
Per~: Idngw for Parsing and ~ Transfer

Kenneth R. Beesley David Hefner
A.L.P. Systems

190 West 800 North
Provo, Utah 84604 USA

Abstract

PeriPhrase is a high-level computer language
developed by A.L.P. Systems to facilitate parsing and
structural transfer. It is designed to speed the
development of cc~puter-assisted translation systems
and grammar checkers. We describe the syntax and
semantics of this tool, its integrated development
environment, and some of our experience with it.

I. IntroductiGn

Up to 80% of the time needed to develop a new
language pair for coni0uter translation is spent in
writing source-language analysis and transfer
programs. The PeriPhrase language and development
environment were created to allow a computational
linguist to write such programs more quickly, using
high-level rules that are easily written, read, and
debugged.

The syntax of PeriPhrase was heavily influenced
by its predecessor "PHRASE," which in turn borrowed
from BNF, rule-based programming languages like
PROLOG, and expert systems. There are obvious
similarities to PARSIFAl., Marcus ' Deterministic
Parser, and many ot/ler projects. It is perhaps true
that few of the individual features of the language
originated with us. However, we believe the synthesis
of these features together with a very powerful
debugging environment to be unique and significant,
reflecting the practical needs of coni0utational
linguists building large commercial systems.

IL P e r ~ Syntax

A PeriPhrase program consists of a declarations
section followed by one or more rule packets. Each
packet contains one or more rules. All the category
names, variable names, attribute names, and action
names used in the program must be declared, and the
possible values for each attribute must be
enumerated. As applying rules is a time-consuming
process, packets of rules can be activated only as
they are needed, either when a program starts or
during execution.

Simple PeriPhrase rules are composed of a
pattern on the left side and a rewrite on the right

side, separated by a rewrite operator.

pattern => rewrite.

PeriPhrase tries to match the pattern on the data
being parsed. If the pattern matches, then the data
is restructured or recoded according to the rewrite.
One way of looking at rules is to see the pattern as
a "before" snapshot and the rewrite as an "after"
snapshot.

The pattern is composed of one or more pattern
elements, the simplest being a declared category
name. The following are valid patterns:

E~T AD/ N
V NP
NP VP

The most common operation performed by PeriPhrase
rules is siaple conflation, where all the data items
matched by the pattern are made J/mnediate sons under
a new father node. The following simple rule forms a
noun phrase (NP).

! 1 2 3
D~T AD7 N --> NP[I, 2, 3].

A cc~ment line, preceded by an exclamation mark, is
included in this example to highlight the ~tch
units, which are always counted in strict
left-to-right order. In the rewrite, the presence of
the category name NP indicates the i~sertion of a
node of that category. ~le square brackets following
the NP indicate that it is to be a new father node.
The numbers appearir~7 in the rewrite are formal
pronotms referring back to the match units of the
pattern. This rewrite indicates that the first, t/le
second and the third match units (i.e. all the match
units) are to be amde sons under a new NP node, ill
the order indicated. When the rule fires, a tree like
the following will be built.

NP

E~ AD7 N

Many other m11es are constructed on the same pattern°

V NP => VP[I, 2]°
NP VP => S[I, 2].

Because simple conflation is so conm~n, the
abbreviation [..°], which references all the match
ttnits, is provided. The abbreviated rules below are
completely equivalent to the rules just described.

V NP => VP[...].
NP VP => S[...].

When explicit formal pronouns, rather than [...]
are used, the omission of any formal pronoun causes
the corresponding match unit to be deleted. The
presence of a category name in the rewrite always
causes an J~sertion, either of a new father node or a
new terminal node.

Simple conflation rules are muc/% like the
context-free phrase-structure rules familiar to
formal linguists, but PeriPhrase rules can also be
context-sensitive. Suppose that we declared a
category N V for marking noun-verb hom(m/raphs. (It
should be ~phasized that all category names, and the
significance given to them, are determined by the
progranm~r.) When a noun-verb homograph like "walk"
occurs in the context "the walk," the following
PeriPhrase rule will disambiguate it.

! 1 2
E~T NV --> 1 2:=N.

That is, if an N V is found ~iately preceded by a
E~T, that N_V (the second match unit) is
recategorized as a noun (an N).

390

Pattern ele~ents can be preceded by a prefix,
like the Klee/le Star, indicating that zero or more of
the indicated item~ can appear in the data.

Other prefixes available are i+, which indicates that
one or more. of the matching items ~m~st appear, and
0=i, which :hndicates optionality.

Similar to the sinlole pattern elements based on
a category name are WIID pattern elements, which will
match a dat~ item of any category. The following rule
matches whatever is left ~ fo~s it into a
sentence.

