
ON FORMALIZATIONS OF MARCUS' PARSER

R. Nozoboor-Farshi
Dept. of Computing Science, University of Alberta, Edmonton,

Canada T6G 2H1

Abstract: LR(k,t), BCP(m,n) and LRRL(k) grammars, and their
relations to Marcus parsing are discussed.

1. Introduction

In his 1JCA1-83 paper [1], R.C. Berwick suggested that the
stripped down version of Marcus' parser [4] (i.e., with no features
or transformations) can be formally characterized by LR(k,t)
parsers [7,8]. Berwick's COLING-84 paper [2] seems to suggest that
Marcus-style parsers may be adequately formalized by bounded
context parsable BCP(m,n) grammars[8,9].

In this paper we show that both classes of LR(k,t) and
BCP(m,n) grammars are inadequate means to formalize Marcus'
mechanism even when it is applied to parsing bare context-free
grammars. We briefly describe a new class of unambiguous
context-free grammars, LRRL(k), for which deterministic
non-canonical bottom-up table driven parsers are generated
automatically. These parsers employ k-symbol fully reduced right
context in making parsing decisions. LRRL(k) grammars include as
a subset tho;;e context-free grammars that arc parsablc by Marcus'
partially top°down method.

2. Operation of Marcus' parser

Let us first recall that Marcus' parser has two data
structures: a pushdown stack which holds the constructs yet to be
completed, and a finite size buffer which holds the lookahead
symbols. The lookaheads can be completed constructs as well as bare
terminals. I n addition, the parser has three basic operations:
(1) Attach: attaches a constituent in the buffer to the current active
node (stack top).
(2) Create (push): creates a new active node, i.e., when the parser
decides thai Ihe first constituent(s) in the buffer begin a new higher
constituent, a new node of the specified type is created and pushed
on the stack. However the create operation has a second mode in
which the newly created node is first attached to the old active node,
and then pushed on the stack. Marcus indicates this by use of
"attach a new node of 'type' to active node" in the grammar rules.
Following Ritchie [6], we use a shorter notation: 'cattach' for this
second mode.
(3) Drop (pop): pops the top node of the stack (CAN). However if
this node is not attached to a higher level node, it will be dropped in
the first position of the window defined on the buffer. Marcus uses
different notations, namely "drop" and "drop into buffer", in the
grammar to indicate the etTect of drop operations. This suggests
that a grammar writer must be aware of the attachment of the
current active node. Here, we adhere to his provision about
differentiating between these two modes of drop operations.
However we feel that there is no need for such a provision since
PARSIFAl_. (the grammar interpreter) can take care of that by
inserting an unattached node into the buffer, and the grammar can
test the contents of the buffer to see if such insertion has taken
place.

The three basic operations plus "attention shift" and
"restore buffer" (forward and backward window movements on the
buffer) are sufficient for parsing some context-free grammars

which we informally denote by MP(k) (i.e., Marcus parsable with k
lookabeads).

Now let us consider the context-free grammar G,:
(1) S'-~S
(2) S --,.d
(3) S --.-A S B
(4) A-).a
(5) A-).a S
(6) l~-}b

The following gives a Marcns-style parser for L(G,), i.e., a
grammar G~ written in a PIDGIN-like language that can be
interpreted by PAF.SI FAI.. "['he symbols inside square brackets refer
to the contents of buffer positions, except [CAN =] which indicates
the current active node. The grammar has no attention shift rules.

l'acke._._~t I[: Initial rule.
[a or d] create S'; activate 2.

l':._.Acke.__.t 2 : Create and attach an S node.
[true .1 deactivate 2; cattach S; activate 3 and 6.

l'ackel 3 : S-parsing.
[d] attach first," deactivate 3; activate 7.
[a] cattach A; activate 4.
[Sb] attach first; deactivate 3; cattach B; activate 5.

Packet 4 : A-parsing,
[a] attach first; create S; activate 3.
[Sb] drop CAN.
[Sa or Sd] attach first; drop CAN; deactivate 3; activate 2.

Packet 5 : B-parsing.
[b] attach first; drop CAN; activate 7.

Paeke_.__.jt 6 : Completion of an attached S node.
[true] drop C/tN; activate 8.

(with priority p~ o(default priority)
l'aeket 7 : Completion of an unattached S node.

