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Abstract 

Parsing spoken input introduces serious problems not present in 
parsing typed natural language. In particular, indeterminacies and 
inaccuracies of acoustic recognition must be handled in an integral 
manner. Many techniques for parsing typed natural language do not 
adapt Well to these extra demands. This paper describes an 
extension of semantic caseframe parsing to restricted-domain 
spoken input. The semantic caseframe grammar representation is 
the same as that used for earlier work on robust parsing of typed 
input. Due to the uncertainty inherent in speech recognition, the 
caseframe grammar is applied in a quite different way, emphasizing 
island growing from caseframe headers. This radical change in 
application is possible due to the high degree of abstraction in the 
caseframe representation. The approach presented was tested 
successfully in a preliminary implementation. 

1. The Need for Parsing in Speech 
Understanding 

For a computer to understand and respond to a wide range of 
spoken natural language, it is not sufficient merely to recognize 
which words were spoken. As in the ea,se of typed natural language 
input, it is necessary to determine the meaning of the input utterance 
taken as a whole. The field of natural language processinrj is 
devoted to ¢!etermining the meanings of word sequences typed into a 
computer. It seems, therefore, natural to apply the techniques 
already developed in processing typed language to (tetermining the 
meaning of spoken input. 

Urffortunately, it is not possible to apply techniques for parsing 
typed natural language to spoken input in a straightforward manner, 
We list some problems below. We assume the existence of a speech 
recognizer that transforms a spoken input into a word lattice - -  a set 
of hypothesized words thnt may be present, to,ether with their 
starting and ending times and the prob~,bility of each word being 
correct. In general, there will be several competing word hypotheses 
for each point in the input signal. This assumption is somewhat 
simplistic in that it does not provide any way for a parser to influence 
the lower levels of speech processing. However, the separation 
assumption helps to illustrate the following problems in adapting 
parsing techniques for typed input to spoken input: 

~, lexical ambiguity: Mere than one word may be produced by 
the speech recognizer fur a given segment of speech. If the 
ambiguities were simply between different word choices, this 
could be handled by the natural language processing 
techniques used for word sense ~.mbiguity (e.g. "b:.mk" may be 
a place to put money, the side of ~ river, an action of placing 

trust, tilting a vehicle sideways, etc.). However, not only can 
multiple words be hypothesized, but the competing hypotheses 
can occur at overlapping, adjoining, or separate segments of 
the input signal, without a consistent set of word boundaries. 
There is no parallel phenomenon for typed natural language. 

e probabi l i ty  measures: Speech processing systems typically 
provide a relative likelihood of the correctness of each word 

hypothesis. These probabilities or scores are based on criteria 
such as the quality of the match between speech signal and 
phonemic dictionary expectations. Since a t~peeeh recognition 
system may hypothesize many words for the same segment of 
speech, and since these word scores may differ considerably, 
they are important in limiting the s.earch. However, there is no 
natural' way to make use of such likelihood scores in most 
natural language processing techniques, 

,, unrecognized words: Because of hurried prenunciati0n or 
co-articulation effects, a speech recognizer may completely fail 
to recognize some words in an utterance. "rhe missed words are 
usually (though not always) short, unstressed, "function" words 
rather than longer "content" words, This emission is not 
I;andled by standard natural language processing lechniques. 
However, new techniques for processing typed, but 
grammatically imperfect, input may be adaptable to this purpose 
since they are also designed 1o deal with missing words. 

umj~ammatical input: In addition to the word omissions from 
impeHect word hypothesization, spoken inpu~ tends to contain 
more real gramrnatical deficiencies than typed input, Once 
spoken, words c~rrnot be easily retracted, bul tyl)ed utterances 
can be conectod if the user notices the error in time. Thus, 
fail-soft techniques for recovery from grammatical errors in 
nt~tur~J Io.nguage proces.('ing are particulc, rly pertinent when 
extended to the interpretatien of spoken input. 