~WILD ~--> s[..o].

it is often convenient to co~%strain categories by
specifyir~ attributes or "features" which must also
match or not match.

D~T(r~/3~plr~l) *AE~ N(r~m~Jngular) =>

~P[...] (m m ~ . r : - - - - s i n ~ i a r) .

Ehe pattern element N(r~ing~lar) will match
only if Per/Phrase finds an iteml of category ~[whose
ntm~oer attribute is equal to 'singular.' The pattern
element ~f(~plt~cal) will n~tch only if the
item is of category E~T and the n ~ attribute of
the item is N~D equal to 'plura]..' The := or
assignment operator in t/~e rewrite indicates that an
attribute is to be set to a particular value.. The
rewrite ~P[....] (n~:=sJngular) indicates that an
NP is to be. built tip in the way already described,
and the r ~ feature of tlle overall hrP is to ~ set
to 'singular.' Attribute restrictions can be set for
any sii~o]e pattern element in the pattern, ~I
attribute sett~K~S call be sE~cified for any inserted
or pronoun-referenced item in the rewrite. The = and
signs can }~e iterated.

D~'(nrm~--191u~l=~oth) ! ei%1~ar 'plural' or ~both'
D~T(nnmber#pl~l#both) ! nsither 'plural' nor 'both ~

W~en a pattern is being matched, variables can
be "loaded" with the attribute values of items being
matched. For exa~iole , the following pattern would
cause variable X to be loaded with the value of the
TKmtber attribute for the N and t/~e variable Y to be
loaded with the case value.

E~r *ALXr N(X:=number, Yt=case) =>

~P[. o.] (nu~er:=X, oase:=y).

Inside a rewrite, attributes can also be set frc~
loaded variables, as in the example above, where the
number and (~se of the head noun of a noun phrase are
effectively passed up to the noun phrase itself.

PeriPhrase also provides pattern el~ents more
exotic than category names and WILD. An OR pattern
ele/~lent, enclosed in curly brac~kets, l~atches when one
of an enumerated set of possibilities is found. An
exclusion pattern element, enclosed in angle
brackets, ~m~tches ~le/~ none of an enume~rated set of
possibiliti~ is fotnld.

<N & Alia>
! OR pattern element
! exclusion pattern element

As it is sc~tJ~es cenvenient to specify
commence of patterns with/x~ patterns, PeriPhrase
provides the subpattern, whose elephants are bounded
by parentheses. The following example assuages that we
have declared a category O~MA, which would be
assigned to the ptnlctuation r~k of the s~ne name..
The second pattern elea~nt will ~tch zero or]~:ce
instances of the s~/bpattern (A~[0=IOOMMA).

i. 1 2 3
*(An~ 0-1COMMA) N => NP[I, 2, 3].

Most powerful of all are the hierarchi~l
pattern elements, which allow rules to match whole
trees and subtrees that have l~.n built up previously
during t/%e analysis. The follow;hlg exile will n~tc~h
an NP which consists of a E~9, ~ ADE, and an N.

!] 2 3 4
NP[D~, AIIY~ N]

lhe transfer operations of inse~t:Lon ~x]
deletion have already]:~aen me/%tioned. Transfer ~l
also involve ~ordering and rest~Ict.uring. ~lle
following rule is a simplified example of reordering
for transferrJn~g f~xm~ EngliE'~, ~lere adjectiw~s
generally precede the noun tJ%ey modify, to Fre/]cJl,
where the adjectives generally follow the noun. Norm
the reordering of the third and fourth match unit~o

i 1 2 3 4
NP[E~T, *ran, ~] => l[2, 4, 3].

~he fo]lowi~Ig t~es ~iow san~01e data before and after
tAis r u l e ilas fired.

NP NP

. t / I ~ - . t / I "~~
E~T ALIY N E~' N ADE
(the) (brc~;n) (dog) (the) (dog) (br~;n)

It was recogniz~i from the beginning that
PeriPhrase itself could not do everything and that it
should not try to do everything necessary for
analysis and transfer. To accommodate the need to
integrate lower-level c~de, PeriPhrase allows the
user to call actie~s, arbitrarily co1~iolex C prograr~,
during l~eriPln.~ase processing. Actions appear
optionally in rules, both after a pattern and after a
rewrite, qhe following is a ~m~ple rule containing
action calls to chec~k flag, prirrt ~ and
set flag.

E~ */Hg/ N; c~ak fl~tg(X) =>
NP[...] ; print a~=sage, set_flag(Y, Z).

Actions can also be called as l~Ickets are entered a~l
exited. Constani~ and variabl~3 (X, Y and Z in the
example above) can optionally be ~Icluded in action
calls as paramete/~. Because pa~[meters are passed by
address, action routines can change the value of
variables in the calling PeriPhrase program.

