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A b s t r a c t  

This paper describes a system in PROLOG for the automatic 
transforination of a grammar, written in LFG formalism, into 
a DCG-based parser. It demonstrates the main principles of 
the transformation, the representation of f-structures and 
constraints, the treatment of long-distance dependencies, 
and left rccursion. 
Finally some problem areas of the system and possibilities 
for overcoming them are discussed. 

Introduction 

In order to intprove our knowledge about natural language, it 
is desirable to have a high-level description language which 
can be used to test grammars on a computer system, but which 
is independent of the details of the implementation. For 
linguists without knowledge of programming languages, a 
system for writing and testing grammars on a computer should 
be offered. 
At the University of Stuttgart such a system has been imple- 
mented in PROLOG, which uses tile formalism of Lexical- 
Functional Grammar [Kaplan/Bresuan 82] as its description 
language. 
The system makes it possible for the user to enter grammar 
rules and lexical entries directly in the form described in 
[Kaplan/Bresnan 82]. The input is translated into PROLOG 
rules, which form a top down parser in defiuite clause 
grammar style. 
Equations and constraints associated with a grammar rule are 
evalnated as soon as the rule is used, thus allowing the 
rejection of incorrect parses as soon as constraints are 
violated. 
One of the main problems using DCG grammars - the 
prohibition of using left-recursive grammar rules is 
solved by a conversion to right-recursive rules that does 
not violate the semantics of the functional description. 

grammar implementors in two respects: 
i) Using DCGs for parsing (and overcoming the prohibition of 

left recursion) 
ii)Profiting from PROLOG's unification mechanism to 

implement LFG-Unification. 

U u i f i c a t i o n  

LFG is a unification-based grammar formalism. To be more 
precise, any defining equation in LFG can be interpreted as 
the unification of certaiu f-structures. Unifying two f- 
structures is an operation very similar to set union. 
However, unification may fail, if the stuctures contain 
contradicting values for the same attribute. Otherwise the 
two structures become the same object, which contains the 
information of hoth structures. Consider for example the LFG 
rule 

S -.~ NP VP 
/t sueJ)=$ T==~ 

and take FS, FNP and FVP as the f-strnctures associated to 
tile S, NP and VP node, respectively. Then the two equations 
cau be interpreted as the unifications 

FS U - FVP and FS U [SUBJ = FNP]. 

The unification of f-structures is also closely related to 
the unification of PROLOG-Terms, yet there are two important 
differences: lu f-structures values are identified by labels 
(the attributes) and their number is potentially unlimited, 
whereas in PROLOG-terms the arguments are identified by 
their position and their number is fixed. In the following 
we show how we can model f-structure unification in PROLOG. 
We represent partial f-structures as an 'open ended' list of 
pairs: 

[ A I  = V I  , A 2  = V2 . . . . .  An = Vn I _ ] 

Main Goals of tile Implementation 

When we started the implementation of our LFG-Sytem we had 
mainly the following tasks in mind: 

- Independence o f  Implementat ion  
The LFG system is meant to be a grammar-writer's tool which 
allows him to ignore completely the details of the 
implementation. Specifically we wanted tile system to be 
useful for linguists without any prior knowledge of PROLOG. 

- Complete  Coverage o f  the L F G - F o r m a l i s m  
The system should cover all features of LFG as they are 
stated by [Kaplan/Bresnan 82] .  This means we had to 
incorporate the principles of consisteucy, completeness and 
coherence, inequality, positive and negative existential 
constraints and long distance dependencies. 

- F lex ib le  Environment  for  Grammar  Development 
To be a really useful tool, the system must allow for 
testing the grammar fragment and changing it incrementally. 
In this point we had to find a good compromise between speed 
of parsing and speed of grammar modification. 

