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The paper presents a concise description of the LFG-Parser- 
Generator developed at the EWH in Koblenz. Special attention 
is paid to efficiency considerations to speed up the system in the 
execution phase. Lexicon is separated, ll(k)-parsing tables are used 
and some preliminary ratifications are carried out before the actual 
execution. The run time system follows the single path strategy 
and produce.'; the f-structures simultaneously with the processing 
of the c-stru~:tures. 

1 G e n e r a l  C o n s i d e r a t i o n s  o f  P a r s i n g  Effi- 
c i e n c y  

Basic parsing techniques (both shift reduce and recursive descent) 
seem to be inherently inefficient inasmuch as they proceed strictly 
according to the sequence of the rules in the grammar and they 
are not able to exploit the surrounding (preceeding and following) 
syntactic information. Their scope is limited to a single rule and 
they jump mechanically to the sequentially next rule, even if such 
a move is obviously abortive and must  be innmdiately abandoned 
(Winograd 1'483, 108-115; Phillips 1984; Hellwig 1988). 

Parsing tables - as they are conceived in current compiler con- 
struction devices for LR(k) and LL(k) languages - make 1. the 
izfformation provided by the grammar accessible throughout the 
entire processing and not just  at the point where they happen to 
occur, and 2. tlmy can be constructed algorittnnically (Aho/Ullman 

1979). 
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Figure 1: The LFG-System in Koblenz 

2 T h e  L F G - M o d e l  o f  t h e  E W H :  G e n e r a l  
Design 

The Koblenzer LFG-Parser-Generator is an interactive system, de- 
signed to create and to test grammars for natural  languages ac- 
cording to the linguistic philosophy of the LFG as conceived in 
Bresnan und Kaplan (1982). Both lexicon and syntax follow clo- 
sely the original format specifications. The system can be divided 
into two main  phases: preprocessing and actual execotion). 

1. Prepro~:essing of the input gralmnar (including lexicon) ge- 
nerates the executable code, which in turn involves two lo- 
gically distinct steps: 

• Generating the P~OLOG code and 

• Optimizing the PP~OLOG code, - and 

2. the actual execution phase analyses the input string and 
produces the f-structures. 

2 .1  C o d e - G e n e r a t i o n  

In the preprocessing phase the grammar rules are entered into the 
system and translated into an executable PB,OLOG Code. This 
part of the system is written in PASCAL. The implementation 
includes facilities for the treatment of the metavariables ~ and 
needed for the treatment of the long distance dependencies (Weis- 
weber 1986). The grammar may contain both optional categories 
and multiply reoccurring categories (marked by the Kleene-star 
.-operator).  

In order to facilitate the generation of the tables with the reach 
relations the phrase-structure portion of the rules of the gran~nar 
(c-structure rules) is extracted and stored as azl additional, sepa- 
rate data set. 

2 .2  C o d e  O p t i m i z a t i o n  

The second task of the preprocessor is to produce a more efficient 
PKOLOG code. Optimization covers construction of parsing table 
and code revision. 

In order to speed up the actual analysis in the execution phase 
the preprocessor constructs a table of reach relations on the basis of 
first and follow sets, connecting nontermlnal and preterminal nodes 
with a lookahead of 1. 

The definition of the first and follow sets is based on context free 
grammar (Aho/Ullman (1979, 186-192,429-30)): 

G = (N, r~,7,,S) 

~,jO, E ( N  E ~,)* and ..4 F_ 31". 

The first sets are defined for a non terminal symbol A over 
a string c~ of preterminals as the potential preterminal symbols 
which can occur in the leftmost position of the string: 

F~IRST(a) = {a  E Y, I c~==~afl} 

u {el ,~=~e} 
The follow sets of a nonterminal A are  defined as the first sets 

of the preterminals which may occur after the nonterminal A: 

F O L L O W ( A )  := {a E $ I S = ~ a A ~  A a E FIRST( f l )}  

u {$1 S:~A*}. 
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Contrary to the standard definition of the terms (op. cit.) the 
Koblenzer system does not exclude the application to left recursive 
constructions. The reach relations are build up uniformly both for 
left recursive and for all other constructions. 

The first and follow sets allow to define the reach relations, w h i c h  

provide the information for a nonterminals A (in the stack) and 
for a preterminal symbol (located in the input string a) by which 
production rule(s) the preterminal can be accessed: 

R E A C H ( A , a , P ) ~ 3 P 6 7  > w i t h  P = A ~ ~ : 

a 6 FIRST(~) ^ ~(a = ~) 
Va 6 FOLLOW(A) ^ a =~e 

The reach relations are valid for all context free languages and 
extend the applicability of LL(1)-tables for them in general. They 
are calculeted over the first and follow sets  and stored in tables for 
the execution phase. The practical construction of the table of 
reach relations is based on the systematic separation of dictionary 
and grammar rules, without which the construction of the table 
would not be feasible. 

There are a number of grammatically predefined f-descriptions, 
which caa be preprocessed in advance independently of the actual 
input, reducing the number of unifications at run time. Prelimi- 
nary unification of f-structures can be carried out in the following 
configurations: 

• If an f-description subsumes another f-description, the subsumed 
f-structure can be regarded as already unified and dropped. 
In the execution phase the system will Use only the subsu- 
ming (i.e. larger) f-description. E.g. if a dictionary entry 
in the PROLOG code, produced in the preprocessing phase, 
has the specifications as (TSUBJ NUM) = SO, and simulta- 
neously: !(TSUBJ), the later can be safely dropped in order 
to avoid the vacuous ratification of the explicit subject in the 
execution phase. 

