar observations.

6. Unification

In Section 2 we presented three different
notations for feature graphs, and in 3.2~ we
introduced a translation ~ from feature
graphs to fg-specifications. On the other
hand, it is straightforward to transform a
fg-specification SP into a feature graph C:
The atoms and features of G are those
occuring in the signature of SP and £he
equations of E reflect the coreferring paths
resp. paths ending with an atomic value in G°
We denote this transformation by

~-~ : fg-specifications -> feature graphs

Although ~-I (SP) and ~-i (CP(SP)) may be
syntactically different since CP(SP))
contains equations in a reduced normal form,
the two graphs are equivalent in the sense of
feature graph unification: they are unifiab].e
with exactly the same feature graphs.
Besides giving a basis for a simple
consistency test and providing a normal form
presentation for fg-specifications the
completion procedure CP also provides the
basis for a precise mathematical definition
of feature graph unification. This is true
regardless which consistency concept for
feature graphs one wants to apply, e.g. J.f
one wants to allow cyclic graphs or only
acyclic ones. Thus, let X-consistent be
either "constant consistent",
"constant/complex consistent", "acyclic", or
any combination thereof. Let GI and G2 be
feature graphs.

graph-unify(G~,G~) =
let (Zi,Ei) = ~(Gt) in
let (Z,E) = CP(Z~ u Z,, El u E2) in

~-I (Z,E) if (Z,E) is X-consistent
fail if (Z,E) is not X-consistent

7. Conclusions

We have presented a mathematical semantics of
feature graphs and feature graph unification
in terms of ADT specifications. It supports
various consistency concepts used for feature
graphs. The important notion of partiality
([Pe 87]) in the sense that arbitrary new
features may be unified into a feature graph
is supported since any feature graph
specification can be extended by arbitrary
features, atoms, and equations; there exists
no "largest" feature graph specification
(unless of course, one adds an artificial
"largest" element, e.g. as the
F-specification in the STUF formalism as
described in [BPU 88]).

Another approach bringing together initial
ADT spec, i fications and feature graphs is
given ill [SA 87]. ~t uses an order-sorted
approach:, where the set of atoms and features
must be fixed in advance, and where every
element of a supersort must be in one of its
subsorts Compared to the order- sorte%l
approach of [SA 87] a drawback of the work
presented here is the asymetric treatment of
the tool; of a feature graph (giving rise to
the "se,i" sort) and the other nodes (being
mapped t ; o thE; " u n i v e r s e " sort) . We are
currently extending out work in order to
overcome this disadvantage ([BP 88]). Other
a:¢eas of future work are the treatment of
disjunctJ ons and of functional uncertainty
([KR 86], [Jo 86]) .

Refefr~nc~,s

[Ai e#] Ait.-Kaci, H. : A Lattice Theoretic
Approach to Computai;ion based on a
Calculus of Partially Ordered Type
Structures.]?hD thesis, University
of Pennsylw~nia, 1984

[BP ss] Beierle, C., Pietat, U . : %'he
Algebra of Feature Graph
Specifications. (in preparat:ion)

[BPu 88] Beierle, C., Pletat, U., Uszkoreit,
If.: An Algebraic Characterization
of STUF. Proc. Symposium
"Computerlinguistik und ihre
theoretischen Grundlagen",
Saarbr~cken 1988.

[EM 88] Ehrig, H. and Mahr, B.: Foundations
of Algebraic Specification I.
Springer Verlag, Berlin 1985.

Goguell, J. G. and Meseguer, J.:
Order-Sorted Algebra i: Partial and
Overloaded Operators, Errors and
Inheritance° Computer Science Lab.,
SRI International, 1987.

[OTW 78] Goguen, J. A. and Thatcher, J. W.
and Wagner, E.: An Initial Algebra
Approach to The Specification,
Correctness and Implementation of
Abstract Data Types. In: Current
Trends in Programming Methodology,
R. T. Yeh, (ed)~ Prentice-Hall,
1978.

[Jo 86] Johnson, M.: Computing with regular
path formulas. Draft, 1986.

[Jo 87] Johnson, M. : Attribute-Value Logic
and Theory of Grammar. PhD Thesis,
Stanford University, 1987.

[KB 70] Knuth, D.E.~ Bendix, P.B. : Simple
Word _Problems in Universal Algebra.
in: J. Leech (Ed.): Computational
problems in Universal Algebra.
Pergamon Press, 1970.

[Ka a6] Kasper, R.T., Rounds, W.C.: A
logical semantics for feature
structures. Proc. 24th Annual
Meeting, ACL, 1986.

[Pe 87] Pereira, Fo : Grammars and Logics of
Partial Information. Proc. 4th
Int. Conf on f, ogic Programming, May
1987.

[Ps 84]

[RK 86]

[SA 87]

[Us 86]

Pereira, F., Shieber, S.M.: The
semantics of grammar formalisms
seen as computer languages. Proc.
COLING-84, ACL, 1984.

Rounds, W.C., Kasper, R.: A
complete logical calculus for
record structures representing
linguistic information. IEEE
Symposium on Logic in Computer
Science, 1986.

Smolka, G., Ait-Kaci, H.:
Inheritance Hierarchies: Semantics
and Unification. MCC Technical
Report AI-057-87, 1987.

Uszkoreit, H.: Syntaktische and
semantische Generalisierungen im
strukturierten Lexikon. Proc.
GWAI-86, (eds. C.R. Rollinger, W.
Horn), Springer Verlag 1986.

45

