COMPUTATTONAL PHONOLOGY: MERGED, NOT MIXED

Egon Berendsen, Department of Phonetics,

University of Utrecht, The Netherlands

Simone Langeweg, Phonetics Laboratory, University of Leyden, The Netherlands
Hugo van Leeuwen, Institute of Perception Research, [Iindhoven, The Netherlands

0. Introduction

Research into text-to-speech systems has become a
rather important topic in the areas of linguistics
and phonetics. Particularly for English, several
text~-to-speech systems have been established (cf. for
example Hertz (1982), Klatt (1976)). For Dutch,
text-to-speech systems are being developed at the
University of Nijmegen (cf. Wester (1984)) and at the
Universities of Utrecht and Leyden and the Institute
of Perception Research (IPQ) Eindhoven as well. 1In
this paper we will be concerned with the
grapheme-to-phoneme conversion component as part of
the Dutch text-to-speech system which is being de-
veloped in Utrecht, Leyden and Eindhoven.

One of our primary interests is that the
grapheme-to-phoneme system not only has to generate
the input for speech synthesis, either in allophone
or diphone form, but that it had to be used for other
¥ur oses as well., Thus, the system has to satisfy the
following demands:
~ its output must form a proper and flexible

input for diphone as well as allophone synthesis;

~ it must be possible to easily generate
phonematized lists on the basis of orthographic
input;

- it must be possible to automatically obtain
information regarding the relation between
graphemes and phonemes in texts;

- the system has to be user-friendly, so that it
can be addressed by linguists without computer
training (for example to test their phonological
rules).

In our view, there are two aspecls to a
grapheme-to-phoneme conversion system: a linguistic
and a computational one. The linguist, in fact, pro-
vides the grammar necessary for the conversion and
the engineer implements this grammar into a computer
system, Thus, knowledge about spelling and linguis-
tics are separated from the technical implementation:
the linguist provides the rules and the system exe-
cutes them, The two components will also constitute
the main sections of this paper.

1. Linguistics

For grapheme~to-phoneme conversion it is expedient to
assume several modules, In the first module,
'difficult’' elements like numbers, acronyms and ab-
breviations, have to be changed into their cor-
responding full graphemic notation. Next, one has to
recover units from the spelling which influence gra-
pheme~to-phoneme conversion: for example, words form-
ing compounds are written as one uninterrupted string
in Dutch, but have to be recovered because they in-
fluence graphemic conversion and stress assignment.
The third and wmost important module concerns the
rules which assign phonemes to graphemes. We then
have phoneme information, and can establish further
relevant units on the basis of this information. Fi-
nally, phonological processes have to be accounted
for in modules for stress assignment and segmental
phenomena.

1.1. Phoneme-to-grapheme assignment

Our starting point for the development of the gra-
pheme-to~phoneme system is that graphemes and
phonemes are different entities, which should be
represented at separate levels, As graphemes form the
input for the conversion, the grapheme level is
filled from the start. The derivation of phonemes is
performed in the following way: to each grapheme or
group of graphemes a corresponding phoneme is as-
signed at the phoneme level. This is represented in
(1%, where lower case letters indicate graphemes and
capitals indicate phonemes.

612

(1) grapheme level: abcde g

phoneme level:

Notice that the assumption of two levels, one for
graphemes and one for phonemes, makes it possible to
obtain information about the relation belween gra-
phemes and phonemes. As we will sce below this as-
sumption has some other attractive consequences.

Notice furthermore, that to each grapheme or se-
quence of graphemes a phoneme has to be assigned, ex-
cept in cases where there is no corresponding
phoneme. For the non-linguist, it may come as a sur-
prise that a great number of regularties and subregu-—
larities in correspondance between graphemes and
phonemes can be found. The assignment of phonemes to
graphemes is therefore done by rule. Of course, there
are always words that cannot be captured by the
rules: these will have to be enumerated. The order of
application will then be enumeration, sub-rules and
rules, The string of graphemes is scanned sequential-
ly: first a phoneme is assigned to the initial gra-
pheme, then this is repeated for the second grapheme
and so on, This procedure works very quickly since,
if the grapheme under consideration is an a, only the
rules assigning phonemes to a will have to be consi-~
dered, The rule format used here, is very similar to
the well-known format of Chomsky and Halle (1968)
(=SPE). Some further mechanisms are added to their
rule format:
-~ it is possible to negate elements or groups of

elements in the environment of the rule;
— one can use so-called global rules, referring

back to information available earlier in the

derivation because we use a two-level approach;
- it is possible to use definitions instead ot

repeatedly used sequences, in the rule

environment, such as sequences indicating

sgllable boundaries.

elow, we will demonstrate how our linguistic

knowledge can be expressed in rules and sub-rules.
These rules will not cover all cases, but they will
serve as an illustration. A rule completely written
in the standard SPE format may be as follows.