[true] drop CAN into buffer. (with priority p~ <p~)
Pneke.~t_8 : B-prediction.

[CAN=S] [b] deactivate 8; cattach B; activate 5.
[CAN=S'] [empty] "Parse is finished".

In the Marcus parser active packets are associated with the
active node. that is, when a new node is created, some packets will
usually he activated as well. Unless a packet is deactivated explicitly
this association remains with the node. So when a node on the stack
becomes the active node again as a result of 'pop' operations, its
associated packets will be reactivated.

We do not attempt to show formally the equivalence of G~
and G~, since there is no formal characterization of Marcus-style
parsers yet. However one may, by going through examples, convince
oneself that the parser given in PIDGIN parses L(G~). Such an

example is illustrated in detail next.

Example : The following diagrams illustrate the parsing of the
sentence addb, L(G~) by the parser described by G2. The symbols
inside the boxes are on the stack, and those inside the circles are
already attached to a higher level symbol on the stack. The numbers
shown above each stack node are the packet nttmbers associated with
that node. G2 uses a buffer of size 2 shown on the right.

533

Active Packets Stack

1

2

2 IN

3 ,6 ~

3,6 4 4 [D--[D---~
3,6 4 3

3 s~---I~ []

3,6 4 7

3.6 4

2 ,6 2,6 ~ ~ [~b

6 3,6

a

6 6 .7

6 8

®

6 5

6 , 7

8

"Parse is finished."

Bu [f e r -nema i nder

I-~Z] dab

~db
~8b
I d~_..I b

This example shows the power of the Marcus parser in
employing completed subtrees as lookaheads. The grammar G, is not
LR(k) for any fixed k. Any a can be reduced to an A via production
A~a or can be considered as a first symbol in production A~aS
(i.e., a reduce/shift conflict in LR parser). However, in the first
case a is followed by an Sb. and in the latter by an Sd or an Sa. By
postponing the parsing decisions about the completion of A's,
Marcus' parser is able to produce the correct parse.

534

3. LRlk,t) Grammars

LR(k,t) grammars were originally proposed by Knuth in his
landmark paper on parsing of LR(k) grammars [3], and later
developed by Szymanski [7,8], Essentially the LR(k,t) parsing
technique is a non-canonical extension of tile LR(k) technique, in
which instead of the reduction of the handle (the leftmost phrase)
of a right sentcntial form, we must be able to determine that in any
sentential form at least one of the t (a fixed number) leftmost
phrases is reducible to a specific non-terminal. In other words, a
grammar G is not l.R(k,t) if in parsing of an input sentence the
decision about reduction of t or more questionable phrases in a
sentential form needs to be delayed. Tile reduction decision is
reached by examining the whole left context and k symbols to the
right of a phrase in a sentential form.

Now, it is easy to see that G, is not LR(k,t) for any finite
numbers k and t. For given k and t, L(Gt) includes sentences with
prefix a a where n > k + t . In such sentences t initial a's have
different interpretations depending on the other parts of the
sentences. For example consider the two sentences:

andbn n n
(I) n>k+t (If) a (db) n>k +t

S' S'
I I
S S

/ ~u a s B

a S b a d b
/ /I~

~ A s B

a S b a d b

A S B A S B

I I I i I I
a d b a d b

In (l) all t initial a's must be reduced to A's, while in (I I) none of
them is a phrase. Therefore an LR(k.t) parser will need to delay
reduction of more than t possible phrases in parsing of" a sentence
with a prefix a '~, n > k + t , and thus G, is not LR(k,t) for any given
k and t. In fact, LR(k,t) parsers put a limit t on the number of
delayed decisions at any time during the parsing. In Marcus parsing,
depending on characteristics of the grammar there may be no limit
on this number.

We have shown that MP(k)q'-LR(k',t) for any k' and t. An
interesting question is whether LR(k , t)cMP(k ') for some k'. The
answer is negative. Consider the LR (0) = LR (0,1) grammar G ~:

S-~,A A~cA A-~a
S~B B-~cB B~b

With any finite buffer, Marcus' parser will be flooded with c's,
before it can decide to put an A node or a B node on the stack. The
weakness of Marcus' parser is in its insistence on being partially
predictive or top-down. Purely bottom-up LRRL(k) parsers
remedy this shortcoming.

