The procedure to construct a word predictor in a speech understanding system
from a task-specific grammar defined in a CFG or a DCG

Yasuhisa Niimi, Shigeru Uzuhara and Yutaka Kobayashi

Department of Computer Science
Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 606, Japan

Abstract which the ends terminate at different portions on the

phonetic sequence, and the other represents the se-

This paper describes a method for converting a quences of syntactic categories (called category
task-dependent grammar into a word predictor of a sequences), each of which is associated with one of
speech understanding system. Since the word the word strings.In this situation, the controller
prediction 1is a top~down operation, left recursive chooses the word string with the highest score,
rules induces an infinite looping. We have solved sends the associated category sequence to the word
this problem by applying an algorithm for bottom-up predictor and asks it to predict those syntactic
parsing. categories which can syntactically follow the se-

lected sequence.
1. Introduction

In this paper we present a method for converting a

task-specific grammar into a word predictor, an im- linguistic processor
portant component of a speech understanding system.
A context free grammar (CFG) or an augmented transi- I word predictor |
tion network grammar (ATNG) have been used to des-— -
cribe task-specific constraint. When a CFG is used, predicted categorieslgvTcategory sequence
Early's algorithm{1], one of the most efficient top—
down parsing algorithms, has been used to make word controller
predictionf2]. When an ATNG s used, word prediction
is simply made by tentatively traveling along arcs predicted words I |recogn12ed words
going out from a state in an ATNG[3].[4],[5]. Since
the word prediction is a top-down operation, it s lexical processor
difficult to avoid falling into an infinite loop if
the task-specific grammar includes a left recursive phonetic lattice
rule. .
acoustic-phonetic
F. Pereira and D, Warren have developed a definite processor
clause granmar {(DCG)[6]. The rules described in a DCG
are directly converted into a set of Prolog clauses, speech wave
which works as a parser with an aid of the powerful
pattern matching mechanism of Prolog. Thus syntactic Fig. 1 A typical configuration of a speech
analysis can be done without writing a special parser understanding system.

working on the rules of the grammar. Since the syn-

tactic analysis based on a DCG parser also works in

top-down fashion, it shares the same difficulty as

the top-down parsers have. Y. Matsumoto et al. have

developed a method for converting a set of rules

described in a DCG into a bottom-up parser which has category
overcome this difficulty without any loss of the tree
advantages of a DCG[7].

We discuss an application of this method to a word
predictor, that is, the method for transforming task-
specific linguistic constraint defined in a CFG or a
OCG into a Prolog program which acts as a left-to-
right word predictor. word tree

2. Word prediction in a speech understanding system

Fig.1 shows a typical configuration of a speech

understanding system based on a hierarchical model. sequence

An acoustic-phonetic processor analyzes of an input of

uttereance and transforms it into a sequence of pho- phonetic P1 P2 P3] P4 P5 P6
netically labeled segments. Provided that a part of segments

an utterance has been dealt with, the controller

manages its interpretations in the two kinds of trees Fig. 2 A search space of a speech understanding
illustrated in Fig.2; one represents word strings, of systen.

605

The word predictor could parse a given category
sequence and predict the categories which can follow
it, 1t is, however, inefficient to analyze the given
sequence whenever asked to predict. In fact, each
node of the category tree is associated with a par-
sing history on how rules of the grammar have been
applied to analyze the category sequence. The word
predictor receives a node and its parsing history
from the controller and predicts the syntactic cate-
gories following the node.

3. The bottom-up parser and its application to word
prediction

We give a brief explanation of the bottom-up par-
ser proposed by Y. Matsumoto et al. Assume simply
that the rules of the grammar are described in a CFG.
Then, without loss of generality each of the rules
can be expressed as either of the followings.

c -> C1;CZ;..'Cn

(c, <, (i=1,...,n): nonterminals) 1)

c > w (we a terminal) 2)

(1) These rules are transformed into the following
Prolog clauses.

c](G.X1,X) - 11nk(c,G).goal(c2.X1,XZ)....