391

V. Search Order

The rules for each packet are retched
left-to-right or right-to-left at the discretion of
the pro~. In addition, programmers can
optionally specify a trave/sal order for each packet,
either preorder or postorder. If a traversal order is
specified, the packet is ,,free," and PeriPhrase will
search down inside tree structures already built up
when trying to match rule patterns. Otherwise, a
packet is "fixed," and the pattern-matching search is
limited to the topmost visible roots of the trees
already formed.

v~. ~i~ity ~ ~lex la~les

In most natural languages, especially written
English, there are many genuinely ambiguous
constructions where an analysis could go two or more
ways. For example, the noun phrase the small car
fac~cory is ambiguous as to whether the writer means a
small factory that makes cars or a factory that makes
s~all cars. The analysis chosen will make a big
difference if the goal is translation into French or
a similar language.

Assuming that small is categorized as an AIIT and
that car and factory are categorized as Ns, either of
the following trees could be built.

NP

L~q' N
Cthe /

ADJ N

N N
(car) (factory)

NP

n~T N
(~) / ~

N N

AD~ N
(s~u) (car)

A PeriPhrase p r o ~ might determine that one
reading is statistically more ~ n than the other
and simply default every time to that one reading.
Only one of the following two rules would appear in
the gramm3r, depending on the reading desired.

AIIT N N ---> NP[I, N[2, N[3, 4]]].
!sm~ll (car factory)

AII7 N N => NP[I, N[N[2, 3], 4]].
! (small car) factory

In a similar vein, the analysis could diverge into
two parallel paths, and each structure and each
analysis would be given a confidence rating. At the
end, the analysis with the highest overall confidence
rating would win. Another possibility is human
interaction.

These three possibilities, statistical
defaulting, parallel processing, and interaction, are
all responses to the same kind of problem: deciding
how to make a genuine choice during analysis. In
PeriPhrase, all three possibilities are a ~ t e d
by a single specialization, the compleK rule, which
is perhaps the most novel feature of the language. A
complex rule lists a set of possible rewrites, one
for each alternate path. A rule to handle the small
car factory structure is the following.

392

I~T ~ N N; action(X) =>
clxx~se(X) { NP[I, N[2, N[3, 4]]] I

~p[i, N[N[2, 3], 4]] }.

The rewrite section begins with the reserved word
choose, which takes a ,,discriminator" variable, here
X, as an argument. Following choose(X) is an OR list
of possible rewrites, enclosed in curly brackets and
separated by vertical lines. Where n is the value of
X at the time of execution of the rewrite, the nth
rewrite rule in the list is performed.

Usually the variable used to choose a rewrite is
set by an action routine in the same rule, but this
is not required. Any variable can control the choice,
and it could even be a reserved variable set to a
desired default reading.

The most straightforward way for an action to
set the discr/iminator variable is to interact with
the user. The choices would be presented in some menu
form to the screen, and the user's answer would
directly choose the rewrite. Actions could also be
written to set the discriminator after performing
complex syntactic and semantic checks.

Setting the discrim/nator variable to 0 (zero)
causes PeriPhrase to pursue both paths in a
pseudo-parallel fashion.

V~. ~ nevelq~t ~

The PeriPhrase user is provided a development
environment which is designed to enhance productivity
and shelter the user from irrelevant system-level
details. The development environment consists of an
editor, an incremental compiler, a source-level
debugger, and a user--interface n~mUo

From the menu, the user can edit any packet,
which will be incrementally compiled when execution
is restarted. The debugger allows the user to set
virtually unlimited numbers of breakpoints on
individual rules, packets, and actions. In addition
to breakpointing, the user may examine the working
memory (database), the production ~emory (the
PeriPhrase source code), PeriPhrase variables, action
parameters, and other data relevant to the state of
the PeriPhrase program execution. PeriPhrase programs
can be "animated." The debugger itself is
conm~qnd-driven and user-customizable, with full macro
capabilities.

VIII. Cunclusion

We at A.L.P. Systems are finding PeriPhrase to
be a valuable software tool for building practical
natural-language systems. An earlier version of the
language, called PHRASE, is already being used in our
translation products as part of the front-end
routines that divide a text into sentences. An
English analysis program has been started, and we
already have a German analysis program with about 600
rules in 80 packets. PeriPhrase is also being used in
our Writing Aids division to build a grammar checker
for English. We anticipate that PeriPhrase will be
used increasingly over the coming years as A.L.P.
Systems develops new products and expands its
translation line to cover more language pairs. We
also expect that PeriPhrase and its development
environme/%t will continue to evolve within the
established framework.

