CRITAC - A JAPANESE TEXT
PROOFREADING SYSTEM

Koichi Takeda
Tetsunosuke Fujisaki
Emiko Suzuki

Japan Science Institute
IBM Japan, Lid.
5-19 Sanban-cho, Chiyoda-ku,
Tokyo 102, Japan

Abstract

CRITAC (CRITiquing using ACcumulated knowledge) is an
experimental expert system for proofreading Japanese text.
It detects mistypes, Kana-to-Kanji misconversions, and
stylistic errors. This system combines Prolog-coded heuristic
knowledge with conventional Japanese text processing tech-
niques which involve heavy computation and access to large
language databases.

1. Introduction

Current advances in Japanese text processing are mainly due
to the remarkable growth of the word processor market.
Machine readable Japanese text can now be easily prepared
and distributed. This trend spurred the research and devel-
opment of further text processing applications such as ma-
chine translation and text-to-speech conversion [SAKAS8310]
[MIYAGS8310]. However, some fundamental text processing
procedures are missing for Japanese text. For example,
counting the number of words in text is a difficult task since
words are not separated by blanks.

Our experimental system CRITAC (CRITiquing using
ACcumulated knowledge) tries to overcome Japanese lan-
guage problems. Proofreading (or critiquing, to some extent)
[CHERS0] {HEIDJ82] has been chosen as our research do-
main because it involves many text processing techniques and
is one of the most important functions currently required and
lacking. In this paper, we introduce CRITAC concepts and
facilities including a conceptual representation of Japanese
text called “structured text” to handle meaningful objects
(e.g., sentences and words) and proofreading using heuristic
rules for the structured text. The structured text consists of
a set of Prolog [CLOCMBS81] facts and predicates, each of
which represents an object or a class of objects in the text.
Because of this high-level representation, human proofreading
knowledge can be easily mapped into Prolog rules. Two
user-friendly representations of text, called “source” and
“KWIC” (Key-Word-In-Context) views, are derived from the
structured text. CRITAC provides users with editing and
proofreading functions defined over these views.

The notion of structured text, we believe, is not restricted only
to the Japanese language. Discussions on our approach for
languages other than Japanese will be given in the Conclu-
sion.

2. CRITAC System Overview

In this section we discuss the outline of CRITAC and its
underlying concepts. As shown in Figure 1, the heart of
CRITAC lies in its architecture. It consists of three major
components: a user interface, a preprocessor, and a proof-
reading knowledge base.

412

Text Compiler

l_Word Processor |

Machine Readable r* SQL/DS Dictionary Server —

Text
Text Editor
ﬁleﬂtransfcr
Source | KWIC
View View
PREPROCESSOR

USER INTERFACE

- segmentation
- word recognition

PROOFREADING
KNOWLEDGE BASE

stored
Structured Text

Figure 1. CRITAC Configuration: The preprocessor generates the struc-
tured text from given text. The proofreading knowledge base
currently consists of about 30 Prolog proofreading rules for the
structured text. The user interface handles two external views
and facilitates the SQL/DS online dictionary server and text
compiler.

User Interface

The user interface is built upon an editor, an SQL/DS online
dictionary server, and a text compiler.

The Editor and External Views

The editor provides source and KWIC views as user-friendly
external text representations. It facilitates the modification
of the text through these views. During the modification,
when a user asks the system to apply the proofreading rules,
diagnostic messages will appear in the screen with possible
errors underlined in the text.

% % % TOP OF FILE # % =

1 9=F-7neovyoBfRicfn, HEXEBEXHBHFERTE ENBBICH->T
2 BL. LhLCE®N- EXEERE RBL LD T MBFREEYT 210
3 UELTWRL, HERFERE S -2 073 LEBEIHFOS L XFEL -
4 TULEIe I-F o700y YILBNT, XEE2HERLEYTRILIEY 728
5 %dﬂkboa&%;ﬁv%%ﬁ\:wxﬁummuowr&‘%ﬁvuuc
6 NVIY ECHAITBIRAN c F v ¥R, AP, TRTOXR
7T HBOHTHIDEENER 6B LD, EONRREFREL LD, R
3 FHoOINLBILOLESD,

