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Abstract

Parsing spoken input introduces serious problems not present in
parsing typed natural language. In particular, indeterminacies and
inaccuracies of acoustic recognition must be handled in an integral
manner. Many techniques for parsing typed natural language do not
adapt well o these extra demands. This paper describes an
extension of semantic caseframe parsing to restricted-domain
spoken input. The semantic caseframe grammar representation is
the same as that used for earlier work on robust parsing of typed
input. Due to the uncertainty inherent in speech recognition, the
caseframe grammar is applied in a quite different way, emphasizing
island growing from caseframe headers. This radical change in
application is possible due to the high degrée of abstraction in the
caseframe representation. The approach presented was tested
successfully in a preliminary implementation,

1. The Need for Parsing in Speech
Understanding

For a computer to understand anc respond to a wide range of
spokan natural language, it is not sufficient mergly to recognizce
which words were spoken. As in the case of typed natural language
input, it is necessary to determine the meaning of the input utterance
taken as a whole. The field of natural language processing is
devoted to determining the meanings of word sequences typed into a
computer. It secems, therefore, natural to apply the lechnigues
already developed in processing typed language to determining the
meaning of spoken input.

Unfortunately, it is not possible to apply technigues for parsing
typed natural language to spoken input in a straightforward manner,
We list some problems below. We assuine the existence of a speech
recognizer that transforms a spoken input into a word lattice -— a set
ot hypothesizad words that may be present, togethor with their
starting and ending times and the probability of each word being
correct. In general, there will be several competing worcl hypotheses
for each point in the input signal. This assumption is somewhat
simplistic in that it does not provide any way for a nparser to influence
the lower levels of speech processing. However, the separation
assumption helps to illustrate the following problems in adapting
parsing techniques for typed input to spoken input:

s lexical ambiguity: More than one word may be produced by
the speech recognizer for a given segment of speech. if the
ambiguities were simply between dilferent word choices, this
could be handled by the natural language processing
techniques used for word sense ambiguity (e.g9. "hank” may be
a place to put money, the side of a river, an action of placing

trust, tilting a vehicle sideways, etc.). However, not only can
multiple words be hypothesized, but the competing hypotheses
can occur at overlapping, adjoining, or separate segments of
the input signal, without a consistent set of word boundaries.
There is no parallel phenomenon for typed natural language.

e probability measures: Speech processing systems typically
provide a relative likelihood of the correctness of each word

hypothesis. These probabilitics or scores are based on criteria
such as the quality of the match between speech signal and
phonemic dictionary expectations. Since a §peech recognition
system may hypothesize many words for the same segment of
speech, and since these word scores may differ considerably,
they are important in limiting the search. Howeaver, there is no
natural’ way to make use of such likelihood scores in most
natural language processing techniqgues.

unrecognized words: Because of hurried pronunciation or
co-articulation effects, a speech recognizer may completely fail
to recognize some words in an utterance, The missed words are
usually (though not always) short, unstressed, “function” words
rather than longer "content" words. This omission is not
handled by standard natural language processing lechniques.
However, new techniques for processing typed, but
qrammatically imperfect, input may be adaptable to this purpose
since they are also designed 1o deal with missing words.
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uvirgrammatical inpat: In addition to the word omissions from
imperfect word hypothesization, spoken input tends to contain
more real grammatical deficiencies than typed input,  Once
aspoken, words cannot be easily retracted, hut typed utierances
can he corrected if the user notices the error in time.  Thus,
fail-soft techniques for regovery from grammatical errors in
natural language processing are particulerly pertinent when
extendad to the intorpretation of spoken input.