(2) ¢,h ~> 83 / _ i,n,{<-cons>}
{c)

This rule assigns the phoneme 8J/[%] to the letters
ch, if the latter is followed by the letters in fol-
lowed by either a vowel or ¢, thus accounting for
chinchilla (chinchilla) and China (China). As one can
see from (2) no "long" braces are used to indicate
several alternatives, but each alternative is sur-
rounded by "short" braces, since it is impossible to
use "long" braces in the computer. Furthermore, pho-
nological features are surrounded by angled brackets.

The possibility of negating an element is illus-
trated in (3).

(3) c,h=>8J /i _e,'1

The grapheme preceded by a quote in (3) is negated.
This means that every sequence consisting of ch pre-
ceded by i and followed by e which in turn may not be
followed by 1, is assigned the phoneme SJ. Thus we
account for the alternation in ch-pronunciation in
fiche §chip) where ch is SJ and richel (sill) where
ch is X/[x].

As a last example, a rule is given in which only
phoneme information has a triggering effect.

(4) au => 00 / SJ _

To the graphemic sequence au the phoneme 00/{o:] is
assigned if it is preceded by the phoneme SJ as is
the case in chauvinisme (chauvinism) where ch is SJ.
Notice furthermore, that one can only use phoneme in-

formation in the lefthand environment of rules as-
signing phonemes Lo graphemes, since the string is
scanned from left to right and grapheme by graphemc.

A further addition to the SPLE format which has
been developed is the possibility to require two
things at the same time in the environment of rules:
so~called coordinations, The need for such an option
is illustrated by the following example. Using stan-
dard SPE rules, we have to poslulate the two disjunc-
tively ordered rules in (5) plus the rule in (6) to
account for the variation in pronunciation of [inal e
in Becel (e=E/[c]) (trade mark) and adel (e=@/[2])
(nobility). Rule (6) is independently motivated by
cases such as berg (mountain). Rule (5a) takes pre-
cedence over rule (5b) and (5b) over (6). This means
that if (5a) has been applied both (5h) and (6) will
not be applied, although their requirements are met,
Notice that in (6) the possibility to use definitions
is illustrated.

(5Yae ~>LE /c 1,K~segm>
be ->@/ VOC,CONS _ 1,<-segm>
(6) e->L/ SG
where 5G constitutes the definition for
a sequence of consonants which follow a
vovel in a closed syllable

The derivation of the examples mentioned above is as
follows.

(7) be cel a del T—rg

However, if we have the possibility to use coordina-
tions, wec only have to state rule (8) which takes
precedence over rule (6), The + symbols placed
beneath each other indicate coordination,

8)e >0/ VOC,+§ONS _ 1, <{-segm>
+cC

The derivation (7) now turns into (9).

(9) be cel a del berg
el L]
(8) ‘

(6)) M

1.2, Other modules

Until this point in the paper, we have concentrated
solely on grapheme-to-phoneme conversion proper, but
as we already stated above, the block of rules as-
signing phonemes to graphemes is surrounded by other
rule modules with different functions. We will deal
with some of these modules here, disregarding abbre-
viations, acronyms, numbers, and phonological
processes above the word level.

Since Dutch is a stress language, one aspect of
the grapheme-to-phoneme conversion must be the as-
signment of word stress., The question is then how
word stress must be assigned. Dutch word stress is
not fixed, i.c. always assigned to the same syllable
position, but lexical, i.e. the position may vacil-
late (cf, kAlium (potassium), kabolter (imp),
kapitein (captain)). The rules then must refer to mor-
phological and/or syllable structure.

Syllable weight is decisive in stress assignment
in monomorphemic words. For compounds, however, mor-—
phological structure has to be recognized. By making
reference to sequences of vowels and consonants, the
syllable weight can be defined. As is well-known from
SPE, stress rules in monomorphemic words are disjunc-—
tively ordered (cf. (10)). For our system, the impli-
cation is that the whole input string (for these
stress rules) has to be scanned for each sub-stress
rule. Furthermore, <-st(ress)> has to bc present as a
feature of the vowels in the righthand environment of
the rule. In most cases, compound stress is assigned
to the first word of the compound. Within the
SPE-format, compound stress assignment leads to

stress lowering of the stresses that have already
been assigned. Our rule system, however, assigns
secondary stress in monomorphemic words which is then
raised to primary stress by an additional rule in
both monomorphemic words and the first part of a com-
pound (cf, (11)). The number following a feature in-
dicates that this item must be present at least that
number of times.