'
goa](cn.xn~]-xn)- C(G'Xn'x)' i)

dict(c,[w[X1,X). 2")

X and X, (i1=1,..,n) are arqguments to denote a
word string to be analyzed as a list., '1ink(C,G)'
is a predicate to express that a string of which
the left most symbol is a nonterminal C can be
reduced to a nonterminal G. G is called a goal
argument in this sense. 'link' is defined as
follows: if the rule 1) is included in the gram-
mar, then 'link(c].c) holds, and if 'Tink(a,b)’
and 'link(b,c)' ho1d then 'link(a,c)' holds
(transitive law), and 'link(c,c)' holds for every
nonterminal ¢ (reflective law). A predicate
‘dict(C,X,Y)', searching the dictionary for the
first word of a word string X, unifies C with its
syntactic category and Y with the remaining
string.
(2) A predicate goal(G,X,Z) 1s defined as follows.

goal(G,X,Z) :— dict(C,X,Y),1ink(C,G),
exec(C,G,Y,7). 3)

where 'exec' is a predicate to execute a predi-
cate 'c(G,Y,2)'.

(3) Furthermore, for any nonterminal C, the fol~
lowing assertion called a terminal condition
holds:

c(c, %, X). 4)

The parser for the given grammar consists of all
these Prolog clauses.

In order to use the bottom-up parser as a left-
to-right word predictor. we change the predicate
'goal' as follows:

goal(G,[],[]) :~ Vink(C,G), terminal(C),
output(C), fail. 3'-1)

606

goal{G,X,Z) = dict(C,X,V),1ink(C,G),
exec(C,G,Y,Z). 3'-2)

where 'terminal(C)' ¥s a predicate to be true when a
nonterminal C appears in the left-hand side of a
production of 2).

The modified parser, recelving a word string from
the controller, executes the second of 'goal‘ clauses
in which the second argument X is unified with the
given word string. Syntactic analysis of X is con-
tinued until X becomes empty. Then, the first of
‘goal’ clauses is invoked and predicts all the syn-
tactic categories which make both '1ink(C,6)‘ and
"terminal(C)' hold.

4, Word prediction under a left-to~right control

In this section we discuss the method for conver-
tion of a set of productions defined in a CFG into a
set of Prolog clauses which acts as a left-to-right
word predictor. In order that this predictor can work
without re-analyzing a given category sequence, we
must have a table (named a history table) which
contains an association of a category sequence with
its parsing history, that is, a history on how pro-
ductions are used to parse the sequence.

Considering a transition network depicted in Fig.3
for a production 'c->c,c , we express a parsing
history with a list of paips of a state name in a
transition network and a goal argument appearing in
bottom-up parsing. For the grammar shown in Fig.4, a
category sequence 'N N' is parsed as shown in
Fig.5(a) and the corresponding state transition is
shown in Fig.5(b). A parsing history for this se-
quence can be expressed as a list [nps2,s]. The
state name 'nps2' indicates that the Yast 'N' of the

, C] CZ Cn
Fig. 3 A transition network for a rule
C->¢C, C c

1 65 «ee Cp.
S -> NP VP NP -> N

NP -5 NP N VP -> V NP
NP —> ART NP

Fig. 4 An example of context free grammar.

(a)

Fig, 5 The parse tree of 'N N' and the
corresponding state transition.

sequence 'N N' has been parsed as 'N' in the produc-
tion 'NP->NP N', and the goal argument 's' indicates
that the sequence is the left most part of the string

derived by the start symbol 's'.

Now we shall describe the procedure to transform a
set of productions described in a CFG into a word
predictor.

(1) For a production 'c-»>c,c,..c ', the following set
of Prolog clauses is generated:

c]([G|H]) 1= link(c,G).a]([G|H]).

a1(E) = pred(cz.[azlE]).

aZ(E) = pred(c3.[a3|E]).

anu](E) - pred(cn,{an|E])

an(E) i~ ¢(E). 4-1)

where H and E are the arguments to store parsing
histories, the first element of H is a state name
and that of E is a goal argument.