,4. BCP(m,n) Grammars

The bounded context parsable grammars were introduced by
Williams [9]. In parsing these grammars we need to be able to
reduce at least one phrase in every sentential form (in a bottom-up
fashion) by looking at m symbols to the left and n symbols to the
right of a phrase. BCP-parsers use two stacks to work in this
fashion.

It is trivial to show that BCP grammars are unsuitable for
formalizing the Marcus parser. A BCP-parser ignores the
information extractable from the left context (except the last m
symbols). Whereas in the Marcus parser, the use of tlmt
information is the compelling reason for deployment of the

packeting mechanism. In fact there are numerous simple LP,(k)
grammars that are not BCP, but are parsed by the Marcus parser.
An example is the grammar G4 :

S ~aA S-~bB
A..~d A~cA
B~d B.~cB

A Marcus-style parser after attaching the first symbol in an input
sentence will activate different packets to parse A or B depending on
whetller the first symbol was a or b. However, a BCP-parser cannot
reduce the only phrase, i.e., d in the sentences ac...cd and bc...cd.
Because a number of c's more than m shields the necessary context
for reduction of A.,d or 11~d.

5. LRRL(k) Grammars

LRRI,(k) parsing basically is a non-canonical bottom-up
parsing technique which is influenced by the "wait and see" policy
of Marcus' parser. By LRRL(k) grammars, we denote a family of
grammar classes that are parsed left to right with k reduced
/ookaheads in a deterministic maimer. The difference between these
classes lies in the nature of lookaheads that they employ. Roughly,
the class with more 'complex' lookaheads includes the class with
'simpler' lookaheads. Here, we discuss the basic I~RRL(k)
gramnlars. Further details abmtt LRRL(k) grammars and the
algorithm for generation of basic LRRI, parsers are given in [5].

A basic LRRL(k) parser employs k-symbol fully reduced
right contexts or lookaheads. The k fully reduced right context of a
phrase in a parse tree consists of the k non-null deriving nodes that
follow the phrase in the leftnlost derivation of the tree. Thus these
nodes dominate any sequence of k subtrees to the immediate right of"
the phrase that have non°null frontiers. This generalized lookahead
policy implies Ihat when a questionable handle in a right sentential
form is reached, the decision to reduce it or not may be reached by
parsing ahead a segment of the input that can be reduced to a
relevant fully reduced right context of length k. For example, in
parsing a sentence in L(G~), after seeing the initial a there is a
shift oreduce conflict as to whether we should reduce according to
rule (4) or continue with the nile (5). However the 2-symbol fully
reduced context for reduction is SB, and for the shift operation is
SS, which indicates a possible resolution of conflict if we can parse
the lookaheads. Therefore we postpone the reduction of this
questionable phrase and add two new auxiliary productions
SUBGOAL-RED(4).-,,.SB and SUBGOAL-SHIFT~SS, and continue
with the parsing of these new constructs. Upon completion of one
of these productions we will be able to resolve the conflicting
situation. Fnrthermore, we may apply the same policy to the parsing
of lookahead contexts themselves. This feature of LRRL(k)
parsing, i.e., the recursive application of the method to the
lookahead information, is the one that differentiates this method
from any other. The method is recursively applied whenever the
need arises, i.e., at ambivalent points during parsing.

Note that the lookahead scheme does not allow us to
examine any remaining segment or the input that is not a part of the
Iookahead context, The parsed context is put in a buffer of size k.
and no reexamination of the segment of the input sentence that has
been reduced to this right context is carried out. In addition, the
right context which is k symbols or less does not contain a complete
phrase, i.e., the symbols in the right context do not participate in
any future reductions involving only these symbols.

The parsing algorithm for an LRRL(k) grammar is based
on construction of a Characteristic Finite State Machine. A CFSM is
rather similar to the deterministic finite automaton that is used in
l,R(k) parsing for recognition of viable prefixes. However there are
three major differences:
(1) The nature of lookaheads. The lookaheads are fully reduced
symbols as opposed to bare terminals in LR(k) parsers.
(2) Introduction of auxiliary productions.
(3) Partitioning of states which coqceals conflicting items.
The information extracted from this machine is in tabulated form
that acts as the finite control for the parsing algorithm.