9

10 thidele, AIFEOXBURENMBCRTAT LRV EICLS,
11 Cokd, BABOSAE SR LRENEOWANEREE 25, BiEEK-
12 T, XEREOY -V LT, TRl ENo Bl cEMAKOIE
13 27923870V 900, XROBRLPHEL T, LVRAVWKELRATS
W OHARESEERB IS 053, RESK, B¥ R ob b, HXMF G
15 b, ADNHEeFAELLRF 2RO Ty A V2 ENFRLE LTy F
16 ¥¥BIb?, a—F—ERERELEY, —2OXOESOBK, YL
17 kb, XBORAPLT ELWRLICHL T LB, T, AHEAAXEZY 2 b
18 BRUERL, BHARFR L PEFMOAEE» cOoMB R Y %2Prolox

Figure 2. CRITAC Source View

The source view is just a replica of the original text except
that it is not formatted. That is, the original format such as
paging and indentations are dropped. Figure 2 shows an
example of a source view screen.

The KWIC view displays text in the KWIC format which
extracts all the content words as keywords from the text and
arrange them in their phonetic (pronunciation) order along
with their contexts. This is an extremely useful tool for users
to find homonym errors [YAMAS8310] caused by a miscon-
version' and the lack of conformity (c.g., “center” and
“centre” in English) in the text [FUJIME8504]. Since external
views arc virtual views of the structured text, updates made
by the user are checked and reflected in the structured text
through the synchronizing mechanism of updates in two dif-
ferent views.

Figure 1 shows a KWIC view. Fach line consists of one
keyword in the middle, preceding and succeeding contexts are
shown on the left and right.

824 17— F &R T L HE B PHELNTLS,

625 i L HPrologol—N
826 amvrmazoaammn B PIEMBR—2 2 LT
827 # onTfc [5
628 fEM LR ')E]JEIJLI‘“')Té il BHELo28%3% Lk
629 KX THELAYaY e il FTEANRND Fxy
630 rbOLEHEALMEOWIE i W d ISR, ¥

-
831 kaboe. RX{ORE ik EHEMP TS DI
632 Wi Hh BIOLRT 4505

] e
50
o ¥
ne
58/
3
633 - WK - EH AT A, HE B W ROR B ke & T B v
634 KWICT¥ 75 OfE 1 Wke L CRE Rk
635 x—-20fEdTBs oo LT, FRXbay
636 A HEOPN O BEHAEOMEt %2 ® >
637 HEBLT, SA%1TP nEoEME s o0 35,
638 SHVHIEXEOFERE SRt s E
839 mArHATHLY, RYH REHDIRE AT D
640 HEHE¥EProlog® L, #Roms, @he
841 BWL L EDRAR AW, »HAG RA B BEA
842 FORHA LD, DEADS L BNED SRAT OHE
B13 MILBCKD - T s oI AR R (R Y/ AR

Figure 3. CRITAC KWIC View

SQL/DS Dictionary Server

Online access to system dictionaries or an encyclopedia
[WEYEB8S01] is one of the most user-friendly facilities in an
advanced text processing system. CRITAC is connected to a
dictionary server implemented on SQL/DS. SQL/DS (Struc-
tured Query Language/Data System [IBM8308)]) is a rela-
tional [CODD7006] database management system. It has
been mainly used for business data processing purposes like
purchase-order files. The excellent user language of SQL/DS
is based on the relational calculus which can be easily incor-
porated into Prolog [IBM8509]. Furthermore, SQL/DS can
support multiple access to tables. For example, a user can
access tables in terms of KANIJI values or PRONUNCIA-
TION wvalues. This greatly enhances the “associative
memory” access of online dictionaries. That is, we can re-
tricve all the related information by giving some known val-
ues.

! The Japanese word processors currently have limited the number of keys on
the keyboard by using the phonellc character set, Hndgﬁna or Katakana, to
enter text. Once the pronunciation of a word or a phrase is given, it will be
converted to the most-likely Kanji expression. This process is a Kana-to-
Kanji conversion. Because of the large number of homonyms [TANA8310]
in the Japanese ldnguag,e, this conversion is liable to generate an unintended
Kanji expression, This is referred to as misconversion.