The.~e difficulties argue against the sirnplistic appro~tch .of 
atta(:hing a 8poe(.h.recognition module to a traditional natural 
lanpu~.t~je analyzer designed fer words ent~:red as unan~biguous 
AS;.II characters. No matter hew good e,';teh may be in isolation, the 
two will not inlegrate successfully if the I.'-~.tter cannot provide 
semar~tie expectations to the former, cannot handle ma.ssive lexieal 
arnL',ifrrity, or cannot tolerate errors of recognition and grammatical 
devk~don. Moreover, with adequate integration, i'eedback from a 
na~u~'.l language analysis component can substantially improve the 
perfcnn::u~ce of a COllnected speech recognizer. This performance 
ellh[incemoi"lt is b~J(]ly needed since no preseht connected speech 
recognition method comes close to human abiiil:ies. And even 
hLii~lt'.'.!:; of'fen fail t<) rGcegnize function words e×lracted from their 
surro~tndit]g conte×t. The applic~tion of linguistic knowledge and 
semantic expectat!ohs through natural language ~,.nalysis techniques 
is thus necded to cen~plement ~cousti¢ recognition methods by 
con:4r;~ining the set cf possible (anp! .3#!)sib!e) hdct pletadon,'; of the 
words in an input utterance. 

2. Problems with Network-based Parsing of 
Spoken Input 

The case for substantial integration of natural language processing 
with speech recognition is clear, The issue is how to adapt natural 
language parsing techniques to cope with the special problems of 
spoken input as described above, Most such adaptation efforts until 
new have been based on transition network parsing. Essentially, 
they encode the expectations of the parser in a transition network 
whose arcs are labelled by syntactic or semantic categories of words 
or constituents. An input is analyzed by finding a path through the 
network the4 corresponds to the sequence of words in the input. 
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Constituent labels on arcs are associated with their own 
subnetworks, and traversing the arc in the top-level network is 
accomplished by traversing the corresponding subnetwork. 
Typically, transition net parsers operate by traversing the network 
from left to right in step with the input, exploring subnetworks in a 
top.down manner as they go. Well known examples of transition-net 
parsers include ATN [14] parsers (as used in the LUNAR system 
[15]), the RUS parser[I], and the parser used in LIFER [8]. The 
HARPY system [9] used an integrated network encoding for linguistic 
and acoustic information. 

A major problem with transitionmet parsers for speech recognition 
lies in the difficulty they have in handling input that does not meet 
their grammatical expectations. Frequently a word may be missing 
due to acoustic misrecognition or actual omission. If a network is 
being explored left to right, finding the correct path through the 
network would then involve skipping over the arc that corresponded 
te the rnissing word. If simple skipping were all that was involved, the 
problem might well be tractable, but the problem is compounded by 
'the typical n'rilt]pHcity of possible parses, especk, l!y if the word lattice 
contains many alternative words for the same speech segment. The 
method tlsed to detect a non-viable parse in tile search is inability to 
follow any arc from the current node --. precisely the situation most 
likely with a missing word, Thus, network parses can no Ioqger cise 
the standard halting criteria for non.productive (constraint violating) 
searches. A furi.her compounding of the pi'oblem arises if the word 
after the missing word allows a spurious arc to be followed from the 
network node at which the missing word should have been 
recognized. In this case, it will generally he very hard to find out 
where the errer really occurred. Other forms of ungrammaticatity, 
either actually spoken or mia-recoonition artifacts, result in similar 
problems. ]he absence of consistent word boundalies from the 
acoustic analysis I~hase complicates things further. 

Various methods have been tried to adapt network parsing to these 
problems, including on-demand insertion of extra arcs (e.g. [13, 12]). 
Perhaps the most promising modification for speech input is the 
replacement of left-to-right tracing techniques by center-out 
techniques that work from words with high certainty according to the 
acoustic component [16]. However, semantic importance has never 
been combined with acoustic certainty in selecting these islands. 
Island growing, attractive in theory, presents serious practical 
problems for ATN parsers, not the least of which is the requirement 
of running ATNs from right to left. This method of interpreting the 
networks, necessary with center-out teehr4ques, fails when tests 
depend on registers that have not yet been set, No modifications to 
network-based techniques have been totally successful. 

