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Abstract: LR(k,t), BCP(m,n) and LRRL(k) grammars, and their 
relations to Marcus parsing are discussed. 

1. Introduction 

In his 1JCA1-83 paper [1], R.C. Berwick suggested that the 
stripped down version of Marcus' parser [4] (i.e., with no features 
or transformations) can be formally characterized by LR(k,t) 
parsers [7,8]. Berwick's COLING-84 paper [2] seems to suggest that 
Marcus-style parsers may be adequately formalized by bounded 
context parsable BCP(m,n) grammars[8,9]. 

In this paper we show that both classes of LR(k,t) and 
BCP(m,n) grammars are inadequate means to formalize Marcus' 
mechanism even when it is applied to parsing bare context-free 
grammars. We briefly describe a new class of unambiguous 
context-free grammars, LRRL(k), for which deterministic 
non-canonical bottom-up table driven parsers are generated 
automatically. These parsers employ k-symbol fully reduced right 
context in making parsing decisions. LRRL(k) grammars include as 
a subset tho;;e context-free grammars that arc parsablc by Marcus' 
partially top°down method. 

2. Operation of Marcus' parser 

Let us first recall that Marcus' parser has two data 
structures: a pushdown stack which holds the constructs yet to be 
completed, and a finite size buffer which holds the lookahead 
symbols. The lookaheads can be completed constructs as well as bare 
terminals. I n addition, the parser has three basic operations: 
(1) Attach: attaches a constituent in the buffer to the current active 
node (stack top). 
(2) Create (push): creates a new active node, i.e., when the parser 
decides thai Ihe first constituent(s) in the buffer begin a new higher 
constituent, a new node of the specified type is created and pushed 
on the stack. However the create operation has a second mode in 
which the newly created node is first attached to the old active node, 
and then pushed on the stack. Marcus indicates this by use of 
"attach a new node of 'type' to active node" in the grammar rules. 
Following Ritchie [6], we use a shorter notation: 'cattach' for this 
second mode. 
(3) Drop (pop): pops the top node of the stack (CAN). However if 
this node is not attached to a higher level node, it will be dropped in 
the first position of the window defined on the buffer. Marcus uses 
different notations, namely "drop" and "drop into buffer", in the 
grammar to indicate the etTect of drop operations. This suggests 
that a grammar writer must be aware of the attachment of the 
current active node. Here, we adhere to his provision about 
differentiating between these two modes of drop operations. 
However we feel that there is no need for such a provision since 
PARSIFAl_. (the grammar interpreter) can take care of that by 
inserting an unattached node into the buffer, and the grammar can 
test the contents of the buffer to see if such insertion has taken 
place. 

The three basic operations plus "attention shift" and 
"restore buffer" (forward and backward window movements on the 
buffer) are sufficient for parsing some context-free grammars 

which we informally denote by MP(k) (i.e., Marcus parsable with k 
lookabeads). 

Now let us consider the context-free grammar G,: 
(1) S'-~S 
(2) S --,.d 
(3) S --.-A S B 
(4) A-).a 
(5) A-).a S 
(6) l~-}b 

The following gives a Marcns-style parser for L(G,), i.e., a 
grammar G~ written in a PIDGIN-like language that can be 
interpreted by PAF.SI FAI.. "['he symbols inside square brackets refer 
to the contents of buffer positions, except [CAN = ] which indicates 
the current active node. The grammar has no attention shift rules. 

l'acke._._~t I[ : Initial rule. 
[a or d] create S'; activate 2. 

l':._.Acke.__.t 2 : Create and attach an S node. 
[ true .1 deactivate 2; cattach S; activate 3 and 6. 

l'ackel 3 : S-parsing. 
[ d ] attach first," deactivate 3; activate 7. 
[ a ] cattach A; activate 4. 
[ Sb ] attach first; deactivate 3; cattach B; activate 5. 