We include some “canned” queries to the dictionary. A typ-
ical access pattern is searching for homonyms as shown in the
section “A Sample CRITAC Session” (Figure 10), which
helps users correct misconversions.

Canned queries also include synonyms, antonyms, related
words, and upper/lower concept of the given words. The
conceptual hierarchy of words is obtained from the following
combined SQL queries.

SELECT X.CATEGORY--NUMBER
FROM SEMANTIC - CLASSIFICATION —TABLE X
WHERE X.KANIJI = givenWord

Get the stem number of the returned

category —number.

X.CATEGORY ~ NUMBER is like “1.2.39”.
stemNum = STEM(X.CATEGORY — NUMBER)

SELECT X.KANIJLX.YOMI, Y.CATEGORY — NUMBER
FROM KANJI-PRIMITIVE - WORD —TABLE X,
SEMANTIC - CLASSIFICATION ~TABLE Y
WHERE X.KANIJI = Y.KANIJI
AND Y.CATEGRY - NUMBER LIKE ‘stemNum%’
ORDER BY CATEGORY.NUMBER

The first query returns the category number, say “1.2.39”,
from a table called
“SEMANTIC — CLASSIFICATION —TABLE” We nced a
stem number (“1” in this case) of this category. The stem
number is then used to find the words whose category number
has the same stem number. This is what the second query re-
trieves. The result is arranged by the category number.

Note that users can make use of not only canned queries but
also ad hoc querics. Since the SQL query language and the
conceptual scheme of the dictionaries are easy to understand,
users can make queries like those above to get ad hoc infor-
mation. Such a set of customized queries is also stored in
SQL/DS. Users can also define views for dictionaries to re-
name and select columns as well as records.

The Text Compiler

CRITAC also provides a “text compiler” facility. It is analo-
gous to the compilers of programming languages. The user
gives text to this text compiler and the compiler can provide
the following,

@ A source list of text and diagnostic messages with line
reference numbers.

® A list of segments and Kanji primitive words with their
occurrence counts and pronunciation. A cross-reference
list of words and text (KWOC: Key Word Out of Con-
text) and other useful statistics can also be obtained.

® Various formats of the text including KWIC format. Ad-
ditional information (word boundaries, pronunciation,
etc.) may be added to the text. If an application uses a
specific format, the text compiler can be made to generate
application input in this format.

413

Preprocessor

The preprocessor decomposes continuously typed Japanese
text into a sequence of tokenized primitive words and parti-
cles. A basic object of Japanese sentence is a content word
followed by zero or more function words, which is called a
segment or a phrase (see [MIYAGS8310], for example, for
more details). This preprocess is required because Japanese
text has no explicit delimiters (blanks) between words.
The preprocessor also gathers such information as pronun-
ciation?, parts-of-speech, total number of occurrences in the
text and base form, etc., associated with each of the words
and particles. This information together with the original text
is stored as a set of Prolog facts to be used for later process-
ing. We illustrate the steps of the preprocess (see Figure 4).

[Japanese Text Preprocessing}

1. Japanese text is a collection of sentences. Each sentence
is just a continuous string of characters.

2. A segmentation algorithm is applied to the sentence. This
algorithm contains about 100 heuristic rules each of
which specifies the cases where a segment boundary usu-
ally appears. The accuracy of this segmentation algo-
rithm is about 97.5%.

3. Content words in the segments are recognized by looking
them up in a primitive word dictionary. If a content word
is a compound word, it is decomposed into primitive
words. Since many Kanji compound words have ambi-
guities of decomposition, we apply a stochastic estimation
algorithm and a Kanji primitive word dictionary with
statistics [FUJIB509] to find the most likely decompos-
ition. Qur algorithm is obtained from stochastic esti-
mation algorithms in [FORN7303], [BAHLJ8303), and
[FUJI8407] with slight modification. The accuracy of our
algorithm is about 96.5%.

4. Function words in each segment are identified. The
connectivity of these function words is described by an
automaton [OKOC8112]. A correct sequence of function
words is obtained by observing the transition over this
automaton.