These difficulties srgue against the simplistic approach of
attaching a speech-recognition module to a traditional natural
language analyzer dasigned for words entered as unambiguous
ASCH characters. No matter how good each may be in isclation, the
two will not integrate successhully if the latter cannot provide
semaritic axpectations to the former, cannot handle massive lexical
ambiqily, or cannot tolerate errors of recagnition and grammatical
deviadion.  Moreovar, with adequate integration, feedback from a
natural language analysis component can subslantially improve the
perfenaance of a connected speech recognizer. This performance
anhancemeint is badly needed since no present connected speech
recognition method comes close to human abiiities.  And even
huinzns often fail to recognize function werds extractad from their
surrounding context.  The application of linguistic knowledge and
semantic expectations through natural languayge anaiysis technigues
is thus needoed to complement acoustic recognition metheds by
conslrzining the set of possible (and gensible} intcipretations of the
words in an input ulterance.

2. Problems with Network-based Parsing of
Spoken Input

The case for substantial integration of natural language processing
with speech recognition is clear. The issue is how to adapt natural
language parsing techniques to cope with the special problems of
spoken input as described above. Most such adaptation etforts until
now have been based on transition network parsing. Essentially,
they encode the expectations of the parser in a transition network
whose arcs are labelled by syntactic or semantic categories of words
or constituents. An input is analyzed by finding a path through the
network that corresponds to the sequence of words in the input.

587



Constituent labels on arcs are- associated with their own
subnetworks, and traversing the arc in the top-lavel network is
accomplished by traversing the corresponding subnetwork.
Typically, transition net parsers operate by traversing the network
from left to right in step with the input, exploring subnetworks in a
top-down manner as they go. Well known examples of transition-net
parsers include ATN[14] parsers (as used in the LUNAR system
[15]), the RUS parser[1], and the parser used in LIFER [8]. The
HARPY system [9] used an integrated netwerk encoding for linguistic
and acoustic information.

A major problem with transition-net parsers for speech recognition
lies in the difficuity they have in handling input that does not meet
their grammatical expectations. Frequently a word may be missing
due to acoustic misrecognition or actual omisgion. i a network is
being explored lekt to right, finding the correct path through the
network would then involve skipping over the arc that corresponded
to the missing word. If simple skipping were all that was involved, the
problem might well be tractable, but the problem is compounded by
the typical multiplicity of possible parses, especially if the word lattice
centains many alternative words for the same speech segment. The
method used to detect & nen-viable parse in the search is inability to
follow any arc from the current node —- precisely the situation most
likely with a missing word, Thus, netwotk parses can no longer use
the standard halting criteria for non-productive (constraint viotating)
searches. A further compounding of the piroblem arises if the word
after the missing word allows a spurious are to be followed from the
network node at which ihe missing word should have been
recognized. In this case, it will gencrally he very hard to find out
vhere the error really occurred. Other forms of ungrammaticality,
either actually spoken or mis-recognition artifacts, result in simitar
problems. The absence of consistent word boundadies from the
acoustic analysis phase complicates things further.

Various methods have been tried to adapt network parsing to these
problems, including on-demand insertion of extra arcs (e.g. [13, 12]).
Perhaps the most promising modification for speech input is the
replacement of left-to-right tracing techniques by center-out
technigties that work from words with high certainty according to the
acoustic component [16]. However, semantic importance has never
been combined with acoustic certainty in selecting these islands.
Island growing, attractive in theory, presents setious practical
problems for ATN parsers, not the least of which is the requirement
of running ATNs from right to left. This method of interpreting the
networks, necessary with center-out techniques, fails when tests
depend on registers that have not yet been set. No modifications to
network-based technigues have been totally successful.

3. Semantic Caseframe Parsing

Our approach is quite different from the transition network
approach and is derived from recent work at Carnegie-Melion
University by Carbonell, Hayes, and others[3,7,6,2] on
undsrstanding typed, restricted domain natural language, with a
particular concentration on handling iil-formed input. The technique
that makes it possible to process sensible but potentially imperfect or
incomplete utterances is called semantic caseframe instantiation,
Unlike network-based techniques, caseframe methods enable a
parser to anchor its interpretation on the most significant input parts,
and to grow its islands of interpretation to the less significant
segments. Since the more significant words tend to be longer and
therefore more likely to be recognized reliably, the islands of
significance are correlated with islands of certainty. In the process,
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semantic and syntactic expectations generated from the more
meaningful parts of the input can be used to discriminate and
hypothesize the maaning cf troublesome cegments.