3. Semantic Caseframe Parsing 

Our approach is quite different from the transition network 
approach and is derived from recent work at Carnegie-Mellon 
University by Carbonell, Hayes, and others [3, 7, 6, 2] on 
understanding typed, restricted domain natural language, with a 
particular concentration on handling ill-formed input. The technique 
that makes it possible to process sensible but potentially imperfect or 
incomplete uttere.nces is called semantic caseframe instantiation. 
Unlike network-based techniques, caseframe methods er~able a 
parser to anchor its interpretation on the most significant input parts, 
and to grow its islands of interpretation to the less significant 
segments. Since the more significant words tend to be longer and 
therefore more likely to be recognized reliably, the islands of 
significance are correlated with islands of certainty. In the process, 

semantic and syntactic expectations generated from the more 
meaningful parts of the input can be used to discriminate arid 
hypothesize the meaning o[ troublesome segments. 

The essential difference between caseframe and transition network 
techniques is the level of encoding of the syntactic and semantic 
information they both use. Caseframe techniques encode the 
information at a more abstract level and thus are able to interpret it in 

multiple ways. Network techniques "compile" the information into 
netwmks at a much lower an d more rigid level, and thus do not have 
nearly as niuch fleedom in iriterpreting the same knowledge in 
multiple ways, As we will show, the ability to apply syntactic and 
semantic information in an interpietive way is the key to the 
successful integration 0! speech and naturaI language processing. 

The central notion behind a caseframe is that of a head concept 
modified by a set of related concepts or cases, bearing well-defined 
semantic relations to the head concept. The original linguistic 
concept of a caseframe as first described by Fillmore [4], relied on a 
small set of universally applicable cases. The recent work at CMU 
adapts this idea to restricted domain situations by allowing 
specialized cases for each concept related to a head concept. 
Consider, for instance, the caseframe shown in Figure 1. 

#S ( ED 
Name ForwardAction 
Type verb 
SemanticCases ( 

#s(sc 
Name Agent ;~.he sender 
InstanceOf (MailAdrOesc) 
SyntaxCase (Subject)) 

#s(sc 
Name MsgObj ;a message 
InstanceOf" (MsgOb..iDe sc) 
SyntaxCase ( D i r e c t O b j e c t ) )  

#S(SC 
Name MsgReci pien t.Obj ; the  r e c e i v e r  
Ins tanceOf  (Mai lAdrDesc)  
S~/ntaxCase ( I n d i r e c t : O b j e c t  PrepO) 
CaseMarker ( t o ) )  

#S(SC 
Name CCRecipientObj  ; the CarbonCopy 
InstanceOF (Mai lAdrDesc)  ; r e c e i v e r  
SyntaxCase (PrepO) 
CaseMarker (cc ing  c o p y i n g ) ) )  

RequiredSC (MsgObj NsgRecipienl;Obj Agent ) )  
IteadForms ( f o rward  resend) )  

Figure1:  Caseframefor f o rward  

Figure 1 defines the forward action of an electronic mail system. 
The notation is that of the casefrLtme speech pa.is~'r described later. 
Without going into notational dmtails, the caseframe is identified as a 
verb or clausal caseframe corresponding to the verbs (HeadForms) 
"forward" or "resend". It also has four cases: Agent (the person 
doing the sending), MsgObj (the message being forwarded), 
MsgRecipientObj (the person the message is beMg forwarded to), 
and CCRecipientObj (the people who get a copy of the forwarded 
message). The MsgObj case must be filled (hlstanceOf) by a 
MsgObjDesc (defined by another caseframe, see below), and the 
other cases must be filled by a MailAchDesc (the caseframe 
representing a peison or "mail address"). All the cases are required, 
except CCRecipientObj, which is optional. In addition, to this pLIrely 
semantic information, the casefr~me contains sorne ,",yutu.cUc 
information: the Agent case is [mt~d[ested as ~l~e .';yntactic subject; 

MsgObj as the direct object; MsgRecipientObj as either the indirect 
object or as the object (PrepO) of a prepositional phrase, whose 
preposition (CaseMarker) is "to"; CCRecipientObj as a prepositional 
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phrase with "preposit ions" either ccing or copying. 

