
Efficiency Considerations for LFG-Parsers - Incremental
and Table-Lookup Techniques

Abstract

I s tv£n B£tori and Stefan Marok
FB 2 Linguis t ics E W H Rhein land-Pfa lz , l~heinun 3-4,

D-5400 Koblenz~ F R G

The paper presents a concise description of the LFG-Parser-
Generator developed at the EWH in Koblenz. Special attention
is paid to efficiency considerations to speed up the system in the
execution phase. Lexicon is separated, ll(k)-parsing tables are used
and some preliminary ratifications are carried out before the actual
execution. The run time system follows the single path strategy
and produce.'; the f-structures simultaneously with the processing
of the c-stru~:tures.

1 G e n e r a l C o n s i d e r a t i o n s o f P a r s i n g Effi-
c i e n c y

Basic parsing techniques (both shift reduce and recursive descent)
seem to be inherently inefficient inasmuch as they proceed strictly
according to the sequence of the rules in the grammar and they
are not able to exploit the surrounding (preceeding and following)
syntactic information. Their scope is limited to a single rule and
they jump mechanically to the sequentially next rule, even if such
a move is obviously abortive and must be innmdiately abandoned
(Winograd 1'483, 108-115; Phillips 1984; Hellwig 1988).

Parsing tables - as they are conceived in current compiler con-
struction devices for LR(k) and LL(k) languages - make 1. the
izfformation provided by the grammar accessible throughout the
entire processing and not just at the point where they happen to
occur, and 2. tlmy can be constructed algorittnnically (Aho/Ullman

1979).

I I Generator I
,1 t

i i --

Figure 1: The LFG-System in Koblenz

2 T h e L F G - M o d e l o f t h e E W H : G e n e r a l
Design

The Koblenzer LFG-Parser-Generator is an interactive system, de-
signed to create and to test grammars for natural languages ac-
cording to the linguistic philosophy of the LFG as conceived in
Bresnan und Kaplan (1982). Both lexicon and syntax follow clo-
sely the original format specifications. The system can be divided
into two main phases: preprocessing and actual execotion).

1. Prepro~:essing of the input gralmnar (including lexicon) ge-
nerates the executable code, which in turn involves two lo-
gically distinct steps:

• Generating the P~OLOG code and

• Optimizing the PP~OLOG code, - and

2. the actual execution phase analyses the input string and
produces the f-structures.

2 .1 C o d e - G e n e r a t i o n

In the preprocessing phase the grammar rules are entered into the
system and translated into an executable PB,OLOG Code. This
part of the system is written in PASCAL. The implementation
includes facilities for the treatment of the metavariables ~ and
needed for the treatment of the long distance dependencies (Weis-
weber 1986). The grammar may contain both optional categories
and multiply reoccurring categories (marked by the Kleene-star
.-operator).

In order to facilitate the generation of the tables with the reach
relations the phrase-structure portion of the rules of the gran~nar
(c-structure rules) is extracted and stored as azl additional, sepa-
rate data set.

2 .2 C o d e O p t i m i z a t i o n

The second task of the preprocessor is to produce a more efficient
PKOLOG code. Optimization covers construction of parsing table
and code revision.

In order to speed up the actual analysis in the execution phase
the preprocessor constructs a table of reach relations on the basis of
first and follow sets, connecting nontermlnal and preterminal nodes
with a lookahead of 1.

The definition of the first and follow sets is based on context free
grammar (Aho/Ullman (1979, 186-192,429-30)):

G = (N, r~,7,,S)

~,jO, E (N E ~,)* and ..4 F_ 31".

The first sets are defined for a non terminal symbol A over
a string c~ of preterminals as the potential preterminal symbols
which can occur in the leftmost position of the string:

F~IRST(a) = {a E Y, I c~==~afl}

u {el ,~=~e}
The follow sets of a nonterminal A are defined as the first sets

of the preterminals which may occur after the nonterminal A:

F O L L O W (A) := {a E $ I S = ~ a A ~ A a E FIRST(f l)}

u {$1 S:~A*}.