The essential difference hetween caseframe and transition network
techniques is the level of encoding of the syntactic and semantic
information they bhoth use. Caseframe techniquos encode the
information at a more abstract level and thus are able to interpret it in
‘multiple ways. Network techniques "compile” the information into
networks at a much lower and more rigid level, and thus do not have
nearly ss much freedom in interpreling the same knowledge in
multiple ways. As we will show, tha ability to apply syntactic and
semantic information in an interpretive way is the key to the
successiul integration of speech and natural language processing.

The central notion behind a caseframe is that of a head concept
maodified by a set of related concepts or cases, bearing well-defined
semantic relations to the head concept. The original linguistic
concept of a caseframe as first described by Fillmore [4}, retied on a
small set of universally applicable cases. The recent work at CMU
adapts this idea to restricted domain situations by allowing
specialized cases for each concept related to a head concept.
Consider, for instance, the caseframe shown in Figure 1.

#S(ED
Name ForwardAction
Type verb
SemanticCases (
#S(SC
Name  Agent
InstanceOf (MailAdrDesc)
SyntaxCase (Subject))
#S(SC
Name MsgObj
InstanceOf (MsgObjDesc)
SyntaxCase (DirectObject))
#S(sC
Name MsgRecipientObj ;the receivor
Instance0f (MailAdrDesc)
SyntaxCase (IndirectObject Prep0)
CaseMarker (to))
#S(SC
Name CCRecipientObj
InstanceOf (MailAdrDesc)
SyntaxCase (Prep0)
CaseMarker {ccing copying)))
RequiredSC (MsgObj MsgRecipientObj Agent))
HeadForms (forward resend))
Figure 1: Caseframe for forward

ithe sender

1@ message

;the CarbonCopy
ireceiver

Figure 1 defines the forward action of an electronic mail system.
The notation is that of the caseframe speech parser described later.
Without going into notational details, the casalrame is identified as a
verb or clausal caseframe corresponding to the verbs (HeadForms)
"forward" or "resend”. It also has four cascs: Agent (the person
doing the sending), MsgObj {the message being forwarded),
MsgFecipientObj (the person the message is being forwarded to),
and CCRecipientObj (the people who get a copiy of the forwarded
message), The MsgObj case must be filled (InstanceOf) by a
MagObiDesc (defined by another caselrame, see below), and the
other cases must be filled by a MailAdiDesc (the caseframe
representing a person or "mail address"). Allthe cases are required,
except CCRecipientObj, which is optional. In addition, to this purely
semantic information, the cassfranie contains some syntuctic
information: the Agent case is munifested as ihe syntactic suhject;

MsgObj as the direct object; MsgRecipientObj as either the indirect
object or as the object (PrepO) of a prepositional phrase, whose
preposition (CaseMarker) is "to"; CCRecipientObj as a prepositional



phrase with "prepositions” either ccing or copying.

#S(ED
Name MsgObjDesc
Type Noun
SemanticCases (
#S(SC
Name Descriptors
Pattern (new recent old unexamined examined)
SyntaxCase {prenominal))
#S(SC
Name Determiners
Pattern {the this that any a every)
SyntaxCase (prenominal))
#S(SC
© Name MsgOriginObj v where the mail
InstanceOf (MailAdrDesc) ; came from
CaseMarker (from)
SyntaxCase (PrepQ))
#3(SC
Name TimeObj
InstanceOf (HourDesc MonthDesc DayDesc)
CaseMarker (from before after since on at)
SyntaxCase (PrepQ)))
HeadForms (message mail))
Figure 2: Caselrame for message

In addition to actions, we also use caseframes to describe objects
Figure 2 shows a nominal caseframe for the message object of our
electronic mail system. This has the same form as the verb
caseframe, except that its HeadForms correspond to the head nouns
of a noun phrase describing an electronic mail message. In addition,
the Descriptors case has a new SyntaxCase, prenominal, which
implies that the elements of Pattern (new, recent, etc.) may appear in
the adjective position in this caseframs.