#S(EO 
Name NsgObjDesc 
Type Noun 
Semant;i :Cases  ( 

#s(sc 
Name D e s c r i p t o r s  
P a t t e r n  (new r e c e n t  o l d  unexamined examined)  
Synl;axCase ( p r e n o m t n a l ) )  

#s(sc 
Name D e t e r m i n e r s  
P a t t e r n  ( t h e  t h i s  t h a t  any a e v e r y }  
SynbaxCase (prenominal)) 

#s(sc 
• Name MsgOr ig inOb j  ; where the mai l  

I n s t a n c e O f  ( M a i l A d r l ) e s c )  ; came f rom 
CaseNarke r  ( f r o m )  
Synt.axCase (P repO) )  

#s(sc 
Name TimeObj 
I n s t a n c e O t  ( l l ou r l )esc  Nonthl )esc OayDesc) 
Casei '4arker ( f r o m  b e f o r e  a f t . o r  s i nce  on a t )  
SyntaxCase ( P r e p O ) ) )  

HeadForms (message n l a i ] ) )  

Figu re 2: Caseirame for message 

In addition t,_) actions, we also use caseframes to describe objects 
Figure 2 shows a nominal caseframe for the message object of our 
electronic mall system. This has the same fern] as the verb 
caseframe, except that its HeadForms correspond to the head nouns 
of a noun phrase describing an electronic mail message. In addition, 
the Descriptors case has a new SyntaxCase, prenominal, which 
implies that the elements of Pattern (new, re;-ent, etc.) may appear in 
the adjective position in this caseframe. 

With a suitable caseframe for MailAdrPesc and knowledge of what 
things like clause, noun phrase, direct object, adjective position, etc. 
mean, the above caseframes clearly contain enough information to 
produce analyses of sentences like: 

Forward to Jones at CMUA the messages from Smith. 
Did Brown resend any new me.ssage,.~ to Oreen at BI3N? 
What mail did Jones forward to ,£mith? 
Brown is forwarding the re, cent mes@oges to Green, 

l~he central question is how to combine the information in the 
caseframe definitions with syntactic knowledge and thus analyze the 
sentences into a set of caseframe instances. 

The approach taken in earlier caseframe work at CMU has been to 
embed the syntactic knowledge in the parser code and let the parser 
interpret the caseframes using that knowledge. E.g. the algorithms in 
[3] use semantic caseframes and focus on prepositions as 

casemarkers as well as the order of subject, verb, indirect object and 
direct object for parsing. Unfortunately, prepositions tend to be small 
function words that are often poorly enunciated and recognized. 
Therefore we have adopted the same general approach for our 
speech parsing work, but modified the parsing algorithms. The same 
caseframes are used, but with a somewhat different interpretation 

process. 

The ability to apply multiple recognition methods is a central 
advantage of caseframe parsing. Since the restricted-domain 
language description embodied in the caseframes is at such a high 
level of abstraction, we are free to interpret it in a way appropriate to 
the particular situation. The caseframes tell us whet componen.ts to 
look for and constrains where we can look for them. But exactly 
how we look for them is adaptable so that it can be driven by the 

most reliable information we have. 

4. Applying casel'rames to speech iqput 

We can summarize the previous two sections as follows: 

~, caseframes of the kind we have described contain the right 
amount of information at the right level of abslraction to parse 
restricL~d-domain spoken input; 

, , the algorithms that have been developed for using such 
caseframes in parsing typed natural language input are 
unsuiiable for spoken input because the algorithms rely on the 
presence of small function words that are recognized at best 
unreliably by word hypothesizers. 

The trial implementation o[ our approach applies caseframes to the 
input, but does it in a novel way by: 

1. examin!ng the lattice of words !typothesized by the speech 
recognizer for these that correspond to caseframe headers" 

2. combining all the case.frames correzponding to the words found 
in all semantically and syntactically plausible ways 

3. for each caseframe eornbinatien thus formed, attempting to 
account for the gaps between the cqseframe header words that 
were involved in its formation by parsing words from the gaps 
against empty semantic and syntac[.ic roles in the caselrame 
cembinatiorl 

4. selecting as the final parse those c~seframe instances that best 
account for the tel)at, based on hew much input they cover and 
the acoustic scores of the words in that parse. 