25

Contrary to the standard definition of the terms (op. cit.) the
Koblenzer system does not exclude the application to left recursive
constructions. The reach relations are build up uniformly both for
left recursive and for all other constructions.

The first and follow sets allow to define the reach relations, w h i c h

provide the information for a nonterminals A (in the stack) and
for a preterminal symbol (located in the input string a) by which
production rule(s) the preterminal can be accessed:

R E A C H (A , a , P) ~ 3 P 6 7 > w i t h P = A ~ ~ :

a 6 FIRST(~) ^ ~(a = ~)
Va 6 FOLLOW(A) ^ a =~e

The reach relations are valid for all context free languages and
extend the applicability of LL(1)-tables for them in general. They
are calculeted over the first and follow sets and stored in tables for
the execution phase. The practical construction of the table of
reach relations is based on the systematic separation of dictionary
and grammar rules, without which the construction of the table
would not be feasible.

There are a number of grammatically predefined f-descriptions,
which caa be preprocessed in advance independently of the actual
input, reducing the number of unifications at run time. Prelimi-
nary unification of f-structures can be carried out in the following
configurations:

• If an f-description subsumes another f-description, the subsumed
f-structure can be regarded as already unified and dropped.
In the execution phase the system will Use only the subsu-
ming (i.e. larger) f-description. E.g. if a dictionary entry
in the PROLOG code, produced in the preprocessing phase,
has the specifications as (TSUBJ NUM) = SO, and simulta-
neously: !(TSUBJ), the later can be safely dropped in order
to avoid the vacuous ratification of the explicit subject in the
execution phase.

• I f an f-description is unified with new attributes, hitherto not used
in the grammar, the operation will always succeed, regardless
of the actual value of the attributes. Unifications of this
type can be carried out safely in advance regardless of later
possible changes of the attribute value.

• There are further minor possible f-structure configurations
which can be simplified before the actual unification in the
execution phase. The current optimization will recognize

I Monitor
help facilities
pretty printer

traces e t c .

[Lexicon lookup]
T

Constructing 1
reach relations

table

LL(l)-Parser
incremental

construction of
f-structures

I OJpn

- - - - - - - * I'"' Unification of'
I ~ - - - - J f-structures I

~tstralni~g I
ions and I - - - - - - - - - - ~

teness Test s~

Figure 2: The run time system

26

some of these special cases and replace the general unifi-
cation procedures by specialized and hence more restricted
procedures already at the time of code generation. The ge-
neral broad unification procedures (merge functions) will be
substituted here by more specific and computationally less
expensive procedures.

3 The Run T ime System

Firstly, the run time system can be characterized by the basic sepa-

ration of lexicon lookup and actual parsing, The separation of lexicon
rules and syntactic rules is based on the linguistic insight that
the two components (lexicon and grammar) reflect entirely diffe-
rent language properties. The division can be supported also by
consideration of processing efficiency.

The lexicon lookup is carried out at the beginning of the pro-
cessing and it immediately allows the rejection of input in case of
missing entries in the lexicon. The user can enter another word
on the spot and proceed with the processing of the same sentence.

The next step is the inspection of the LL(1) tables by means of
which the reach relations are established, The table of reach relations
provides the optimal subset of grammatical symbols and connects
them to the lexlcal entries occurring in the actual input sentence.

Secondly, the run time system is characterized by the single-

pass strategy of processing, i.e. the input is read in only once,
merging two fundamental tasks of the LFG: 1. the constructing
of the c-structures and 2. the unification of the f-structures in a
single step.

A special treatment is necessary for the left recursive construc-
tions. The entries in the LL(1)-table for potential left recursions
may be used only as long as the repetion is not spurious, otherwise
their further application is suspended. At the time of the proces-
sing of phrase structure rules, the associated functional description
is processed immediately. At this point the nodes relevant to the
functional assignments are easily accessible as the left hand side
symbol (for the metavariable T) and the right hand side symbols
(for the metavariables ~} in the rules.

As the input is processed the f-structure is constructed step by
step incrementally. A l l available attributes and values are merged
together as soon as they emerge, which is efficient for at least two
reasons: 1. There is no need to store and reprocess the cumulated
f-equations in an additional step and 2. merging the f-descriptions
incrementally step by step operates with smaller chunks, which
implies faster unification.