1. BAGE 2RI T B e X285,

2. BAGEH L/ TRET 5L /X2 /85,

3 B - 5 # B - A X 1%
) ¥ s W P W v
¢ noun) ¢ noun/verb) { noun) Lverh)
® T35k % %
)

5o
(case:0RJ) (case:0BJ)

=

(verb.conj,particle
w : primitive word, p : prefix, s:suffix

Figure 4. Preprocessing Japanese Text

(verb.conj)

2 Roughly speaking, Katakana and Hiragana characters are phonetic and each
of them corresponds to one phoneme. Kanji characters are ideographic and
there is a many-to-many mapping between the Kanji character set and a set

of phoneme sequences.

414

The preprocess starts with given text at step 1 above. The text .
is gradually analyzed and decomposed into fragments at the
succeeding three steps. Details of the algorithms used here
are beyond the scope of this paper.

The above high level objects (segments and words) of
Japanese text are conceptually expressed in terms of four
types of facts and three types of predicates as shown in
Figure 5. We map <segment>, <content word>, <func-
tion word >, and punctuations into the facts: seg(), head(),
tail(), and punc(). Other fragments of text can be defined
from those basic facts. This is called structured tex:.

seg(L,J,K,X) A character string X is the K-t4 segment
in the J-t4 sentence of the I-th paragraph.

1,J and K denote the same indexes below.

head(LJ,K,U,Y,G,L) U is a conrent word (possibly a Kanji
compound word) of the segment X above,
with pronunciation Y and part-of-speech
G. L is a list of labels to denote prefixes,
primitive words and suffixes in U if U is
a Kanji compound word.

tail(1,J,K,V,H) V is a list of function words in the segment
X and the part-of-speech of the last func-
tion word is H.

punc(l,J,K,D) D is either a period or a comma of the
segment X if any.

sent(I,J,S) S is o — sequence — of segments
seg(I,J,K,X).

para(I,P) P is a—sequence - of sentences sent(1,J,S).

text(T) T is a—sequence—of paragraphs
para(L,P).

Figure 5. Types of Facts and Predicates for the Structured Text : First
four predicates are facts that represent basic objects in Japanese
text. The rest of predicates represent derived fragments of the
text,

The structured text enables us Lo generate two external views
in the previous subsection (Figure 6). The mapping between
the structured text and source view is straightforward. The
KWIC view can be denoted by the following symbols.

Seg,y Segy s ... Segy . Key, Tail) Segy 44y ... Seg, w
Segyy Segya .. ey Keyy Taih Segy oy . Segym

Segn,l S"gn,z Segn,kn— | Key, Tail, SC’&.,kaﬂ Sé’gn\w,.

The i-th row of the KWIC view is a sentence which has W,
segments. Seg;; is a shorthand notation for a segment X ap-
peared in the i-th row of the KWIC view satisfying
seg(p;, s» j, X) for some p; and 5. Each sentence of the text
appears in the KWIC view as many times as the number of
its segments because each segment has one keyword to appear
in a distinct row in the view., For example, the first sentence
appears three times in the KWIC view of Figure 6. Key,
equals the content word of Seg,,, and T, is the remaining
function words of Seg,,.. If Key, is a compound word con-
sisting of y primitive words p,, p,, ..., p,, they are shown in y
separate rows instead of a single row with Key,.

seg(1,1,1, 4% W7 ¢l)

head(1,1,1, (87 =73, {& 5 ¢ %3, {noun}, {»,1,2,3,4})
tail(1,1,1,{T, 4X},85)

seg(1,1,2,CRITAC%)

seg(1,2,6, BT 3)

head(1,2,6, {EH}, (& < ¢ ¥}, {noun}, {1,2}).
tail(1,2,6,{<,3}1.22)

punc(1,2,6,0)

Structured Text

Figure 6. The relationship between the structured text and the two external
views

KWIC View

Y -7 CRCR I TACZMTETTT,
SOV AF LT, BRGXHRORY &
Bols ot WENTT.

|
]
N N—T THICRITACZ Rt eT,
MIN-TCE [CRITAC % | BFEHTC T,
WY R--/T CRITACE | B Ty
i % RWous I es HIYT T,
wh % oty LN HMT Y,
B & Hous o e | A Yo
€ keywords | function —
preceding vords succeed ing
contexl context