This multi-stage approach avoids the problems of the caseframe 

parsing algorithms for typed input by anchoring the parse on 
caseframe headers. Caseframe headers are verbs (for clausal 
caseframes} and nouns (for nominal caseframes). These are content 
bearing words that tend to be stressed in speech and are often multi- 
syllabic. This improves their chances of recognition above that of 
short, unstressed function werds. The anchor points are thus 
correlated to the most acoustically certain words. 

The idea of forming one or more parses at a skeleton level and 
instantiating the one (or ones) that satisfy all constraints down to the 
lexical level is akin to the ABSTRIPS [10] and NOAH [t 1] planners 
that first established a general plan and later worked in all tile detail 
called for in the situation. That way, the parser does not waste time 
in. hypothesizing local details that cannot possibly fit into a global 
parse. 

An additional advantage associated with working from caseframe 
headers is that tile resulting caseframe combinations form a ready. 
made semantic interpretation of the input. The interpretation is 
typically incomplete until it is filled out in the subsequent gap-filling 
stage. However, if the recognition of some or all of the rernaining 
words is so poor that the semantic interpretation is never fully 
completed; then the parser still has something to report. Depending 
on the application domain, a skeleton interpretation could be 
sufficient for the application, or would at least form the basis of a 
Iocussed t~eguest for confirmation or clarification to the user [5]. 

In the remainder of this section, we examine irJ more detail our 
current implemental.ion of,.the approach outlined above, starting first 
with a description of the word lattice that drives our casefl'am(.'-based 
parser for spoken input. This parser operates in the context of" a 
complete speech understanding system Hint handles sp~aker 
independent continuous speech with a 200 word vocabulary in an 
electronic mail domain. 
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4.1. The word latt ice 
Tile input to our caseframe speech parser can be viewed as a two- 

dimensional lattice of words. Each word has a begin time, an end 
time, and a likelihood score. The begin/end times slate where the 
word was detected in the utterance. The score indicates hew certes.in 
we are that the word is correct, based on acoustic-phonetic 
information. In the sample lattice below, the I~erizontal din~eP.sion is 
time, and the vertical dimension corresponds to certainly of 
recognition of individual words by the speech recognizer (F;nerating 
the lattice. This word lattice was consbucted by har=d for 
demonstration purposes. 

Ttme in m i l l i s e c o n d s  
O 500 1000 1500 2000 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ) ,  

HI RECEIVED 

LO 
Figure 3: 

USERS 

FORWARD 

PRINT 

MESSAGE 

,RECIPIFNTS 

THE 
TO 

AT 

LINEPRINTEB 

SMITH 

COPYING 

A simplified word lattice containing different kinds 
of words. Header words are underlined 

4.2. Header combinat ion 
To start its processing, the parser selects from the word lattice all 

header words above a recognition likelihood threshold. These 
headers correspond to caseframes, but only some combinations of 
the hypothesized caseframes are possible in the domain. To 
calculate the legal caseframe combinations, a set of phrase structure 
rules were derived that apply at the frame level (rather than at the 
more detailcd word level). 

To make matters more concrete, let us refer to the sample lattice 
above. In this lattice, the underlined header words would be 
combined to form the nuclei of sentences like: "Forward message 
Smith CMUA" and "Print message lineprinter." Caseframes can 
combine in this way if one is of the right type (as defined by the 
InstanceOf attribute for the case) to fill a case of another. When 
combining caseframes associated with header words, the parser also 
uses knowledge about word order to limit the possible combinations. 
In our example, the forward caseframe (as defined in Figure 1) has a 
slot for a MsgObjDesc as a DirectObject. Tile order restrictions built 
into the parser only allow for the direct object after the verb. The 
message caseframe (Figure 2) fulfills these requirements. It is a 
MsgObjDesc, whose HeadForm "message" occurs after the forward 
caseframe HeadForm "forward" in the lattice. Thus the two can be 
combined, ~s long as the constraint of the required MsgRecipientObj 
can be satisfied (by "Smith"). 