(10) VG = +§+voc> ! So @ cannot be stressed
+'0
a) {kvoe,+long> ~> <2st> / CONS,#

VC -> <2st> / _ CONS2,4 —
VC -> <2st> / ¥,CONSO _ CONSO,#

b) VC -> 2st> / ...
«v. _ CONSO,+IT ,CONSO, +<+voc,~st>,CONSO, #
+<-8t> +'11
+'@
¢) VC -> 2st> /[...

Ve {;~st>},CONSOV_ CONSO, <+voc,~st>,CONSO, #
(11) <2st> => <st> [/ k,#,<+segn>0

Therefore, before assigning phonemes to graphemes,
the grapheme string has to be changed in such a way
as to mark Lhose affixations and compoundings that
influence this assignment and the subsequent phono-
logical operations. The operations in this modulc are
also applied by rule, in the format already deall
with, This approach is nol obvious from the outset.
However, the affixes influencing the conversion and
the phonology arce limited and as such, they can be
recognized by rule. Furthermore, many compounds have
internal grapheme sequences which do not occur in
monomor phemic words. On the basis of these sequences,
boundaries can be inserted. Of course, this leaves us
with compounds which do not have clusters which arc
impermissible in monomorphemes. An exception lexicon
will then bc necessary.

Consider the following example. In Dutch, a se-
quence of an obstruent followed by a voiced obstruent
hardly ever occurs in monomorphemic words (cf. Zon-
neveld (1983)). This characteristic is also
represented in the spelling. Thus, a rule of the form
in (12) separates parts of compounds,

(12) @ -> # / <-son>i _ <-son,+voice>j,CONSO,VOC
where 1 and j indicate different segments

After application of rule (12) huisdeur (front door)
is represented as huis#deur. In fact, this rule is
somewhat more complicated by usine coordinations,
since we also have to exclude overgeneralizations
such as huisfiden (lived). The graphemes and boundary
in huis#deur are assigned phonemes by conversion
rules in the next module, furthermore the stress
rules dealt with above, assign stress and finally the
phonological rule of regressive voicing assimilation
applies, converting S into Z, The separate stages of
the derivation of huisdeur are shown in (13).

(13) dinput: huisdeur
boundaries: #dhuis#tdeur i
conversion: ##H ULS#D EURG#H#
sec, stress ¢ # # H"UL S #DMEURYH #
prim, stress : # # H 'UL S # D "EU R # #
phonology: ##tH'UTZ#DEURSH

2. Implementation

Now that the linguist has provided the rules it is
necessary to consider these from a technical point of
view. In these linguistic rules one is able to des-
cribe the phoneme-to-grapheme assignment in terms of
graphemes, phonemes and their context. In principle,
there are two basic possibilities to do so. Either
one refers directly to a basic entity (e.g. grapheme
or phoneme, in which case the structure has a fixed
length) or one uses a larger structure that describes
the context in a more complex manner. A basic entity
can be referred to explicitly, by stating the gra-
pheme or phoneme involved, but also implicitly, by
specifying some features to define a set of phonemes
or graphemes for which the context is valid. As to
the structures, several are available. The first one

613

is alternative validity: one of the specified struc-
tures must be valid to produce a match (cf. rule
(2)). The opposite structure 1is simultaneous
validity: all of the specified structures must be
valid to produce a match (cf. (5)). A third possibil-
ity is negated validity: when the structure is valid,
no match will result and vice versa (cf. (3)). A
fourth (commonly used) structure is optional
validity: the specified structure may or may not be
present (cf. (12)§

It will be clear that the system gains consider-
ably in power by allowing combinations of these
structures. For the implementation this has some non
trivial consequences. First of all, a suitable data
representation must be found to store the linguistic
knowledge. It is desirable to have this representa-
tion in a compact and efficient form, as it will be
consulted 'on-line' during the transcription process.
Because there are no restrictions on the use of these
structures, the use of a dynamic data structure to
represent the knowledge seems appropriate in order to
prevent too much a waste of memory seems obvious.
This dynamic data structure consists of a variable
number of linked wunits., Each unit consists of a
number of 'fields' to represent the different types
of information one needs. This is illustrated below.