With a suitable caseframe for MailAdiDesc and knowledge of what
things like ctouse, noun phrase, direct object, adjective position, stc.
mean, the above caseframes clearly contain enough information to
produce analyses of sentences like:

Forward to Jones at CMUA the messages from Smith.

Did Brown resend any new messages to Green at BBN?

What mail did Jones forward to Smith?

Brown is forwarding the recent messages to Green.
The central question is how to combine the information in the
caseframe definitions with syntactic knowledge and thus analyze the
sentences into a set of caseframe instances.

The approach taken in earlier caseframe work at CMU has been to
embed the syntactic knowledge in the parser code and let the parser
interpret the caseframes using that knowledge. E.g. the algorithms in
[3] use semantic caseframes and focus on prepositions as
casemarkers as well as the order of subject, verb, indirect object and
direct object for parsing. Unfortunately, prepositions tend to be small
function words that are often poorly enunciated and recognized.
Therefore we have adopted the same general approach for our
speach parsing work, but modified the parsing aigorithms. The same
caseframes are used, but with a somewhat different interpretation
process.

The ability to apply multiple recognition methods is a central
advantage of caseframe parsing. Since the restricted-domain
language description embodied in the caseframes is at such a high
level of abstraction, we are free to interpret it in a way appropriate to
the particular situation. The caseframes tell us what components to
took for and constrains where we can look for them. But exactly
how we look for them is adaptable so that it can be driven by the

most reliable information we have.

4. Applying caseirames to speech input

We can summarize the previous two sections as follows:

e caseframes of the kind we have described contain the right
amount of information at the right level of absltraction to parse
restrictad-domain spoken input;

s the algorithms that have been developed for using such
caseframes in parsing typed natural language input are
unsuitable for spoken input because the algorithins rely on the
presence of smail function words that are recognized at best
unreliably by word hypothesizers.

The trial impleinentation of our approach applies caseframes to the
input, but does it in a novel way by:

1. examining the lattice of words hypothesized by the speech
recognizer for those that correspond to caseframe headers

2. combining all the casuframes correzponding to the words found
in all semantically and syntactically plausible ways

3. for each caseframe combination thus formed, attempting to
account for the gaps between the coseframe header words that
ware involved in its formation by parsing words from the gaps
against empty semantic and syniaciic roles in the caseframe
combination

4. selecting as the final parse thoze caseframe instances that best
account for the input, based on how much input they cover and
the acoustic scores of the words in that parse.

This multi-stage approach avoids the problems of the caseframe

parsing algorithms for typed input by anchoring the parse on
caseframe headers. Caseframe headers are verbs (for clausat
caseframes) and nouns (for nominal caseframes). These are content
bearing words that tend to be stressed in speech and are often multi-
syllabic. This improves their chances of recognition above that of
short, unstressed function words. The anchor points are thus
correlated to the most acoustically certain words.

The idea of forming one or more parses at a skeleton level and
instantiating the one (or ones) that satisfy all constraints down to the
lexical level is akin to the ABSTRIPS [10] and NOAH [11] planners
that first established a general plan and fater worked in all the detail
called for in the situation. That way, the parser does not waste time
in- hypothesizing locat details that cannot possibly fit into a_global
parse.

An additional advantage associated with working from caseframe
headers is that the resulting caseframe combinations form a ready-
made semantic interpretation of the input. The interpretation is
typically incomplete until it is filled out in the subsequent gap-filling
stage. However, if the recognition of some or all of the remaining
words is so poor that the semantic interpretation is never fully
completed; then the parser still has something to report. Depending
on the application domain, a skeleton interpretation could be
sufficient for the application, or would at least form the basis of a
tocussed fequest for confirmation or clarification to the user [5].