Each time a valid sequence of headers is found, it is given an 
overall likelihood score and merged with the previous ones. At the 
end of the header combination phase, we have a list of ordered 

partial phrases, containing all the legal sequences of header words 
that can be found in the word lattice. Each partial phrase is 
represented as a set of nested caseframe instances. For instance, 
three combinations would be formed from the header words: 

Forward message Smith CMUA 
and these would have the nesting structure: 
[ForwardAction 

HeadForm FORWARD 
MsgObj [MsgObjDesc 

HeadForm MESSAGE] 
MsgRecipientObj [MaiIAdrOesc 

HeadForm SMITH 
llost [LocationDesc 

HeadForm CMUA]]] 

[ForwardAct ion 
HeadForm FORWARD 
MsgObj [MsgObjDesc 

HeadForm MESSAGE] 
CCRecipientOb.j [Mai lAdrDBsc 

HeadForm S,M I TIt 
Host [Locat . i  onDesc 

HeadEorm CMUA]]] 

[ Fo rwa rdAc t i on  
tleadForn~ FORWARD 
MsgObj [MsgObjDesc 

HeadForm MESSAGE 
MsgOr ig inObj  

[Ma i lAd rgesc  
HeadForm SMITlt 
I tost [ Loca t i onDesc  

HeadForm CMUA]]] ]  
where square brackets indicate c.~seframo instances and tile r~esting 
is convoyed by textual inclusion, 

A routine,t() check word iunctures is used (:luring the header 
combination phase. Whenever two header words are combined for a 
p~rtial phrase, tile juncture between these words is chocked to 
ascertain whether they overlap (indicating an illegal combination), 
abut, or have a gap between them (indicating .,significant intervening 
speech events). This check also enables the p~;r'ser to deal efficiently 
with co-articuI~ted phonemes as in "some messages". These 
pho~lemes are merged in pronunciation, resulting in a pair of 
ow:rlapping but valid word candidates. These word juncture checks 
comprise a tap-down feedback mechanism to improve the speech 
recognition. 

4.3. Casemarker  connect ion 
Once caseframe combinations have been formed, the next step is 

to fill in the gaps between the words of the corresponding partial 
phrase. We take each combination in turn, starting with the one with 
maximal-likelihood. The caseframe speech parser first tries to fill In 
casemarkers, which are usually prepositions. 

Let us continue our example with the first header combination 
formed from the phrase "Forward message Smith CMUA". For this 
phrase, casemarkers may appear before the prepositionally marked 
cases "Smith" and "CMUA'. The requirement that the casemarkers 
must appear between the header words of the containing and 
contained caseframes is a strong constraint on the possible locations 
of.the casemarkers. Thet:e are generally strong limitations on what 
words could possibly serve as markers for these cases. In our 
example, using the caseframe definitions of the previous section, the 
parser would thus try to verify one of the words "to", "from ", "ccing" 
or "copying" between "message" and "Smith" and one of the words 
"on" or "at" between "Smith" and "CMUA ". 

Whenever a set of words are predicted by the parser in a given 
segment, a word verification module is called. This module has 
knowl#dge of the complete word lattice. A word that matches the 
prediction is sought from the lattice in the specified gap. In addition, 
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the acoustic-phonetic data is consulted to give an indication whether 
~ e  word is a perfect fit for the gap, a left or right anchored fit, or if 
there are intervening significant speech events on the left or right. 
This information allows the parser to determine how much input has 
been accounted for by a given partial phrase hypothesis. 

Every successfully verified casemarker causes the parser to spaCvn 
another partial phrase hypothesis. The word could be a spuriously 
hypothesized word, i.e. one that was "recognized" even though it 
was never spoken (also known as a false alarm). Therefore we leave 
the old partial phrase without the casemarker in the ordered list of 
partial phrases and merge a new partial phrase into the list. The new 
partial phrase is a copy of the old one, with the casemarker also filled 
in. A new likelihood score is computed for this phrase. 