- Using as much o f  P R O L O G  as possible 
We wanted to profit from the facilities PROLOG offers for 

where the Ai stand for (atomic) attributes and the Vi for 
the values associated to these attributes. These values are 
either atomic, terms denoting semantic forms, f-structures 
themselves or tile term 'set(S)' where S stands for an open- 
ended llst of f-structures denoting a set. 
The unification of two f-structures is evaluated in this 
representation by inserting into both structures the 
features missing with respect to the other, and then PROLOG- 
unifying the variables that stand for the rest of the lists. 
The values of features which the structures have in common 
have to be unified recursively. 
A procedure which performs this action can easily be written 
in PROLOG* : 

merge(X,X) :- !. 
merge([A=VllRl],F2) :- deI(A=V2,F2,R2), 

merge(V1,V2), 
merge(R 1 ,R2). 

deI(F,[FIX],X) :- !. 
deI(F,[EIX],[EIY]) :- del(F,X,Y). 

When called with the f-structures FSI and FS2, the predicate 
'merge' recursively reduces the attributes in FSI. If an 

*The ~re,~ment of sets is omitted here for the sake of simplicity. 
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at t r ibute  appears also in FS2, 'del '  f inds its value in FS2 
and the two values are uni f ied  by the f irst  recursive call 
of 'merge ' .  I f  an a t t r ibute  is unspeci f ied  in FS2, 'del '  
wil l  insert  i t  at the end of the s t ructure  as a new 
at tr ibute.  Eventua l ly ,  'merge '  will  reach the tail var iable  
of FS1 and ins tant ia te  i t  wi th  exact ly  the at t r ibutes  which 
appear  in FS2 but not in FSI,  Af ter  successful execut ion of  
'merge '  FSI and FS2 contain the same at t r ibutes  wi th  the 
same values (maybe in d i f fe ren t  order) and tail variables  at 
any level  are shared. So any fur ther  uni f ica t ion  a f fec t ing  
one of them wil l  af fect  the other s t ructure  in exact ly  the 
same way. 

Example:  The goal 
merge( [subj = [spec = de f ,  

nu~ = sg, 

pred = glrl 

] RSubj I] 

[ RI] , 

[pred = hand(subj,obj2,obj), 

tense = present, 

subj = [num = sg I RSubj2] 

I R2] ). 

yields the ins tant ia t ions  

R1 = [pred = h a n d ( s u b j , o b j 2 , o b j ) ,  tense = present  [ R2] 

RSubj2 = [spec = de f ,  pred = g i r t  I gSubj l ]  

T h e  f a c t  t h a t  t h e  u n i f i c a t i o n  i s  p e r f o r m e d  b y  e x t e n d i n g  b o t h  

of the s t ructures  and that  there is no expl ic i t  resul t  is 
essential when  deal ing wi th  reentrant  s tructures,  i.e. 
embedded s t ructures  that  can be reached by more than one 
path. In the case when such a s t ructure  is extended whi le  it 
is reached by one of the possible paths, an access via a 
d i f fe ren t  path wil l  also reach this extension. 

Treatment of Completeness, Coherence and Constraints 

In addi t ion to de f in ing  equations,  which can be mapped onto 
the monotonic  operat ion of uni f ica t ion ,  LFG includes formal  
devices, some of which  cannot  be treated monotonical ly ,  but  
need the notion of a ' f inal '  f - s t ruc ture  [Shieber 85]. More 
concretely,  the viola t ion of posi t ive exis tent ia l  
constraints,  const ra in ing equations and completeness cannot  
be checked before  the parsing process has f inished.  

Existential constraints are t reated by insert ing the 
at t r ibute  into the f - s t ruc ture ,  but  leaving the associated 
value unins tant ia ted  ( i f  i t  isn' t  a l ready known).  The 
condi t ion that  tiffs var iable  must  be instant ia ted is 
stored in a list  (Ex Tests) especial ly  for this purpose and 
tested af ter  the parse. 

Negative existential constraints are t reated by assigning 
the value 'n i l '  to the at t r ibute.  The value 'n i l '  is 
in terpre ted  as non-ex is tence  of the feature  and must  not 
appear  in the grammar  itself.  

- Constraining equations can be handled as follows*: 
We introduce a special  te rm 'C ' (Value ,Mark) ,  where Value is 
the value demanded  by the const ra in ing equat ion and Mark  is 
uninstant ia ted.  The def in i t ion  of the uni f ica t ion  is 
changed,  such that  a s imple  value X is treated as a short  
form of the te rm 'C'(X,t) .  Therefore ,  any unsat isf ied 
constra ining equat ion results in an unins tant ia ted  mark  in 
the f - s t ruc ture  and can easi ly be detected af ter  parsing. 