• I f  an f-description is unified with new attributes, hitherto not used 
in the grammar, the operation will always succeed, regardless 
of the actual value of the attributes. Unifications of this 
type can be carried out safely in advance regardless of later 
possible changes of the attribute value. 

• There are further minor possible f-structure configurations 
which can be simplified before the actual unification in the 
execution phase. The current optimization will recognize 

I Monitor 
help facilities 
pretty printer 

traces e t c .  

[ Lexicon lookup ] 
T 

Constructing 1 
reach relations 

table 

LL(l)-Parser 
incremental 

construction of 
f-structures 

I OJpn  

- - - - - - - *  I'"' Unification of' 
I ~ - - - - J  f-structures I 

~tstralni~g I 
ions and I - - - - - - - - - - ~  

teness Test s~ 

Figure 2: The run time system 
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some of these special cases and replace the general unifi- 
cation procedures by specialized and hence more restricted 
procedures already at the time of code generation. The ge- 
neral broad unification procedures (merge functions) will be 
substituted here by more specific and computationally less 
expensive procedures. 

3 The  Run  T ime  System 

Firstly, the run time system can be characterized by the basic sepa- 

ration of lexicon lookup and actual parsing, The separation of lexicon 
rules and syntactic rules is based on the linguistic insight that 
the two components (lexicon and grammar) reflect entirely diffe- 
rent language properties. The division can be supported also by 
consideration of processing efficiency. 

The lexicon lookup is carried out at the beginning of the pro- 
cessing and it immediately allows the rejection of input in case of 
missing entries in the lexicon. The user can enter another word 
on the spot and proceed with the processing of the same sentence. 

The next step is the inspection of the LL(1) tables by means of 
which the reach relations are established, The table of reach relations 
provides the optimal subset of grammatical symbols and connects 
them to the lexlcal entries occurring in the actual input sentence. 

Secondly, the run time system is characterized by the single- 

pass strategy of processing, i.e. the input is read in only once, 
merging two fundamental tasks of the LFG: 1. the constructing 
of the c-structures and 2. the unification of the f-structures in a 
single step. 

A special treatment is necessary for the left recursive construc- 
tions. The entries in the LL(1)-table for potential left recursions 
may be used only as long as the repetion is not spurious, otherwise 
their further application is suspended. At the time of the proces- 
sing of phrase structure rules, the associated functional description 
is processed immediately. At this point the nodes relevant to the 
functional assignments are easily accessible as the left hand side 
symbol (for the metavariable T) and the right hand side symbols 
(for the metavariables ~} in the rules. 

As the input is processed the f-structure is constructed step by 
step incrementally. A l l  available attributes and values are merged 
together as soon as they emerge, which is efficient for at least two 
reasons: 1. There is no need to store and reprocess the cumulated 
f-equations in an additional step and 2. merging the f-descriptions 
incrementally step by step operates with smaller chunks, which 
implies faster unification. 

The incremental processing means that at the end of the input 
sentence the analysis is complete and solved and does not need to 
be scanned again in order to solve a series of f-equations. There 
is only one single control operation at the end of the sentence 
checking the wellformedness (completeness and exhaustiveness) of 
the output. 

The single-pass model differs therefore from the Kaplan-Bresnan- 
model by lacking a separate processing phase for the cumnlated 
f-structures following tile generation of c-structures. In fact there 
is no explicit need for retaining the c-structures, except for their 
possible display in tutorials and in tracing errenous production, 
while testing the rules of the input grammar, 

The current implementation delivers both the c-structure as 
well as the f-structure of the input sentence. In case of multi- 
ple interpretations all c-structures and all valid f-structures are 
displayed in succession. 

4 A d e q u a c y  a n d  E f f i c i e n c y  o f  G r a m m a r s  

LFG-Grammars have been mostly studied from the point of view 
of linguistic adequacy, i.e. they have been developed in order to 
cover substantial aspects of natural language syntax phenomena. 
The parser should help the working linguist to find the optimal 
grammar for a particular language, to test the individual rules of 
the grammar as well as the general formalism. 

Parsing efficiency can be studied at least at three different 
levels: 



1. in view of the efficiency of developing grammars (concerns 
the work of the linguist). 

2. in view o~ optimizing processing of the input grammar (con- 
cerus the preproce~sing phase) 

3. in view of optimizing the processing of the input sentence" 
(concerml the execution phase and the run time system) 

The present study is concerned mostl~ with the third type of 
efficiency i.e. ~lith improving parsing efficiency, presupposing lin- 

guistic adequm:y of the model. Pructical efficiency of standard par- 
sing technique~ depends on the amount of back tracking and repro- 
cessing needed in cases of errenous analysis. While using standard 
recursive desct:nt parsing techniques guarantees the comprehen- 
sive coverage of the whole language, it does not exploit available 
information in an optimal manner. Parsing tables with REACH 
relations entail more information than single phrase structure ru- 
les, they acctmtulate information on the distribution of symbols in 
the whole grannnar and enable the parser to build up the correct 
c-structure at the first attempt. If for some reason no valid struc- 
ture is produced, ordinary back tracking applies and the input 
string is reprocessed. 

In the final version of the paper further details of current im- 
provements will be reported. 
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