Packet 4 : A-parsing, 
[ a ] attach first; create S; activate 3. 
[ Sb ] drop CAN. 
[ Sa or Sd ] attach first; drop CAN; deactivate 3; activate 2. 

Packet 5 : B-parsing. 
[ b ] attach first; drop CAN; activate 7. 

Paeke_.__.jt 6 : Completion of an attached S node. 
[ true ] drop C/tN; activate 8. 

(with priority p~ o( default priority) 
l'aeket 7 : Completion of an unattached S node. 

[ true ] drop CAN into buffer. (with priority p~ <p~ ) 
Pneke.~t_8 : B-prediction. 

[ CAN=S ] [ b ] deactivate 8; cattach B; activate 5. 
[ CAN=S' ] [ empty ] "Parse is finished". 

In the Marcus parser active packets are associated with the 
active node. that is, when a new node is created, some packets will 
usually he activated as well. Unless a packet is deactivated explicitly 
this association remains with the node. So when a node on the stack 
becomes the active node again as a result of 'pop' operations, its 
associated packets will be reactivated. 

We do not attempt to show formally the equivalence of G~ 
and G~, since there is no formal characterization of Marcus-style 
parsers yet. However one may, by going through examples, convince 
oneself that the parser given in PIDGIN parses L(G~). Such an 

example is illustrated in detail next. 

Example : The following diagrams illustrate the parsing of the 
sentence addb, L(G~) by the parser described by G2. The symbols 
inside the boxes are on the stack, and those inside the circles are 
already attached to a higher level symbol on the stack. The numbers 
shown above each stack node are the packet nttmbers associated with 
that node. G2 uses a buffer of size 2 shown on the right. 
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This example shows the power of the Marcus parser in 
employing completed subtrees as lookaheads. The grammar G, is not 
LR(k) for any fixed k. Any a can be reduced to an A via production 
A~a or can be considered as a first symbol in production A~aS 
(i.e., a reduce/shift conflict in LR parser). However, in the first 
case a is followed by an Sb. and in the latter by an Sd or an Sa. By 
postponing the parsing decisions about the completion of A's, 
Marcus' parser is able to produce the correct parse. 
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3. LRlk,t) Grammars 

LR(k,t) grammars were originally proposed by Knuth in his 
landmark paper on parsing of LR(k) grammars [3], and later 
developed by Szymanski [7,8], Essentially the LR(k,t) parsing 
technique is a non-canonical extension of tile LR(k) technique, in 
which instead of the reduction of the handle (the leftmost phrase) 
of a right sentcntial form, we must be able to determine that in any 
sentential form at least one of the t (a fixed number) leftmost 
phrases is reducible to a specific non-terminal. In other words, a 
grammar G is not l.R(k,t) if in parsing of an input sentence the 
decision about reduction of t or more questionable phrases in a 
sentential form needs to be delayed. Tile reduction decision is 
reached by examining the whole left context and k symbols to the 
right of a phrase in a sentential form. 

Now, it is easy to see that G, is not LR(k,t) for any finite 
numbers k and t. For given k and t, L(Gt) includes sentences with 
prefix a a where n > k + t .  In such sentences t initial a's have 
different interpretations depending on the other parts of the 
sentences. For example consider the two sentences: 

andbn n n 
(I) n>k+t (If) a (db) n>k +t 

S' S'  
I I 
S S 

/ ~u a s B 

a S b a d b 
/ /I~ 

~ A s B 

a S b a d b 

A S B A S B 

I I I i I I 
a d b a d b 

In (l)  all t initial a's must be reduced to A's, while in ( I I )  none of 
them is a phrase. Therefore an LR(k.t) parser will need to delay 
reduction of more than t possible phrases in parsing of" a sentence 
with a prefix a '~, n > k + t ,  and thus G, is not LR(k,t) for any given 
k and t. In fact, LR(k,t) parsers put a limit t on the number of 
delayed decisions at any time during the parsing. In Marcus parsing, 
depending on characteristics of the grammar there may be no limit 
on this number. 