In the remainder of this section, we examine in more detail our
current implementation of-the approach outlined above, starting first
with a description of the word lattice that drives our caseframe-based
parser for spoken input. This parser operates in the context of a
complete speech understanding system that handles spoaker
independent continuous speech with a 200 word vocabulary in an
electronic mail domain.
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4.1. The word lattice

The input to our caseframe speech parser can be viewed as a two-
dimensional lattice of words. Each word has a begin time, an end
time, and a likelihood score. The begin/end times state where the
word was detected in the utterance. The score indicates how certain
we are that the word is correot, based on acoustic-phonetic
information. In the sample lattice helow, the horizontal dimension is
time, and the vertical dimension corresponds to certainty of
recognition of individuat words by the speech recognizer generaling
the lattice.  This word laltice was constiucted by hand for
demonstration purposes.

Time in milliseconds

0 500 1000 1500 2000
_________________________________________ N
HI | RECEIVED
L i CMUA
1 |  USERS
K I MESSAGE
E | AT
L | FORWARD
1 I LINEPRINTER
H |  PRINT
0 | SMITH
0 i RECIPIENTS
D i COPYING
I THE
Lo | T0

Figure 3: A simplified word lattice containing different kinds
of words. Header words are underlined

4.2, Header combination

To start its processing, the parser selects from the word lattice ail
header words above a recognition likelihood threshold. These
headers correspond to caseframes, but only some combinations of
the hypothesized caseframes are possible in the domain. To
calculate the legal caseframe combinations, a set of phrase structure
rules were derived that apply at the frame leve! (rather than at the
more detailed word level).

To make matters more concrete, let us refer to the sample lattice
above. in this lattice, the underlined header words would be
combined to form the nuclei of sentences like: "Forward message
Smith CMUA" and "Print message lineprinter.” Caseframes can
combine in this way if one is of the right type (as defined by the
InstanceOf attribute for the case) to fill a case of another., When
combining caseframes associated with header words, the parser also
uses knowledge about word order to limit the possible combinatians.
In our example, the forward caseframe (as defined in Figure 1) has a
slot for a MsgObjDesc as a DirectObject. The order restrictions built
into the parser only allow for the direct object alter the verb. The
message caseframe (Figure 2) iulfills these requirements. it is a
MsgObijDesc, whose HeadForm "message"” occurs after the forward
caseframe FHaadForm "forward" in the lattice. Thus the two can be
combined, as long as the constraint of the required MsgRecipientObj
can be satisfied (by "Smith"),

Each time a valid sequence of headers is found, it is given an
overall likelihood score and merged with the previous ones. At the
end of the header combination phase, we have a list of ordered

partial phrases, containing all the legal sequences of header words
that can be found in the word lattice. Each partial phrase is
represented as a set of nested caseframe instances. For instance,
three combinations would be formed from the header words:
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Forward message Smith CMUA
and these would have the nesting structure:
[ForwardAction
HeadForm FORWARD
MsgObj [MsygObjDesc
HeadForm MESSAGE]
MsgRecipientObj [MailAdrDesc
HeadForm SMITH
Host [LocationDesc
HeadForm CMUAY]]

[ForwardAction
HeadForm FORWARD
MsgObj [MsgObjDesc
HeadForm MESSAGE)
CCRecipientObj [MailAdrDesc
HeadForm SMITH
Host f[LocationDesc
HeadForm CMUAT]]

[ForwardAction
HeadForm FORWARD
Msg0bj [MsgObjDaesc
HeadForm MESSAGE
Msg0riginObj
[MailAdrDesc
HeadForm SMITH
Host [LocationDesc
HeadForm CMUA]]]]

where square brackets indicate caseframe instances and the nesting
is conveyed by textual inclusion,

A routine.to check word junctures is usad during the header
combination phase. Whenever two header words aie combined for a
partial phrase, the juncture between these words is checked to
ascertain whether they overfap (indicating an iifegal combination),
abut, or have a gap betwegen them {indicating significant intervening
speech events), This check also enables the parsar to deal efficiently
with co-articufated phonemes as in “some messages”. These
phonemes are merged in pronunciation, resulting in a pair of
ovarfapping but vafid word candidates. These word juncture checks
comprise a top-down feedback mechanism to improve the speech
racognition,

4.3. Casemarker connection

Once caseframe combinations have been formed, the next step is
to fill in the gaps between the words of the corresponding partial
phrase. We take each combination in turn, starting with the one with
maximal-likelihood. The caseframe speech parser first tries to fill in
casemarkers, which are usually prepositions.