The score for a partial phrase is currently computed as the sum of 
the time normalized probabilit ies of each word divided by the time of 
the total utterance. Thus the probability of each word is multiplied by 
the duration of the word, summed over all words and divided by the 
duration of the utterance. This favors longer partial phrases over 
shorter ones. However, even extremely low scoring long phrase 
candidates are favored over well scoring shorter phrases. We are 
currently al';o exploring other alternative scoring procedures for 

4.3. C a s e m a r k e r  connection 
Once caseframe combinations have been formed, the next step is 

to fill in the gaps between the words of the corresponding partial 
phrase. We take each combination in turn, starting with the one with 
maximal-likelihood. The caseframe speech parser first tries to fill in 
casemarker,% which are usually prepositions. 

Let LIS continue our example with the first header combination 
formed from the phrase "Forward message Snffth CMUA'. For this 
phrase, cas~;markers may appear before the prepositionally marked 
cases "Smith" and "CMUA'. The requirement that the casemarkers 
must appear between the header words of the containing and 
contained caseframes is a strong constraint on the possible locations 
of. the casemarkers. rhet:e are generally strong limitations on what 
words could possibly serve as markers for these cases. In our 
example, using the caseframe definitions of the previous section, the 
parser would thus try to verify one of the words "to' ,  "from", "ccing" 
or "copying" between "message" and "Smith" and one of the words 
"on" or "at" between "Smith" and "CMUA ". 

Whenever a set of words are predicted by the parser in a given 
segment, a word verification module is called. This module has 
knowledgc-' of the complete word lattice. A word that matches the 
prediction is sought from the lattice in the specified gPp. In r-~dditlon, 
the acoustic-phoneiic data is consulted to give an indication whether 
the word is a perfect fit for the gap, a left or right anchored fit, or if 
there are intervening significant speech events on the left or right. 
This information allows the parser to determine how much input has 
been accounted for by a given patti,t1 phrase hypothesis. 

Every succ~:ssfully w~rified casemarker causes the parser to spawn 
another partial phrase Ilypothesis. 1he word could be a spuriously 
hypothesized word, i.o. one that was "recognized" even though it 
was never spoken (also known as a false alarrn). Therefore we leave 
the old partial phrase without the cus(.~marker in tile ordered list of 
parti&l phr~tses and merge a new p~,.t tial phr.t,..se into the list. The new 
partial i)hrase is a copy of the old one, will] the cas,:.marker also filled 
in. A new likelihood score i t  computed for this phrase. 

The score for a partial phrase is cunently computed as the ann of 

the time normalized probabilities or each word d!vided by the time of 
the total utterance. Th~s the probability of each word is multiplied by 
the dHt alien of tt~o word, summed over all words and divided by the 
duration of the utter~.'.nce. This favors longer pmtial phrases ever 
si~oHt.,r enos. However, even exhenlely low scoring long phrase 
c~tHdi:!al,~?S are favored over w~ll :~ccring shelh'~r phrases. We are 
eurr,?ntty also ~:~xFl,),ing other aht:!lDativ9 SCOIJll(J ptocedLtres for 

partial phrases. These methods will recognize the tradeoff between 
long, low scoring utterances that seem to account for all the input 
and short phrase hypotheses with excellent scores that leave gaps in 
the utterance unaccounted for. An ideal scoring function would also 
use semantic and syntactic wellformedness as criteria. 

Sometimes, none of the case markers being verified are found. 
This may moan that: 

+ the speech recognizer failed to detect the marker. Unvoiced 
co-articulated monosyllabic words (such as prepositions) often 
go undetected; 

+ or, the most-likely parse at the case-header level was indeed 
incorrect, and a lower likelihood parse should be explored to 
see if it is more consistent with the acoustic data. 

At present only the second choice is considered, but we are.  
exploring the possibility of an enhanced verifier to re-invoke the 
lower level processes (acoustic analysis or word hypothesizer 
modules) with shong expectal ions (one or two words) at a 
prespecified window in the input. We llope that such a process can 
detect words missed in a more cursory general scan --- and thus use 
sen]antic and syntactic expectations to drive the recognition of the 
most difficult segraents of the input. If the verifier were [o return with 
a recognized case rnarl-~er, but too low u hkelihood, the overall 
likelihood value o[ the next parse couM rnal,~e it the preferr(~d one. 

