DCKR -- Knowledge Representatibn in Prolog and 1Its Application
to Natural Language Processing

Hozumi Tanaka

Tokyo Institute of Technology
Dept. of Computer Science
O-okayama, 2-12-1, Megro-ku
Tokyo, Japan

ABSTRACT: Semantic processing is one of the 09) sem(animal,age:X,_) -
important tasks for natural language processing. bottomof(S5,B),
Basic to semantic processing is descriptions of sem(B,birthYear:Y,_),
lexical items. The most frequently used form of X is 1986 - Y.
description of lexical items is probably Frames or 10) sem(face,P,8) :-
Objects. Therefore in what form Frames or Objects are hasa(eye,P,[faceiS1);
expressed is a KkKey 1issue for natural language hasa(nose,P,[face!(S1);
processing. A method of the Object representation in ...,
Prolog called DCKR will be introduced. It will be hasa(mouth,P,[face!S81).
seen that if part of general knowledge and a
dictionary are described in DCKR, part of context- Now the meanings of the sem, isa and hasa
processing and the greater part of semantic processing predicates, which are important to descriptions in
can be left to the functions built in Prolog. DCKR, are explained later using the DCKR examples
given above.
1. Introduction The first argument in the sem predicate is the
Object name. ©Objects are broadly divided into two
Relationships between knowledge represented in types, individuals and prototypes. Psychologists often
predicate logic formulas and knowledge represented in refer to prototypes as stereotypes. An Object name
Frames or Structured objecis are clarified by with # represents an individual name and the one
[Hayes 801, [Nilsson 801, [Goebel 857, [Bowen 851, et without #, a prototype name. For example, clyde#®l and
al, but their methods Trequires separately an elephant, which appears in 0l) and 05), represent an
interpreter for their representation. individual name and a prototype name, respectively., A
set of Horn clauses headed by the sem predicate with
The authors have developed a knowledge the same individual name or prototype name represents
representation form called DCKR (Definite Clause an individual object or a prototype object,
Knowledge Representation) {Koyama 851. In DCKR, each respectively.
of the slots composing of a Structured Object
(hereinafter simply called an gbigct) is rapresented The second argument in the sem predicate is a
by a Horn clause (a Prolog statement) with the ‘"senm" pair composed of a slot name and a glot value. The
predicate (to be explained in Section 2) as its head. pair is hereinafter called a SV pair.
Therefore, an Object can be regarded as a set of Horn
clauses (slots) headed by the sem predicate with the The description in 02) is to be read as showing
same first argument. From the foregoing it follows that clyde®l is an instance of the prototype elephant.
that almost all of a program for performing semantic Here, note that 02) is a direct description of
intepretations relative to lexical items described in inheritance of knowledge from prototypes at higher
DCKR can be replaced by functions built in Prolog. level. 02) means that if & prototype called elephant
That is, most of programming efforts of semantic has a property P, the individual clyde#l also has the
processing can be left to the functions built in same property P. 05) and 07) describe the fact that
Prolog. an elephant is a mammal and that a mammal is an
animal . 08) describes the. fact that an animal 1is a
DCKR will be described in detail in Section 2. creature and has a face, body, e From the
Section 3 will discuss applications of DCKR to foregoing it can be seen that the isa predicate used
semantic processing of natural languages. for the inheritance of knowledge is a predicate for
traversing the hierarchy of prototype Objects.
2. Knowledge Representation in DCKR The predicates, isa and hasa are defined below.
The following examples of knowledge 11) isa(Upper,P,S) :-
representation in DCKR will be used in Section 3 and P = isa:Upper:
later. sem(Upper,P,S).
. 12> hasa(Part,X:Y¥,5) :-
:=0op(100,yfx,'™"), == hasa,
ap(100,yfx,':"), (Y = Part;
ap (90, xfy, *#°). sem(Part,hasa:Y,8)).
01) sem(clyde#l,age:6,_), The iga predicate and the hasa predicates are
02) sem(clyde#l,P,3) :- used far the inheritance of knowledge through
isaCelephant,P, [clyde#1i58]1). subordinate-superordinate and part-whole relations,
03) sem(elephant#l,birthYear:1980,). respectively.
04) sem(elephant#1,P,8) :-
isa(elephant,P, [elephant#1i81). DCKR is provided with the bottomof predicate,
05) sem(elephant,P,S) :- which is used in the body of 09). By using the
isa(mammal,P, [elephantiS1). predicate, it is possible to know what the calling
06) sem(mammal,bloodTemp:warm,_J. individual (the individual that called the world of
07) sem(mammal,P,S) - prototypes) is and extract the knowledge held by that
isa(animal,P, Imammal {S1). individual. This is accomplished by using the third
08) sem(animal,P,S) :- argument in the sem predicate, since in the third
isa(c¢reature,P, lanimali51); argument of the sem predicate is stacked the route

hasa(face,P,[animaliS81);

followed in tracing the hierarchy.

