
The computational complexity of

sentence derivation in functional unification grammar

Graeme Ritchie
Department of Artificial Intelligence

University of Edinburgh
Edinburgh EHI IHN

Abstract

Functional unification (FU) grammar is a general
linguistic formalism based on the merging of
feature-sets. An informal outline is given of how
the definition of derivation within FU grammar can be
used to represent the satisfiability of an arbitrary
logical formula in conjunctive normal form. This
suggests that the generation of a structure from an
arbitrary FU g~ammar is NP-hard, which is an
undesirably high level of computational complexity.

I. Functional Unification Grammar

There is not space here to give a full
definition of FU grammar (see Kay (1979, 1984, 1985),
Ritchie(1984)); the aim is rather to outline how the
problem of satisfiability of a propositional logic
expression in conjunctive normal form (CNF) can be
expressed as a derivation in FU grammar, thereby
suggesting that the derivation question in FU grammar
is "NP-hard" (Garey and Johnson (1979)). 0nly those
aspects of FU grammar which are relevant to the
sketch of the proof will be outlined. The argument
here is wholly independent of the generative power
discussion in Ritchie(1984).

Functional unification (FU) grammar is a
grammatical formalism which allows descriptions of
linguistic structures to be expressed as functional
descriptions (FDs), which are sets of "features"
[attribute-value pairs), and grammatical derivation
is expressed in terms of these structures. Within a
level of an FD, each feature-name can appear only
once; i.e. no feature can appear with two different
values. Constituent structure within FDs is
indicated as follows. In an FD E, any feature F
whose feature-name is listed in the value of the
PATTERN feature at the same level of nesting within E
is a constituent. Feature-values written in angle-
brackets (e.g. <DEFINITE>I are not simple data-
values, but are pointers to other positions within
the structure. These "paths" indicate a structural
position that can be found by starting at the
outermost level of nesting and tracing feature-names

inward along the path.

An FD El is said to be an extension of another
FD E2 if there is a sub-structure of El which is
isomorphic to EY, including identity of feature-n~nes
and all feature-values. In determining if El is an
extension of E2, the comparison process must start at
the outermost level.

An FU grammar can be thought of as a set of FDs, each

one describing a possible shape for a constituent in
the language. A FD F is well-formed with respect to
the grammar G if there is an FD E in G such that F is
an extension of E, and every constituent of F (see
above) is well-formed with respect to G. An

arbitrary FD can be used as the initial structure in
deriving a fuller FD. Suppose G is a FU grammar, FI
and F2 are PDs. Then FI derives F2 using grammar G if
F2 is well-formed with respect to G, and F2 is an
extension of FI.

In the textual representation of an FU grammar,
it is normal to represent several similar FDs by
writing just one FD containing disjunctive lists of
the possible variations between braces (curly
brackets). This is an abbreviation for the full set
of basic FDs, each corresponding to choosing one item
from each disjunctive list.

2. Representing CNF expressions

In representing CNF-satisfiability as FU grammar
derivation, we will divide the information contained
in the CNF expression between two structures - an FD
(which will act as the initial functional description
for the derivation) and an FU grammar (with respect
to which the derivation is defined). The former
encodes, in a very direct way, the structure of the
CNF expression, whereas the latter is of a very
general form which varies only in size laccording to
the number of propositional symbols and number of
conjuncts in the CNF expression).

Suppose the CNF expression has n propositional
symbols PI,..Pn, and k conj uncts. The FU
representation will involve the feature-nm~es "CAT",
"PATTERN", "PI ", "Pn" , "NOT-PI ", ,"NOT-Pn" ,
"CI", "CY",..."Ck", with the feature-values CNF-
EXPRESSION, CONJUNCT,TRUE, FALSE, NONE and the k-
tuple [CI Ck). A conjunct of the CNF expression
which mentions the literals All], AI2] Aim 1
explicitly but omits A(m+1] A[Yn) teach A[]i
being either an atomic proposition or a negated
atomic proposition) will be represented by an FD of
the general form given in (I].

[CAT = CONJUNCT (I)

AI =

<A[YJ>

Ai~)'~ <A(m)>
Aim+t1 = NONE
A[m+2) = NONE

NONE
]

The whole CNF expression will be represented by an FD
of the general form in (2), where each of the feature
values for the Ci are representations of the
individual conjuncts as described in (I).