4.4, Pronomina l  f i l l ing 
The next phase fills it] the prenornirml sections of the partial 

i;,hrasos, The parser looks for prcnominals in the following order: 

Predeterminer DeterminP.r Ordinal Cardinal Adjective * 
A lexicon associates each potential prenominal word with the correct 
type. Thus we first look for all possible predeterminers to.g, 'all') 
within the available gal) before the corresponding header word, 
Again the succe.':',sful verification of s,lch ~ prediction spqwns a new 
partial phrase, just as described for casemarker& t he  old partial 
phrase relnains ill the list as a precaution against false al,'u'nls. It 
should be notcd that remaining old phrases ac~;ounting for les::~ input 
receive a lower global likelihood value because unaccounted for 
input is penalized, 

Then deiernliners are examined. In our exanlple, the determiner 
"th,.:" will succu:s~,[ully be foHnd to modify the nI,P, SS~i,~O ca:~,~[rLulle, 
The other prenumirml types are lilted it] the same way. Post.nominal 
modifiers (i.e., pruposJtiolial phr4ses) ~re parsed by the ca.';eframe 
instantiation inclhod above, as nominal an,I sunteadal caselrames 
~.,.re treated in mucit lhe same w!G. 

4,5. Extending coverage to simple questions 
Although we have not made completeness of syntactic coverage a 

focus in this work (see next section), we made some simple 
extensions to gain some idea of the difficulty in syntactic extension. 
In particular, we extended the system to deal with simple 
interrogatives as welt as imperatives and declaratives. No changes to 
the casehames themselves were necessary, just to the parsing 
algorithm. We introduced a separate stage in processing to look 
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exclusively for question words. These words may be,'the standard 
wh-words (who, what, when, ...) or sentence-initial auxiliary verbs to 
indicate a yes/no question (do, does, is, will, ...). 

Tile word order rules in the header combination phase also 
required extension. These rules now have to allow fronted cases 

What messages did Smith send 

and questions where the HeadForm of the case is collapsed into a 
question word 

Who sent this message 
• Finally, we added a new module to fill auxiliary verbs in the correct 
locations. It operates just like the casemarker connection module 
and will not be described further here. By providing the parser with 
constraints governing the agreement of subject/verb, of  auxiliary 
verb/main verb, and of pronominal/noun, the number of plausible 
alternatives is kept low. 

5. Summary and Future Direct ions 

We have explored an approach to parsing restricted-domain 
speech based on semantic caseframes. The approach was shown 
capable of dealing with the uncertainties and ambiguities of speech 
and the common ungrammaticalities. We argued thai a caseframe 
approach was better suited to these problems than more traditional. 
network-based approaches. This suitability was attributed to the 
high degree of abstraction with which caseframes represen't their 
linguistic information, and the corresponding flexibility in 
interpretation this allows. A simple implementation using this 
approach was described with a worked example. 

We envision continued development of cur system and 
enhancements to our approach in several directions: 

Our current approach relies too heavily on finding caseframe 
header words. While most are multi-syllable and easily 
recognizable at the acoustic level, many (e.g. 'send') are not. 
We are looking at ways to drive the recognition from the most 
reliably recognized words, whether they correspond to 

caseframe headers or not. 

• * Most of tile syntactic knowledge used by our current system is 
embedded in the code. While this makes for elficient and robust 
recognition, it poses obvious problems for syntactic extensibility 
and maintainability. We are looking at ways of separating out 
the syntactic knowledge, while retaining the power and flexibility 
inherent in specifying a restricted-domain language through 
caseframes, rather than (say) rewrite rules. 

o The nature of the interpretation performgd by the present 
system causes it to operate at large multiples of real.time. We 
are looking at methods of compiling the caseframe grammar 
into more efficient recognition systems, with the eventual goal of 
real.time operation, while retaining our current flexibility and 
robustness. 
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