*this treatraent of constraining equations is due to an idea of Jo Calder 
(personal communication). 
In our current implementation a more general method is used which also allows 
both sides of the equation to denote substructures, but which is omitted here 
since these cases never occur in realistic grammars. 
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Completeness of f - s t ruc tures  is tested by exis tent ia l  
constraints  on the sub-s t ruc tures  required by the semant ic  
form. 
We th ink  that  the mere exis tence of  a required sub-s t ruc ture  
is not enough. For  example ,  verb  entr ies  often in t roduce a 
part ial  f - s t ruc tu re  for the subject  by spec i fy ing  its 
number.  This  should not lead to the acceptance of a sentence 
wi thout  a subject .  For that  reason we use exis tent ia l  
constraints  on the 'p red '  of a s t ructure  to test i f  i t  is 
there. 

Coherence of an f - s t ruc tu re  is equiva len t  to negat ive 
exis tent ia l  constra ints  concern ing  all governable  funct ions  
(i.e. funct ions  that  can appear  in semant ic  forms) that  are 
not requi red  by its semant ic  form. In t roduct ion  of negat ive  
existent ial  constraints  for all  those a t t r ibutes ,  as 
described above,  would be a correct  but  inef f ic ien t  
solution. Instead we use a special  mark  'ngf ' ,  which closes 
an f - s t ruc tu re  for governable  funct ions,  i.e. the def in i t ion  
of 'merge '  is ex tended  by  an addi t ional  test that  prohibi t s  
the inser t ion of a governable  funct ion  af ter  the ' n g f ' - m a r k .  

Example:  the lexical  ent ry  

promised: V, (1' TENSE) = PAST 
("i" PRED) = 'PROMISE(( 1' SUBJ) (C OBJ) ('~ VCOMP))' 

(T VCOMP To) : c  + 
(t  VCOMP suaJ) = ('t SU~J) 

is t ransformed to 

v (V ,  Ex_Tests ,  [PSUBJ, POBJ, PVCOMP[Ex_Tests]) --> 

(promised], 
{merge (V , [ t ense  = pas t ,  

pred = p r o m i s e ( s u b j , o b j , v c o m p ) ,  

subj  = [pred = PSUBJ [ RSUBJ] 

ebj  = [pred = POBJ [ ] ,  
vcemp = [to = 'C*(+,), 

pred = PVCOMP, 

subj = [pred = PSUBJ RSUBJ] 

I_ ], 
ngf 

I _ l ) ) .  

Treatment of Long-Distance Dependencies 

In order  to handle  long-d is tance  dependencies  correct ly,  LFG 
provides bounded  domina t ion  metavariables .  The condi t ions 
for proper  ins tant ia t ion  g iven by [Kaplan /Bresnan  82] have 
to be satisfied.  They concern: 
- The relat ion be tween domain  roots and controllers 
- The o n e - t o - o n e  ass ignment  be tween domain  root and 

eontrollee 
- The observance of the crossing l imit .  

Also, bounding  nodes, i.e. nodes that  are excluded f rom the 
control  domains  of h igher  nodes, have to be handled  
correctly.  

S ~ I "  s(FS,[np/FNPIC IN],ZnplC OUT], 
II I "  - - / / ~ t  ~ ExTestlN,Ex_Test_CUT ) 
\ /  

NP / / /  / \ \ \  

/ \ 
/ x 

/ 2 \ 

/ x 
! \ 

/ I \  \ 
It 

NP 

Treatment of bounded domination metavariables in two steps 



The binding of the bounded domination metavariables consists 
of two steps. The first step, the identification of the 
domain roots, only depends on the grammar and can be done 
during the transforgaation of the grammar rules into PROLOG 
clauses. 
The main job, the assignment between domain root and 
controllee, is performed as follows: 

Each goal has two extra parameters for input and output of a 
controller list. These lists, which are threaded through all 
nodes, except the bounding nodes, act as a global stack on 
which the controllers are pushed. Each element of the stack 
refers to a node which dominates the current goal, and which 
is a domain root. 
A domain root adds an element to the stack before the parser 
enters its control domain and removes a receipt after the 
domain is left. The element that is pushed consists of the 
class name (eg. [+wh]) of the controller and its actual 
variable. 
If a eontrollee appears, the stack is searched for the first 
element with the same class name (for crossing limit n the 
first n+l matching elements can be chosen) and replaces it 
by a receipt. Now the controUee can use the actual variable 
of the controller. 
This treatment resembles the hold list device in the ATN 
formalism [Winograd 83] a lot, but differs in two important 
aspects. 