Let us continue our example with the first header combination
formed from the phrase "Forward message Smith CMUA". For this
phrase, casemarkers may appear before the prepositionally marked
cases "Smith" and "CMUA". The requirement that the casemarkers
must appear between the header words of the containing and
contained caseframes is a strong constraint on the possible locations
of.the casemarkers. There are generally strong limitations on what
words could possibly serve as markers for these cases. In our
example, using the caseframe definitions of the previous section, the
parser would thus try to verify one of the words "to”, "from", "ccing”
or “copying " between "message” and "Smith" and one of the words
"on" ot "at" between "Smith" and "CMUA".

Whenever a set of words are predicted by the parser in a given
segment, a word verification module is called. This module has
knowledge of the complete word lattice. A word that matches the
prediction is sought from the lattice in the specitied gap. In addition,



the acoustic-phonetic data is consulted to give an indication whether
the word is a perfect fit for the gap, a left or right anchored fit, or if
there are intervening significant speech events on the left or right.
This information allows the parser to determine how much input has
been accounted for by a given partial phrase hypothesis.

Every successfully verified casemarker causes the parser to spawn
another partial phrase hypothesis. The word could be a spuriously
hypothesized word, i.e. one that was "recognized" even though it
was never spoken (also known as a false alarm). Therefore we leave
the old partial phrase without the casemarker in the ordered list of
partial phrases and merge a new partial phrase into the list. The new
partial phrase is a copy of the old one, with the casemarker also filled
in. A new likelihood score is computed for this phrase.

The scare for a partial phrase is currently computed as the sum of
the time normalized probabilities of each word divided by the time of
the total uiterance. Thus the probability of each word is multiplied by
the duration of the word, summed over alt words and divided by the
duration of the utterance. This favors longer partial phrases over
shorter ones. However, even extremely low scoring long phrase
candidates are favored over well scoring shorter phrases. We are
currently also exploring other alternative scoring proceduras for
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to fill in the gaps between the words of the corresponding partial
phrase. We take each combination in turn, starting with the ane with
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cases "Smith" and "CMUA". The requirement that the casemarkers
must appear between the header words of the containing and
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hypothesized word, i.e. one that was "recognized" even though it
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the old partial phrase without the casemarker in the ordared list of
partial phrases and merge a new padtial phrase into the list. The new
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the time normalized probabilities of each word divided by the time of
the total utterance. Thus the probabifity of each word is multiplied by
the dutalion of the word, summed over all words and divided by the
duradion of the utterance. This favors longer partial phrases over
shoitar cnes,  However, even extremely low sooring long phrase
candidales are favored over wall scering shortar phrases. We are
currently also exploring other abiernative scoring procedures for

partial phrases. These methods will recognize the tradeoff between
long, fow scoring utterances that seem to account for all the input
and short phrase hypotheses with excellent scores that leave gaps in
the utterance unaccounted for. An ideal scoring function would also
use semantic and syntactic weliformedness as criteria.

Sometimes, none of the case markers being verified are found.
This may mgan that:

o the speech recognizer failed to detect the marker. Unvoiced
co-articulated monosylilabic words (such as prepositions) often
go undetected;

e or, the most-likely parse at the case-header level was indeed
incorrect, and a lower likelihood parse should be explored to
sce it it is more consistent with the acoustic data.