Proofreading Knowledge Base

CRITAC proofreading rules are written in terms of the facts
and predicates including those used for the structured text,
and built-in predicates [IBM8509]. There arc two types of
rules: source rules and KWIC rules. By source rules we mean
those rules which involve qualification over segments, content
words, and function words in the source view of text. The
KWIC rules involve the qualification of adjacent keywords
as well as their ordering,

Source Rules

One category of source rules aims at finding excessively
complicated or ambiguous noun phrases. This is effective in
the Japanese language environment because the Japanese
grammar allows nouns and some particles to be strung to-
gether into a long sequence, and such sequences are used fre-
quently. Basically we have two types of phrases to detect:
one is repeated noun modifiers of the same kind and the other
is an ambiguous dependency among segments. For example,
phrases like

FoOBORXO Ko

My Mother’s Father’s Company’s Location is...
(repetition of possesive noun phrase)

B A BBV BB LEC OB LY

Applying equations 4 or B and C,
(too ambiguous modification)

are detected.

Another category of source rules aims at detecting
typographical errors and inconsistent use of words. Some
sample proofreading rules are

A rule for detecting incorrect ending of sentences

rule(‘terminative’)
<- tail(],J,K,T,H)
& end — of — sentence(E)
& category(‘terminative’,H)
& NOT punc(L,J,K,E)
& warningl(‘missing punctuation’,[LJ,K).

This rule scans the function words of text. If a segment ends
with a function word (the last element of the list T in “tail”),
which usually implies the “ecnd —of - sentence”, but is not
followed by a punctuation mark (period) E, then give a
warning to the author.

A rule for detecting an inconsistent use of numeric prefixes -
One is Alphabetical prefix and another is Chinese numeric prefix

rule(‘'numbers’)
<= head(11,J1,K1,U1,Y1,G1,L1)
& number -~ prefix(K1,1.1,P1,WI)
& head(12,J2,K2,U2,Y2,G2,L2)
& number — prefix(K2,L2,P2,W1)
& char - type(P1,T1)
& char —type(P2,T2)
& ne(T'1,T2)
& warning2(‘numbers’,11,J1,K1,12,J2,K2).

This rule detects the inconsistent usage of Kanji and Roman
numeric prefixes for some content word. If some primitive
word W1 is preceded by numeric prefixes P1 and P2 denoting
the same numbers but not of the same character type, then
give a warning to the author. “Number — prefix(K,L,P,W)’
succeeds if there is a number prefix P preceding a primitive
word W in the compound word X, where the constituent
types are listed in L. “Char - type(P,T)” succeeds if a 2-byte
character string P consists of only one character type
(“Kanji”, “Hiragana”, “Kanakana”, or “Roman”) or if P is
“mixed”.

KWIC Rules

KWIC rules, in contrast with the source rules, refer to
keywords of the KWIC view rather than the “segment” or
“head” above.

In the KWIC view, as explained in the previous subsection,
if Key,, ..., Key, is the phonetic ordering, homonyms are ar-
ranged adjacently. This greatly reduces the time to detect
homonym errors (conversion errors) because the system only
has to scan the keywords Key, once to examine the pronun-
ciation of Key; and Key,,, and possibly some other local con-
ditions. For example, we can express possible conversion
errors as follows.

415

ruleKWIC(*misconversion’)
<. is— ordered(‘pronunciation’)
& key(11,U1,Y1,G1)
& next— key(11,U2,Y1,G2)
& ne(U1,U2)
& pred(I1,P) & pred(12,P)
& succ(I1,S) & suce(12,S)
& warningK WIC(‘misconversion’,I1).

If there are distinct keywords Ul and U2 with the same pro-
nunciation Y1 in the same context P (preceding primitive
word) and S (succeedmg primitive word), then one of them
Is possibly a misconversion. “Key(L,U,Y,G)" is Key, = U
with pronunciation Y and lexical category G.
i‘Next— key(L,U,Y,G)” unifies with key(I1,U,G,Y) such that
1 =1+1.

If Key,, ..., Key, are ordered either by their preceding or suc-
ceeding word we can detect some lack of conformity in word
usage. For example, if keywords are ordered by their suc-
ceeding words, the following case will be detected.