06— [[[o | o | o

7777777777 o [,Jf I
=S|I S
S s B
RSN
et ote

In the field type an indication is given of the type
of information and its location. Next, there are four
fields, one of which contains the linguistic informa-
tion formulated in the rules. If the unit is a gra-
pheme, the grapheme concerned is stored in the field
graph, As a phoneme is seen as a different entity, a
phoneme will be represented in the next field, denot-
ed by phon., Then it is possible to use features to
indicate a set of phonemes or graphemes. These are of
two different types but are stored in the same field
feat., This actually is a pointer to a list of
features, containing the value (+ or -) and the
feature concerned. The final information field con-
tains a list of other units. This is needed to
represent the alternative or simultaneous validity,
Both of these structures are stored in this list, and
in combination with the first field containing the
type, the system knows how to interpret this list,
TKe optional validity can be seen as an alternative
validity: either the structure is present or not, and
this is therefore represented as an alternative vali-
dity. Finally certain types do not contain any infor-
mation, but are used as markers, i.e. negation and
end negation which denote the beginning and end of a
negated structure. Following these information
fields, a last field next will refer to a following
unit, which describes the next part in the linguistic
rule. As an example of how this data structure
represents linguistic rules, the lefthand context of
ruge (8) dis “shown in (15). Since the focus is the
starting point, the data structure is constructed
from right to left.

(15)

| e L 111

[~]

1L

BECICIIe
T |

— A

<]

e 1] g RN s N

An input string will now be transcribed by comparing
it with the appropriate units, While consulting this

614

data structure an unexpected problem arises. Because
of the freedom the user has to combine different
structures, it is possible to build a structure which
has different lengths (number of units) for different
paths. The unit or structure following this variable
length structure no longer has a fixed position with
regard to the starting point. This may especially
create problems when this first structure is negated
as well. This can be explained best with an example
which is hypothetical, The structure, however, could
easily be used by a linguist and thus the system
should be able to handle it correctly. Suppose the
right context of a linguistic rule looks as follows.

(16 _ '{a },t
{o,u}

The rule states thal it is not permitted that either
an a, or an o followed by an u, is present before a
t. The question is what exactly is meant with this
negation. A negation is only meaningful within a
closed set, and therefore the set is defined dimpli-
citly by the unit or structure being negated. 'a (not
a) means: all graphemes except a, '%o,u means: all
sequences of two graphemes except the sequence ou.
The sequence at will therefore belong to this sccond
set, If the input string now consists of att, the
first path will reject the string, but the second
path will approve of it, As both paths must approve
of the string to produce a match, this string will be
rejected. However, it is insufficient only to look at
the negated part (and then when no match is detected,
consult the positive part). An input string art would
then be rejected on account of the leading a, which
would be incorrect. As there is not t directly fol-
lowing the a, the {irst path can give no verdict on
the string and should pass it to the second path
which would approve it. It is therefore necessary to
consider all paths in combination with all following
units. For further discussion of this particular
problem, we refer to Van Leeuwen et al. (1986),

3. Concluding Remarks

In this paper we have dealt with the system for gra-
pheme-to-phoneme conversion in Dutch as it is being
developed at the Universities of Utrecht and lLeyden
and IPO, Eindhoven. We have shown that knowledge
about spelling and phonology provides a proper gram~
mar for automatic phoneme-to-grapheme assignment and
that linguistic rules can be implemented without ad
hoc mechanisms. Speed was considered an important
performance feature in constructing the database as
well as in consulting it., Typical values are: 20
scconds to (re)construct a new database (for instance
for testing new rules or new versions of rules), and
some 25 grapheme-to phoneme conversions per second.
This phoneme-to-grapheme assignment system has been
linked to the diphone speech synthesis system that
has been developed at IPO. At the moment, the system
is being tested on a lexicon of about 4000 monomor—
phemic words.

References

CHOMSKY, N, AND M, HALLE (1968), The Sound Pattern of
English, Harper and Row, New York.

HERTZ, S.R. (1982), From text to speech with SRS. In:
JASA 74, pp, 1155-1170.

KLATT, D.H. (1976), Structure of a phonological rule
component for a synthesis-by-rule program. In:
IFEE Transactions on Acoustics, Speech, Signal
Processing ASSP-24, pp. 291-208.

LEEUWEN H, VAN, S. LANGEWEG AND E. BERENDSEN (1986),
'Linguistics as an Tnput for a Flexible
Grapheme~to-Phoneme Conversion System in Dutch’,
In: Proceedings of the IEE Conference on Speech
Input/Output; techniques and applications, pp.
200-206.

WESTER, J. (1984), SF: Contouren van een Ltoegepaste
fonologie. In: De Nieuwe Taalgids 77, pp. 30-43.
ZONNEVELD, W. (1983), Lexical and Phonological Pro-
perties of Dutch Voicing Assimilation. In:
M.v.d.Broecke, V,v.Heuven, W.Zonneveld (eds.),
Sound Structures; studies for Antonie Cohen.

Foris, Dordrecht.