The basic I~RRL grammars, when augmented with atlributes
or features, generate a class of languages that includes the subsets of
English which are parsable by a Marcus type parser. Thus
introduction of LRRI, grammars provides us with a capability for
automatic generation of Marcus style parsers from a conlext-free
base grannnar plus the information about the feature set, their
propagation and matching rules, and a limited number of'
transfornmtional rules (e.g., auxiliary inversion and handling of
traces). We believe tha| such a description of a language m a
declarative grammar form is much more understandable than the
procedurally defined form in Marcus' parser. Not only does the
presence of parsing notions such as create, drop, etc. in a PI DGI N
grammar make it difficult to determine exactly what language (i.e.
what subset of English) is parsed by the grammar, but it is also very
hard to determine whether a given arbitrary language can he parsed
in this style arid if so, how to construct a parser. Furthermore,
modification of existing parsers and verification of their correctness
and completeness seems lo be unmanageable.

We may pause here to observe that I,RP, I, parsiug is a
bottom-up method, while Marcus' parser is not strictly a boltom-up
one. In fact it proceeds in a rap-down maimer and when need arises
it contiuues in a bottom-up fashion. However. as lleawick [1] notes,
the use of top-down prediction iu such a parser does not affect its
basic bottom-up completion of coustructs. In fact the inclusion of
MP(k) granlmals in the more general class of LRRI,(k) grammars
is analogous to the inclusion of l,L(k) grammars in lhe class of
LR(k) graunnars. In the Marcus parser incomplete nodes are put on
the stack, while in a bottom-up parser completed nodes lhat seek a
parent reside on the stack.

6. Conehlsion

We have shown that the class of context-free grammars
parsablc by a Marcus-type parser is neither a subcla,;s of l,R(k,t)
nor a subclass of BCP(m,n) grammars. We have introduced
I,P, RL(k) grammars, which formalize the concepts of Marcus
parsing in a purely bottom-up parser. One may consider the
lookahcad policy used in basic I,RRL(k) grammars as the opposite
extreme to lhc one employed in l,R(k) grammars. In 1.R(k) parsing
the lowest level of nodes, i.e., terminals are used as lookaheads,
while in basic I,RRL(k) parsing the highest level nodes that follow
the current construct act as lookaheads. A modified version of these
grammars combines the two policies. The most general class of
I,RRL(k) grammars which is defined in [5] considers lookaheads at
arbitrary levels. It can be shown that for a fixed k, this class of
grammars is the largest known class that generalizes the concepts of
LR(k) parsing while retaining the property that membership of an
arbitrary grammar in the class is still decidable.

At'knowiedgemeuts

The author is indebted to I)r. L,K. Schnberl for his suggestions and carehd review
of the draft of this paper. The research was supported by tile Natural Sciences and
Engineering Research Council of Canada Qperating Grant A8818 under Dr. SchubcWs
supervision,

Re[ereuees
[l) I(,C. Uerwtck. A deterministic parser with broader coverage.

IJCAI 83, Proceedings of the gth International Joint Conference on
Artificial Intelligence, pp. 710-712. August 1983.

[2] R.C. Berwick. Bounded context parsing and easy learnabllity,
COLING 84, Proceedings of the 10th International Conference on Computational
Linguistics, pp. 20-23. Stanford University. July 1984.

[3] D.E, Knuth. On the translation of languages from left to right.
Information and Control, vol. 8, pp. 607-639, 1965.

[4] M.P, Marcus. A Ttleory of Syntactic Recognition for Natural l..angauge.
MIT Press, Cambridge, MA. 1980.

[5] R, Nozohoor-Farshi. LRRL(k) grammars: a left to right parsing technique with
reduced Iookaheads. Ph.D, thesis in preparation. Dept, o[Computing Science,
University of Alberta. 1986.

[6] G.D. Ritchie. The implementation of a PIDGIN interpreter.
Automatic Natural L.anguage Parsing, eds. K. Spark Jones and Y, Wilks, pp. 69-80.
Ellis Horwood, Chlchester. England. 1983.

[7} T.G. Szymanski. Generalized bottom-up parsing. Ph.D. thesis,
Dept. of Computer Science, Cornell University. 1973.

[S] T.G. Szymanski and J.H. Williams. Non-canonical extensions of bottom-up parsing
techniques. SIAM Jmtrnal of Computing, vol. 5, no. 2, pp. 231.250, June 1976.

[9] J.H. Williams. Bounded context parsable grammars.
Information and Control, vol. 28, pp. 314-334. 1975,

535