.. be a spelling error in such cases ...
.. can find style errors as well as
.. to detect stylistic errors in the text ...

ruleKWIC(‘inconsistency’)
< - ordered(‘successor’)
& key(I1,UL,Y1,G1)
& next—key(11,U2,Y1,G2)
& ne(U1,U2)
& stem(U1,8) & stem{U2,5)
& warningKWIC(‘inconsistency’,11).

Here we assume both stem(‘style’, ‘style”) and

stem(‘stylistic’,‘style’) are successful.

3. A Sample CRITAC Session

This section illustrates a typical CRITAC session consisting
of four actions. That is,

1. Detect an error in the source view (Figure 7).
2. Display the explanation of the error (Figure 8).
3. Locate the error candidate in the KWIC view (Figure 9).

4, Get the homonyms of a keyword by invoking the dic-
tionary server (Figure 10).

These actions are implemented as basic functions of the sys-
tem. Locating a word of interest in different views will effi-
ciently help users judge the system-detected errors to be real
errors or not.

416

=3

5 MWFBEHCE<EEOXWE (1) XMHYH (2) BudAKB0L
99 B (3) BMFHUASFOHMBULNN (4) ARBEOEMBEILL>T [5] ol
100 HEXFELIProl o g OMiRFRRMT S, broXRorheHERL
101 BT3MBUBEECRITACTRB- TR L, WX LWL 0L O LY

102 WA, ;Efylﬂtlm%*’iﬂmfﬂﬁkwaﬁﬁkm

FCRITAC SOURCE A1 F 72 TRUNC=72 SIZE=181 LINE=102 COL=1 ALT=0)
97 .

103
104
105
108
s£CRITAC%| 1| 2 3 4 4xx] 51 61 71 8 x| 9|10 | 111} 12
f PROOF ISrceINexthultll‘x L1##[SCHG] 7 |BackiForwl#x| = {} o-eIUordIKUICI
Figure 7. A Source View with Errors Underlined: Erroneous segments are
underlined. The numbers in the underlines are classification code
of errors.
CRITAC SOURCE Al F 72 TRUNC=72 SIZE=181 LINE=102 COL=1 ALT=0)

| RPHSHRMAORR, CORMEOHEKR !
| v Effishcung T, |
|~ BREROVHBEEIH) FHAD? |

101 W4 sWMMEBRECRITACTRE» TwEL,

100 BEXFELVIProlos DA ERTS, bLOXWOL» BRI
#H#RILFE 0L O LUK

102
103
104
105 SLEE’P{TK LOYWRERZ L v REEERDCFATHS,
106
#CRITAC¥x| 11 24 31 4+ 51 61 71 8 1sx| 910 11 12§
PROOF |SrcelMext|Quit|Expli##|SCHG] ? |Back|Forwl#%] = |Home|Word KVIC]
\" J
Figure 8. The Source View Explaining One of the Errors: The system
explains that the error code 36 says that the underlined segment
has a Kanji compound word with very rare combination of
primitive words.
CRITAC KVWIC Al F 116 TRUNC=116 SIZE=1207 lINF 970 COL=1 ALT=0 W
960 | LYo RO HERT B ik B ERE X0
961 AFEOHP % HE L LBLE ¥ ik 0)&!\‘?‘6#3@’4&7;40
962 & DOFUKM/AIZ DO BT B bag- BRE I B 2L CHB,
963 MHI BTN, ROLSL Fk TEORE R T ¥
964 ROFHOPYNERIET B big ERAB P v T HYY
965 K SRIE T 5 1 ik O il DAMBHCRRK TN B,
966 — 7 x—XORETBEO il OWEEE L, FF A
967 &G Tkahlam&:‘-&a%m
968 A WH A SCERE % 32
960 HRIIE - HEEL LD T3 10 f-&éﬁﬁ%f%z:uﬁo
970 EHTCRITACTH? W DXBEEK L% OXY 6
971 9\ M 1WHRI LI 3K N ik RV el
972 pls Fil 406 24t B8 '(L‘t'\’i:?f%ﬂ)ﬁ’ﬁé (
973 A 7WETCEB LY, BiTe R B L0 I FERFIEMR
974 | MHEERTOHARE 2 H rehtsazoicifbni,
975 CHhH, BEXvE—I % R AN S XM
976 UMHL : o X I B 8% 12 D (BBVIRKWIC
977 hHliEn) broXKz B BMHMOBEEL T W
978 (2) o it POV THRKCH 5,
979 <WHR» SEFWATD 95 B 4r 57‘%11*’57?:5;7)’(0))‘(%91
#CRITACH*| 1| 21 3] 4 =] 51 61 71 8 l=} 91011 {12
KVIC IPrf |Yomi|Quit|Expll#*}{3Chgl 7 |Back|Forw|sx| = IHomeIUordlSrcel
== % P4