The incremental processing means that at the end of the input
sentence the analysis is complete and solved and does not need to
be scanned again in order to solve a series of f-equations. There
is only one single control operation at the end of the sentence
checking the wellformedness (completeness and exhaustiveness) of
the output.

The single-pass model differs therefore from the Kaplan-Bresnan-
model by lacking a separate processing phase for the cumnlated
f-structures following tile generation of c-structures. In fact there
is no explicit need for retaining the c-structures, except for their
possible display in tutorials and in tracing errenous production,
while testing the rules of the input grammar,

The current implementation delivers both the c-structure as
well as the f-structure of the input sentence. In case of multi-
ple interpretations all c-structures and all valid f-structures are
displayed in succession.

4 A d e q u a c y a n d E f f i c i e n c y o f G r a m m a r s

LFG-Grammars have been mostly studied from the point of view
of linguistic adequacy, i.e. they have been developed in order to
cover substantial aspects of natural language syntax phenomena.
The parser should help the working linguist to find the optimal
grammar for a particular language, to test the individual rules of
the grammar as well as the general formalism.

Parsing efficiency can be studied at least at three different
levels:

1. in view of the efficiency of developing grammars (concerns
the work of the linguist).

2. in view o~ optimizing processing of the input grammar (con-
cerus the preproce~sing phase)

3. in view of optimizing the processing of the input sentence"
(concerml the execution phase and the run time system)

The present study is concerned mostl~ with the third type of
efficiency i.e. ~lith improving parsing efficiency, presupposing lin-

guistic adequm:y of the model. Pructical efficiency of standard par-
sing technique~ depends on the amount of back tracking and repro-
cessing needed in cases of errenous analysis. While using standard
recursive desct:nt parsing techniques guarantees the comprehen-
sive coverage of the whole language, it does not exploit available
information in an optimal manner. Parsing tables with REACH
relations entail more information than single phrase structure ru-
les, they acctmtulate information on the distribution of symbols in
the whole grannnar and enable the parser to build up the correct
c-structure at the first attempt. If for some reason no valid struc-
ture is produced, ordinary back tracking applies and the input
string is reprocessed.

In the final version of the paper further details of current im-
provements will be reported.

5 Litera~ure used

Aho, Alfred V. and Ullman, Jeffrey D. (1979) Principles of
Compiler Design. Reading, Massachusetts et al., Addison-
Wesley Publishing Company.

B r e s n a n , J o a n (1982) (ed.) The mental representation of gram-
maticalrelations. Cambridge, Massachusetts, The MIT Press.

Hellwig, P e t e r (in print) Parsing natiirlicher Sprachen: Grund-
lagen und Reallsiertmgen. In: BAtori, I., Lenders, W. aud
Putschke, W. (eds): Computational Linguistics - An inter-
national Handbook on Computer Oriented Language Kese-
arch and Applications. Berlin, Walter de Gruyter

K i n d e r m a n n , J6 rg and Meier , J u s t u s (1986)Anextensionof
LR-Paraing for Lexical-Fauctional Grammar. Universit~it
Bielefeht, FakultKt LiLi, Forschungsschwerpunkt 8prach- und
Textveracbeitun. (To be published in: Reyle, U. (ed.): Word
Order and Parsing in Unification Grammars).

Phi l l ips , B r h m (1984) An object-oriented parser. In: Bara, Bruno
G. and Guida, Giovanni (eds.) Computational Models of
NaturM Language Processing. Amsterdam et al. North-
Holland, 297-321.

Tomlta~ Masaru (1987) An Efficient Augmented-Context-Free
Parsing Algoritlnn. CL 13:31-46.

Wejsweber~ W i l h e l m (1986) Ein Parsergenerator ftir die lexical
functioned grammar (LFG). EWH Rheinland-Pfalz - Abtei-
lung Kol,lenz - Fachberichte Informatik 4/86.

W i n o g r a d , ~l~rry (1983) Language as a Cognitive Process - Syn-
tax. Reading, Massachusetts et al., Addison-Wesley Pnblis-
hing Cmapany.

27