We have shown that MP(k)q'-LR(k',t) for any k' and t. An 
interesting question is whether LR(k , t )cMP(k ' )  for some k'. The 
answer is negative. Consider the LR (0) = LR (0,1) grammar G ~: 

S-~,A A~cA A-~a 
S~B B-~cB B~b 

With any finite buffer, Marcus' parser will be flooded with c's, 
before it can decide to put an A node or a B node on the stack. The 
weakness of Marcus' parser is in its insistence on being partially 
predictive or top-down. Purely bottom-up LRRL(k) parsers 
remedy this shortcoming. 

,4. BCP(m,n) Grammars 

The bounded context parsable grammars were introduced by 
Williams [9]. In parsing these grammars we need to be able to 
reduce at least one phrase in every sentential form (in a bottom-up 
fashion) by looking at m symbols to the left and n symbols to the 
right of a phrase. BCP-parsers use two stacks to work in this 
fashion. 

It is trivial to show that BCP grammars are unsuitable for 
formalizing the Marcus parser. A BCP-parser ignores the 
information extractable from the left context (except the last m 
symbols). Whereas in the Marcus parser, the use of tlmt 
information is the compelling reason for deployment of the 



packeting mechanism. In fact there are numerous simple LP,(k) 
grammars that are not BCP, but are parsed by the Marcus parser. 
An example is the grammar G4 : 

S ~aA S-~bB 
A..~d A~cA 
B~d B.~cB 

A Marcus-style parser after attaching the first symbol in an input 
sentence will activate different packets to parse A or B depending on 
whetller the first symbol was a or b. However, a BCP-parser cannot 
reduce the only phrase, i.e., d in the sentences ac...cd and bc...cd. 
Because a number of c's more than m shields the necessary context 
for reduction of A.,d or 11~d. 

5. LRRL(k) Grammars 

LRRI,(k) parsing basically is a non-canonical bottom-up 
parsing technique which is influenced by the "wait and see" policy 
of Marcus' parser. By LRRL(k) grammars, we denote a family of 
grammar classes that are parsed left to right with k reduced 
/ookaheads in a deterministic maimer. The difference between these 
classes lies in the nature of lookaheads that they employ. Roughly, 
the class with more 'complex' lookaheads includes the class with 
'simpler' lookaheads. Here, we discuss the basic I~RRL(k) 
gramnlars. Further details abmtt LRRL(k) grammars and the 
algorithm for generation of basic LRRI, parsers are given in [5]. 

A basic LRRL(k) parser employs k-symbol fully reduced 
right contexts or lookaheads. The k fully reduced right context of a 
phrase in a parse tree consists of the k non-null deriving nodes that 
follow the phrase in the leftnlost derivation of the tree. Thus these 
nodes dominate any sequence of k subtrees to the immediate right of" 
the phrase that have non°null frontiers. This generalized lookahead 
policy implies Ihat when a questionable handle in a right sentential 
form is reached, the decision to reduce it or not may be reached by 
parsing ahead a segment of the input that can be reduced to a 
relevant fully reduced right context of length k. For example, in 
parsing a sentence in L(G~), after seeing the initial a there is a 
shift oreduce conflict as to whether we should reduce according to 
rule (4) or continue with the nile (5). However the 2-symbol fully 
reduced context for reduction is SB, and for the shift operation is 
SS, which indicates a possible resolution of conflict if we can parse 
the lookaheads. Therefore we postpone the reduction of this 
questionable phrase and add two new auxiliary productions 
SUBGOAL-RED(4).-,,.SB and SUBGOAL-SHIFT~SS, and continue 
with the parsing of these new constructs. Upon completion of one 
of these productions we will be able to resolve the conflicting 
situation. Fnrthermore, we may apply the same policy to the parsing 
of lookahead contexts themselves. This feature of LRRL(k) 
parsing, i.e., the recursive application of the method to the 
lookahead information, is the one that differentiates this method 
from any other. The method is recursively applied whenever the 
need arises, i.e., at ambivalent points during parsing. 