Figure 9. A KWIC View Switched from the Source View: This KWIC
view shows the number of occurrences of a primitive word. The
user wonders whether the primitive word caused the previous
error 36 of the Kanji compound word.

r
CRITAC

KVIC Al F 116 TRUNC=118 SI?F 1202 L.INE=1007 COL=1 ALT=2
1000820 I
:000020 |
R ———e
KWICuvr2FAAL B
X (VR L FahE ;3
1003 FHB DL F s h b bt
1004 hsbHL02KWICHUE B 3
1005 | HAH O CR RN 2 WIS T VLT
1008 OP 22U, K6 L0 H B LE OMRRLL
1007 AFEXH BT S 2 M [N g
1008 i 3 O M AR 0T A8 P l: T %,
1008 & H O MBI © HE S - gEMIhsk B R ¥
1010 &, &t gk e 3 o 1B L\bnb CRM T - B
1011 MRFEOKRE T2 HE P & T TR
1012 ¥ EhbyTHEZOMD
1013 ~ZXYRAFLOED2KER F AR THB
1014 7~ F /XURFEWS &> A nmwawm HEE]
1015 —I, WEECH oM IR EE
1016 WMIRFLADAHELT FIH TEB,
#FCRITACkx) 11 21 31 4 l=xl 51 61 71 & {#} 91101 11 | 12|
KviC IPrf [YonilQuit|Expli**|SChgl ? [BackiForvi#s] = |llone|Vord|Srcel
L ====>
Figure 10. The Invokation of the Dictionary Server: Given a primitive

word as a key, the dictionary scrver displays a list of its
bomonyms. Then the user might find the correct primitive
word in the list.

4. Conclusion

We have introduced a Japanese text proofreading system
CRITAC based on the text preprocessing and Prolog-coded
knowledge representation. The user interface of CRITAC is
developed based on the following concepts.

@ support of external views of text for users
® SQL/DS online dictionary server
@ text compiler

Although CRITAC is initially designed for the Japancse lan-
guage, the authors believe it can be applied to other languages
as well. For example, the KWIC vicw can be applied to detect
conversion errors in any kind of text prepared by phonetic-
to-ideographic conversion or voice-input methods. The
notions of structured text and preprocessing not only add
textual information to the original text to resolve the over-
head of applications but also give a high-level view of the
text. The application designer no longer has to code his/her
own lexical analyzer that deals with character strings. They
are replaced with higher objects such as segment, sentence,
or paragraph.

We also believe that CRITAC as a domain-specific (or
application-specific) interface to applications (c.g., document
retrieval or machine translation) will help users define a set
of valid input by heuristic rules in addition to a grammar.

Rules of CRITAC can filter out or rewrite some portions of

the text and guarantee appropriate text to be given to the
applications.

Future work includes

@ FEvaluation of the system with respect to accuracy, usa-
bility and so on.

& A simple grammar checking based on case grammar
[FILL68].

@® SQL/DS enhancement of dictionary server facilities.
SQL/DS can also be used to manage the document
[MISE8103] itself.

@ Interface to other applications such as a machine trans-
lation systern or a text-to-voice generation system.

Acknowledgments

We are grateful to Hiroshi Maruyama for building a proto-
type of the CRITAC knowledge base and for many valuable
discussions. We also wish to thank Tetsuro Nishino for im-
plementing a complicated noun analyzer on a CRITAC pro-
totype, M. Arthur Ozcki for his assistance in developing
proofreading rules, and Linore Cleveland and XKaoru
Hosokawa for their helpful comments on the earlier draft of
this paper.