At present only the second choice is considered, but we are-
exploring the possibility of an enhanced verifier to re-invoke the
lower level processes (acoustic analysis or word hypothesizer
modules) with strong expectations (one or two words) at a
prespecified window in the input. We hope that such a process can
detect words missed in a more cursory general scan ~ and thus use
semantic and syntactic expectations to drive the recognition of the
most difficult segments of the input. If the verifier were to return with
a recoghized case marker, but too low a hkelihood, the overall
likelihood value of the next parse could make it the preferred ona.

4.4, Prenmminal filling
The next phase fills in the prenominal sections of the partial
rhrases. The parser looks for prenominals in the following order:

Predeterminer Determiner Qrdinal Cardinal Adjective*

A lexicon asgociates each potential prenominal word with the correct
type. Thus we lirst look Tor all possible predeterminers {e.g. 'all’)
within the available gab belore the corresponding headoer word,
Again the sucesssful verification of such a prediction spawns a new
partial phrase, just as described for casemarkers. Tho old partial
phrase remains in the list as a precaution against false alarms, |t
should be noted that remaining old phrases accounting for less input
receive a lower global likelihood value becausz unaccounted for
input is penalized.

In our example, the determiner
nseframe,

Then determiners are examined.
“the” sofully be Tound to modity the niessag
Thae other prenominal types are lilled in the same way, Post-nominal
maodifiers (i.e., propositional phrases) are uarsed by the caseframe
instantiation mclhod abova, as nominal aned sententiad caseframes
arc reated in much the same

will suce

4.5, Extending coverage to simple questions

Although we have not made completeness of syntactic coverage a
focus in this work (see next section), we made some simple
extensions to gain some idea of the difficulty in syntactic extension.
In particular, we extended the system to deal with simple
interrogatives as well as imperatives and declaratives. No changes to
the caseframes themselves werg necessary, just to the parsing
algorithm. We introduced a separate stage in processing to look
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exclusively for question words. These words may b‘e;ftﬁe standard
wh-words (who, what, when, ...) or sentence-initial auxiliary verbs to
indicate a yes/no question (do, does, is, will, ...).

The word order rules in the header combination phase also
required extension. These rules now have to allow fronted cases

What messages did Smith send
and questions where the HeadForm of the case is collapsed into a
question word

Who sent this message
. Finatly, we added a new module to fill auxiliary verbs in the correct
locations. It operates just like the casemarker connection module
and will not be described further here. By providing the parser with
constraints governing the agreement of subject/verb, of. auxiliary
verb/main verb, and of prenominal/noun, the number of plausible
aiternatives is kept low.

5. Summary and Future Directions

We have explored an approach to parsing restricted-domain
speech based on semantic caseframes. The approach was shown
capable of dealing with the uncertainties and ambiguiiies of speech
and the common ungrammaticalities. We argued that a caseframe
approach was hetter suited to these problems than more traditional
network-based approaches. This suitability was attributed to the
high degree of abstraction with which caseframes represent their
linguistic information, and the corresponding flexibility in
interpretation this allows, A simple implementation using this
approach was described with a worked oxample.

We envision continued development of ocur system and
enhancements to our approach in several directions:

@ Qur current approach relies too heavily on linding caseframe
header words. While most are multi-syllable and easily
recognizable at the acoustic level, many (e.g. 'send’) are not.
We are looking at ways to drive the recognition from the most
refiably recognized words, whether they correspond to

caseframe headers or not.

o Most of the syntactic knowledge used by our current system is
embedded in the code. While this makes for elficient and robust
recognition, it poses obvious problems for syntactic extensibiity
and maintainability. We are looking at ways of separating out
the syntactic knowledge, whila retaining the power and fiexibility
inherent in specifying a restricted-domain language through
caseframes, rather than {say) rewrite rules.

¢ The nature of the interpretation performgd by the present
system causes it to operate at lirge multiples of real-time. We
are looking at methods of compiling the caseframe grammar
into more efficient recognition systems, with the eventual goal of
real-time operation, while retaining our current flexibility and
robustness.
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