Note that the lookahead scheme does not allow us to 
examine any remaining segment or the input that is not a part of the 
Iookahead context, The parsed context is put in a buffer of size k. 
and no reexamination of the segment of the input sentence that has 
been reduced to this right context is carried out. In addition, the 
right context which is k symbols or less does not contain a complete 
phrase, i.e., the symbols in the right context do not participate in 
any future reductions involving only these symbols. 

The parsing algorithm for an LRRL(k) grammar is based 
on construction of a Characteristic Finite State Machine. A CFSM is 
rather similar to the deterministic finite automaton that is used in 
l,R(k) parsing for recognition of viable prefixes. However there are 
three major differences: 
(1) The nature of lookaheads. The lookaheads are fully reduced 
symbols as opposed to bare terminals in LR(k) parsers. 
(2) Introduction of auxiliary productions. 
(3) Partitioning of states which coqceals conflicting items. 
The information extracted from this machine is in tabulated form 
that acts as the finite control for the parsing algorithm. 

The basic I~RRL grammars, when augmented with atlributes 
or features, generate a class of languages that includes the subsets of 
English which are parsable by a Marcus type parser. Thus 
introduction of LRRI, grammars provides us with a capability for 
automatic generation of Marcus style parsers from a conlext-free 
base grannnar plus the information about the feature set, their 
propagation and matching rules, and a limited number of' 
transfornmtional rules (e.g., auxiliary inversion and handling of 
traces). We believe tha| such a description of a language m a 
declarative grammar form is much more understandable than the 
procedurally defined form in Marcus' parser. Not only does the 
presence of parsing notions such as create, drop, etc. in a PI DGI N 
grammar make it difficult to determine exactly what language (i.e. 
what subset of English) is parsed by the grammar, but it is also very 
hard to determine whether a given arbitrary language can he parsed 
in this style arid if so, how to construct a parser. Furthermore, 
modification of existing parsers and verification of their correctness 
and completeness seems lo be unmanageable. 

We may pause here to observe that I,RP, I, parsiug is a 
bottom-up method, while Marcus' parser is not strictly a boltom-up 
one. In fact it proceeds in a rap-down maimer and when need arises 
it contiuues in a bottom-up fashion. However. as lleawick [1] notes, 
the use of top-down prediction iu such a parser does not affect its 
basic bottom-up completion of coustructs. In fact the inclusion of 
MP(k) granlmals in the more general class of LRRI,(k) grammars 
is analogous to the inclusion of l,L(k) grammars in lhe class of 
LR(k) graunnars. In the Marcus parser incomplete nodes are put on 
the stack, while in a bottom-up parser completed nodes lhat seek a 
parent reside on the stack. 

6. Conehlsion 

We have shown that the class of context-free grammars 
parsablc by a Marcus-type parser is neither a subcla,;s of l,R(k,t) 
nor a subclass of BCP(m,n) grammars. We have introduced 
I,P, RL(k) grammars, which formalize the concepts of Marcus 
parsing in a purely bottom-up parser. One may consider the 
lookahcad policy used in basic I,RRL(k) grammars as the opposite 
extreme to lhc one employed in l,R(k) grammars. In 1.R(k) parsing 
the lowest level of nodes, i.e., terminals are used as lookaheads, 
while in basic I,RRL(k) parsing the highest level nodes that follow 
the current construct act as lookaheads. A modified version of these 
grammars combines the two policies. The most general class of 
I,RRL(k) grammars which is defined in [5] considers lookaheads at 
arbitrary levels. It can be shown that for a fixed k, this class of 
grammars is the largest known class that generalizes the concepts of 
LR(k) parsing while retaining the property that membership of an 
arbitrary grammar in the class is still decidable. 
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