References

“A Maximum
IEEE trans,

IBAHLJ8303] BahLL.R., Jelinek,F. and Mercer,R.L.:
Likelihood Approach to Continuous Speech Recognition”,
on PAMI, Vol.PAMI-S, No.2, pp.179-190, Mar. 1983

[CHERS80] Cherry,L.L.: “Writing Tools - The STYLE and DICTION
programs”, Bell Laboratories Computing Science Technical Report,
No.9, 1980

|CLOCMS81] Clocksin,W.I<.
Springer-Verlag, 1981

{CODD7006] Codd,E.IF.: “A Relational Modecl of Data for Large Shared
Data Banks”, CACM, Vol.13, No.6, pp.377-387, June 1970

[FILL68] Fillinore,C.: “The Case for Case™ in Universals in Linguistic
Theory (Eds. Bach,E. and Harms,R.T.), Holt, Rinehart and Winston,
New York, pp.1-88, 1968

[FORN7303] Forney,G.D.Jr.: “The Viterbi Algorithm”, Proc. of the TEEE,
Vol.61, No.3, pp.268-278, March 1973

[FUJI8407] Fujisalki,T.: “A Stochastic Approach to Sentence Parsing”,
Proc. of Coling84, pp.16-19, July 1984

[FUJIMB8304] Fujisaki,T. and Morohashi,M. “Text Processing in
Kotodama™ (in Japanese) in Word Processors and Japanese Language
Processing (Bds. Ishida,I1. ct al.), “bit” special issue, Kyoritsu publish-
ing co., pp.96-107, April, 1985

[FUJI8509] Fujisaki,T.: “Studies on Handling of Ambiguities in Natural
Languages” (in Japancse), Doctral dissertation, Tokyo University,
Sept. 1985

[HEIDJS2] Heidorn,J, Jemsen, K., Miller,L.A.,
Chodorow,M.S.: “The EPISTLE text-critiquing system”,
Journal, Vol.21, No.3, pp.305-326, 1982

[IBM8308] IBM Corp.: SQL/Data System Concepts and Facilities (2nd
Ed.), GH24-5013, Aug. 1983

IBM8509] IBM Corp.: VM| Programming
DescriprionfOperations Manual Sept. 1985

[MIYAGS8310] Miyazaki,M.,Goto,S. and Shirai,S.: “Linguistic Processing
in a Japanese-Text-to-Speech-System”, Proc. of Intl. Conf. on Text
Processing with a Large Character Set, pp.315-320, Oct. 1983

|MISE8103] Misck-Falkoff,I..1>.: “Data-Base and Query Systems: New
and Simple Ways to Gain Multiple Views of the Patterns in Text”, IBM
Research Report, RC8769, March 1981

JOKOC8112] Okochi,M.: “Japanese Morphological Rules for Kana-to-
Kanji Conversion: Concepts” (in Japanese), TSC Technical Report,
N:G318-1560, IBM Japan, Dec. 1981

ISAKAS8407] Sakamoto,Y., Satoh,M. and Ishikawa,T.:
tures for Japanese Syntactic Analysis in Mu-Project-JE”,
Coling84, pp.42-47, July 1984

|TANAS8310] Tanaka,Y.: “Analysis of Homonyms in Individual Fields™,
Proc. of Intl. Conf. on Text Processing with a Large Character Set,
pp.397-402, Oct. 1983

|YAMASS310] Yamashita,M., Shiratori,Y. and Obashi,F.: “Kana-to-
Kanji Transtation Method Using Pattern Characteristics of Kanji
Characters”, Proc. of Intl. Conf. on Text Processing with a Large
Character Set, pp.113-117, Oct. 1983

[WEYEB8501] Weyer,S.A. and Borning,A.H.: “A Prototype Electronic
Encyclopedia”, ACM Trans. on Office Information Systems, Vol.3,
No.1, pp.63-88, Jan. 1985

and Mellish,C.8.: Programming in Prolog,

Byrd,R.J. and
IBM Systcms

in Logic - Program

“Lexicon Fea-
Proc. of

417