By using unification to establish the correspondence 
between controller and controllee, information may flow in 
both directions. 

A controllee does not cause a pop-operation on the stack, 
but a substitution of an element by a receipt. The checking 
of the receipt by the domain root ensures that a controllee 
can only occur within the domain of its domain root. 

As an example, the transformations of LFG rules with 
controller and controllee are given: 

N P --, e 

np(Fnp, CLOr CL1, Ex Tests, Ex tests) --> 
13, 
(subst(np/Fnp, rip, CLO, CLI)). 

S' ~ NP [ ]  

( t  ,:ocus):-$ 

s bar(Fs_bar, CLO, CL1, Ex_TestsO, ExTests2) --> 
np(Fnps [~h/QICLO], [~hICL1], Ex_festsO, Ex_Testsl)~ 
{merge([q=O, focus=Fnp [3, Fsbar)}, 
s(Fsbar, [np/Fnp], [np], Ex_Testsl, ExTests2). 

Treatment of Left Recursion 

Definite Clause Grammars do not allow left-recursive grammar 
rules when interpreted by a top-down parser. This is a 
serious shortcoming for a natural language system, since 
many linguistic phenomena can be most naturally described 
with left-recursive rules (coordination, possessive NPs 
etc.). 
In the theory of formal languages, there exist several 
algorithms to convert a grammar containing left recursion 
into a weakly equivalent grammar that does not [Aho/Ullman 
77]. But in LFG, the c-structures are essential for the 
correct evaluation of f-structures, so a transformation must 
provide a way to get the right interpretation of the 
functional description. 

For a detailed discussion of how this can be achieved for 
locally left-recursive rules, please refer to [Eisele 85]. 

Experience with the System 

We have implemented two versions of the LFG system, both 
running on a VAX 11/780. The first version was written by 
the autlmrs in PROLOG II, using ideas of W.Frey and U.Reyle. 
It made use of the built-in predicates 'freeze' and 'dif', 
which give the possibility of delaying subgoals to optimize 
the evahmtion of constraints [Eisele 85]. 
To improve the flexibility of the user interface, the system 
was reimplemented in C-PROLOG by Stefan Schimpf and Andreas 
Eisele. It has been used for the development and testing of 
different grammars for fragments of English, German [Netter 
86] and French, the latter consisting of about 50 grammar 
rules and more than 200 lexical entries, and turned out to 
be a useful tool for this purpose. 
The performance of the system is quite good for simple 
grammars with a small amount of nondetermiuism. Using the 
grammar given in [Kaplan/Bresnan 82], parsing the sentence 

"I wondered which violin the sonata is tough for her to play on" 

needs about 2.3 seconds cpu time (C-PROLOG interpreter). 
Yet, we don't expect that our system constructs an efficient 
parser from an arbitrary grammar mainly for two reasons: 

The complexity of the LFG recognition problem is known to 
be NP-complete [Berwick 82]. 

- Our approach to handle nondeterminism by mere backtracking 
leads to unneccessary duplications of parsing actions. 

Whereas the first point is highly questionable as to whether 
it concerns practical grammars, there are several 
possibilities to improve the behaviour of the parser. 

Storing intermediate results in a chart could help to 
avoid multiple parsing of' the same constituents and would 
facilitate error analysis. 
Explicit representation of ambiguities in f-structures 

(instead of a chronological enumeration) would be a step 
towards a packaging of local ambiguity. 

But in either case, the built-in structure-sharing mechanism 
of PROLOG could not be used as straightforward a way as in 
our current system and tim definition of unification would 
have to be considerably more complex. 
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