584

[CAT = CNF-EXPRESSION [2)

CI = •
C2 =

,,o°.,..°.
Ck = •

]

The FU grammar will eontaln two FDs. The first
of these will be an FD representing the overall form

of any CNF expression with n symbols and k conjuncts,
including a set of disjunctive lists representing all

possible choices of truth-values for the
propositional variables involved; this will be of the

general form in [3].

[CAT = CNF-EXPRESSION (3)
PATTERN = [C1 C2 Ck]

[P1 = TRIJE
NOT-PI = FALSE]

[PI = FALSE

NOT-PI ~. TRUE]

[P2 ~ TRUE
NOT-P2 = FALSE]

[P2 ~ FALSE
NOT-P2., TRUE]

[Pn : TRUE
NOT-Pn = FALSE]

[Pn = FALSE
NOT-Pn = TRUE]

}
]

The FU grammar also contains a FD which contains a
disjunction listing all the possible propositional
literals linked to "TRUE", as in [4].

[CAT = CONJUNCT (4)

TRUEJ

NOT-P1 = TRUE 1
NOT-P2 " TRUEJ

t]

The FD that should be the outcome of the derivation
process is one which has truth-values explicitly
marked in for some of the literals, in such a way
that consistent assignments are given to a
propositional symbol and its negation, and each
conjunct contains [at least] one literal feature with
TRUE as its value. For example, the derivation of an
FD from the initial FD and grammar representing the

CNF expression

(PI v~P2] A P3

could result in an FD as in (5].

[CAT = CNF-EXPRESSION [5)
PATTERN ~ [CI C2]

PI = TRUE

NOT-PI ~ FALSE
P2 = FALSE
NOT-P2 ~ TRUE
P3 = TRUE
NOT-P3 ~ FALSE

CI = [CAT = CONJUNCT
PI = <PI>

NOT-PI = NONE
P2 = NONE
NOT-P2 = <NOT-P2>
P3 = NONE
NOT-P3 = NONE]

C2 = [CAT = CONJUNCT

PI = NONE
NOT-PI = NONE
P2 = NONE
NOT-P2 = NONE

P3 = <P3>
NOT-P3 ~ NONE]

]

It is straightforward to check that this is derivable
from the original CNF FD; i.e. this FD is an
extension of the FD llke [2]. and this FD is well-
formed w.r.t, a CNF FU grammar like [3] and (4)
[since each of its constituents is the extension of
some FD in that grammar].

3. Outline of proof

In order to prove that FU derivation is NP-hard,
we have to establish that the problem of whether a
CNF expression is satisfiable can be reduced by a
polynomial-tlme algorithm to the problem of whether
an FD can be the basis of a successful derivation
with respect to a grammar. (It is not necessary to
establish the reverse reduction - it is not a
symmetrical relationship). Thus the following must
be established:

I. there is a polynomial time algorithm which

converts any CNF expression into the
representation outlined above ([I], (2], [3],
[4)]

2. the CNF expression is satisfiable if and only if
the FD produced by this algorithm leads to a
successful derivation w.r.t, the grammar
constructed by the algorithm.

It should be intuitively plausible that a polynomial

time algorithm exists for the conversion, as the FU
representation is so directly related to the CNF

formula. [The use of disjunctions in the grammar is
relevant here, since the expanded form of the grammar
would have an exponential number of entries).

The central result (satisfiability iff
derivability) can be proved separately in the two
directions:

satlsflabillty ~> derivability.

If a CNF expression Q is satisfiable, an FD can
be created as in [6], such that, for all i in the
range I to n:

585

(a] Xi, Yi are in ITRUE, FALSE}

(b) x i :J= Yi

and f o r e a c h j i n t h e r a n g e 1 t o k:

(a) if a literal A appears in the jth conjunct of Q,
then the feature named A in the FD labelled Cj
has the value <A>.

[b) if a literal A does not appear in the jth
conjunct of Q, then the feature named A in the
jth FD has the value NONE.

(c) there is at least one feature value Z(j,i) or
W(j,i) which is of the form <A> where the
feature-value labelled A at the outer level is
TRUE. (i.e. either Z[j,i) is <Pi> and Xi is
TRUE, or W[j,i) is <NOT-Pi> and Yi is TRUE.