(2) For a nonterminal ¢, the following terminal con-
dition holds:

c(lcialE]) :~ exec(a,E). 4-2)

(3) Corresponding to 'goal' in the bottom-up parser,
a predicate 'pred' is defined as follows:

pred(G,H) :— 1ink(C,G), terminal(C),
newface(No), hand to(No,C),
makenode(No,C, [G[H]), fail. 4-3)

A predicate 'newface(No)' generates a new node
number in 'No', 'hand_to(No,C)' sends a pair of a
node number 'No' and a predicted syntactic cate—
gory C to the controller, and 'makenode()' stores
a riode number and its corresponding parsing his-
tory expressed as 'C([G|H])}' in the history
table.

(4) The controller in a speech understanding system
communicates the word predictor through a predi-
cate 'wantword' which sends to the word predictor
a node number associated with a category sequence
which the controller has selected, while the word
predictor returns through 'hand_to' a set of the
syntactic categories which can follow the se-
lected category sequence. The definition of
‘wantword' is as follows:

wantword(0) :~ !,pred(s,{]). 4-4)
wantword(No) :~ pick up(No,Z),!,call(Z). 4-5)

The symbol s in 4-4) signifies the start symbol,
and the clause 4-4) is used to make a prediction
at the Tleft most part of an utterance. The
predicate 'pick_up(No,Z)' Tooks up the history
table for a node number 'No', and picks up its
associated history expressed as 'C([G|H])', the
execution of which invokes the clause of 4-1) or

4-2).
5. Conclusions
In this paper we have proposed the procedure to

convert a grammar defined in a CFG or a DCG into a
Protog program which functions as a word predictor.

The procedure is giveg for the left-to-right control,
but it is not difficult to expand it for the island-
driven control.

To simplify the description, we have given the
conversion procedure for a grammar defined in a CFG,
but it is easy to expand it for a grammar defined in
a DCG, As long as one concernes on a speech under-
standing system in which syntax and semantics are
well defined, one could take an advantage of a DCG in
which a nonterminal can have some arguments as para-
meters, and could use semantic restrictions effec-
tively to interpret an utterance. In developing a
speech understanding system of which the task is to
access a database, we use semantic markers to des-
cribe semantic restrictions between an adjective and
a noun, a noun phrase and a postposition (in Japan-
ese), and case slots of a verb and its fillers. In
this case a rule can be expressed as follows:

C(Sg) => (Po(Sge59)1C (S (P1{5,,55))C,o(5,)...
[Pn~1(sn—1'sn)}cn(sn)'

where S. (i=0,1,..,n) is a list of semantic markers,
P. (i=1,2,..,n) is a predicate to denote a constraint
among semantic markers. Considering a transition
network for this DCG rule, we associate P, with its
i~th state and let P, function as a converter of
semantic markers. Stnce P, would be defined in the
form of a table, this "converter could work
bidirectionally. In addition, stacking a pair of a
syntactic goal variable and a list of semantic
markers in the parsing history, we can develop a
procedure to transform a grammar described in a DCG
into a word predictor.

Acknowledgement

This research was supported by the grant-in-aid
for the special project research 'Intelligent Proces-
sing and Integration of Knowledge Informations in
Multi-Media' by the Ministry of Education, Science
and Culture of Japan.

References

[11 J. Early: An efficient context-free parsing algo-
rithm, Comm. ACM, 13-2 (1970).

[2] T. Sakai and S. Nakagawa: A speech understanding
system of simple Japanese sentences in a task
domain, Trans. of IECEJ, E60-1 (1977).

[3] W.A. Woods et al.: Speech understanding systems
—-— Final technical progress report 30 October
1974 to 29 October 1976, BBN Tech. Rep. 3438,
vol. 4 (1976).

[4] D.R. Reddy et al.: Speech understanding system
-— Summary of results of the five year research
effort at Carnegie-Mellon Univ., Carnegie-Mellon
Univ. Tech. Rep. (1977).

[56] Y. Niimi and Y. Kobayashi: A voice-input program-
ming system using BASIC-Tike language, Proc. IEEE
Int. Conf. ASSP (1978).

[6] F.C.N. Pereira and D.H.D. Warren: Definite clause
grammar for language analysis -~ A survey of the
formalism and comparison with augmented transi-
tion networks, Artificial Intelligence, 13
(1980).

[7] Y. Matsumoto et al.: BUP -~ A bottom-up parser
embedded in Prolog, New Generation Computing, 1-2
(1983).

607