[CAT = CNF-EXPRESSION [6)
PATTERN = [C1 . . Ck]
PI = XI
NOT-PI = YI

~ X n
NOT-Pn = Yn

CI = [CAT = CONJUNCT
P1 = Z (1 , 1)
NOT-PI - W[1,1)
P2 : z (1 , ~)
NOT-P2 = w (1 , 2)

• ° . , ,

Ck = [CAT : CONJUNCT
P~ - ZIk,1)
NOT-P1 = W(k ,1)

p n ' i Z (k , n)
NOT-Pn - W (k , n)]

]

This is an extension of the original CNF FD
(cf.(I),(2)), and is well-formed w.r.t, the FU
grammar for CNF expressions I[3),(4)). Hence there
is a derivation from the CNF FD and CNF grammar as in
[I), [2), (3) and (4).

derivability => satisflability

If the FD as in (2) above can lead to a
successful derivation w.r.t, the grammar containing
[3) and [4) above, there must be an FD F such that F
is an extension of both (2) and some FD in the
grammar. Since [2) contains the feature [CAT = CNF-
EXPRESSION], the only grammar FD of which F could
also be an extension is one of those represented in
(3), containing [CAT = CNF-EXPRESSION] together with
features denoting a consistent assignment of truth-
values to the Pi (i.e. an FD formed by selecting
features from the disjunctive representation in (3))
Thus F must contain sub-structures llke (2) and (3)
at its outermost level, including the PATTERN =
[CI...Ck] feature. Since F is well-formed w.r.t, the
grammar, each constituent of F must be well-formed
w.r.t, the grammar. F's constituents are exactly the
values of the features Ci (as in (I)), so for each of
these FDs there must be an FD in the grammar of which
the constituent FD is an extension. Since the

586

constituent FDs all include the feature CAT
CONJUNCT, the only grammar FDs pertinent are those
which contain CAT CONJUNCT and a single feature
representing an assignment of TRUE to a particular
literal (i.e. FDs from (4)). The constituent can be
an extension of such a grammar FD only if it also
contains the same feature with the feature-value TRUE
(since all llterals appear in (I), either with NONE
or TRUE I. This will be possible only if la) the
corresponding literal appeared in that conjunct in
the CNF expression [b) the path given in (I) links
the feature to a TRUE value at the outer-level.
Since the outer level's features represent a
consistent truth-value assignment, it follows that
the structure of F imposed by the derivation demands
that there exist a truth-assignment which satisfies
each conjunct.

4. Some consequences of this demonstration

Berwick[1982) provides a similarly semi-formal
proof of the NP-hardness of parsing with respect to
lexical-functional grammar, a formalism with many
similarities to FU grammar, although his proof is
radically different from the scheme presented here
for FU grammar. Berwick gives an explanation of why
computational complexity is relevant to linguistic
theory, and why NP-hardness is an undesirable
property for a linguistic computation. The fact that
derivation in FU grammar is computationally complex
is particularly worrying, since it suggests that the
obvious generation algorithm outlined in Kay's papers
is also NP-hard, even though FU grammar was intended
as a computationally useful formalism. The idea that
sentence generation (production) is NP-hard is
perhaps surprising parsing has always been viewed
as a non-determlnistic search process, which might
well have exponential complexity for certain types of
grammar, but computational linguists have probably
viewed sentence generation as a slightly more
deterministic process.

References

Berwick,R.C.(1982] Computational Complexity and
Lexlcal Functional Grammar. Pp.97-I09, AJCL 8, No.3-
4.

Garey,M.R. and Johnson,D.S.(1979) Computers and
Intractability a guide to the theory of NP-
completeness. San Francisco : Freeman.

Kay,M.(1979) Functional Grammar. Proceedings of Fifth
Annual Meeting of the Berkeley Linguistics Society•
Berkeley,CA : U.C. Berkeley.

Kay,M.[1984) Functional Unification Grammar A
Formalism for Machine Translation. Pp.75-78 in
Proceedings of COLING-84, Stanford University.
(Available from the Association for Computational
Linguistics).

Kay,M.(1985) Parsing with Functional Unification
Grammar. In "Natural Language Parsing", ed.
D.R.Dowty, A.Zwicky and L.Karttunen. Cambridge :
Cambridge University Press.

Ritchle,G.D.(1984) Simulating a Turing machine using
functional unification grammar. Pp.127-136 in
Proceedings of ECAI-84, Pisa.