For example, 09) identifies the individual
, ,(caller)> B by means of the bottomof predicate and

222

calculates his age by using B's birthyear. Therefore,

if
?-sem(elephant#l,age:X,_).
is executed, 09) is reached by the isa predicate in

04), 05) and 07). As a result,
X=6

is derived by the Prolog interpreter.
Also, if

?-gem(elephant#l,P,).

is executed, all properties about elephant#l can be
obtained as follows:

P = birthYear:1980;
P = isa:elephant;

P = isa:mammal;

P = blondTemp:warm;

r canimal;
P rreature;
P = age:6

Note that all knowledge (SV pairs; properties) at
higher level prototypes than elephant#l is obtained
through the unification mechanism of Prolog. In other
words, inheritance of knowledge is carrvied out
avtomatically by the functions built in Prolog.

Ag you may notice, if
?7-sem(¥X,Y,).

is executed, the system begins calculating al
knowledge it nas (as X-Y pairs).

If
?2-gem(¥, isatmammal,).
is executed, 14 is

E
prototype at the
higher

dividual or

al at the

X = clyde#l;
X = elephant#l;
X = elephant

finally, if
?-sem (animal,hasa:X,).
is executed, you may have the folloving results:

X = face;
X = eye;
i = nose;
X = mouth;
X = body
From the foregoing
understand that if
infe

explanation, y
[J

3. Semantic Processing of Natural Language
3.1 Dsecriptions of Lexical Items in DCKR

Semantic processing is one of the important tasks
for natural language processing. Basic to scmantic
processing are descriptions of lexical items. The
most freguenily used form of description of lexical
items is probably Frames or Objects, A method of the

Object representation in Prolog called DCKR is
introduced in section 2. In this section, 1t will be
shown that DCKR representation of lexical items

enables to alleviate a lot of programming efforts of
semantic processing.

In DCKR, an Object consists of a set of slots
cach of which is represented by a Horn clause headed
by the sem predicate. However, the first argument in
the sem predicate is the Object name. The values of
slots used in semantic processing are initially
undecided but arc determined as scmantic processing
progresses. This is referred to as slots being
satisfied by fillers. To be the value of a slot, a
filler must satisfy the constraints written in the
slot.

It the filler satisfies the constraints written
in a slot, action is started to extract a semantic
structure or to make a more profound inference.
Constraints written in slots are hroadly divided into
two, syntactic constraints and semantic constraints.
The former represents the syntactic roles to be played
by fillers in sentences. The letter arc constraints
on the meaning to be carried by fillers. Typical
semantic processing proceeds roughly as follows:

i) If a filler satisfies the syntactic and semantic
constraints on a slot gselected, start action and
end with success. DFlse, go to ii)

i1 1f there is another slot to select,
and go to i). LElse, go lo iii)

iiid 1f there is a higher~-level prototype, gect its
stot and go to i). HKElse, and on the assumption
that the semantic processing is a failure.

select it

From the semantic processing procedures in i)
through iii) above, the fallowing can be scen:

a) The scmantic counstraints in i) are often expressecd
in lagical formulas. This can be easily done with
DCKR as explained later.

b The siot selection in 1i) can use the backtracking
mechanism built in Proleg. For in DCKR a slol is
represcented as a Horn clause.

) iii) can be easily implemented by the Knowledge
inheritance mechanism of DCKR explained in 2.1.

Thus, if lexical items are described in DCKR,

programs central to scmantic processing can be
replaced by the basic computation mechanism built in
Preolog. This will be demonstrated by examples below.

Cited first is a DCKR description of the lexical item
"open" [Tanaka 88§al.

13) sem(open,subj:Filler”In™0ut,_) :-
sem(Filler,isa:thuman,_),
extractsem(agent:Filler™In™Out);
(sem(Filler,isa:eventOpen,_);

sem(Filler,tisa:thingOpen,_)),
extractsem(object:Filler~In~out);
sem(liller,isa:instrument, O,
extractsem{instrument:Filler~In~0ut);
sem(Filler,isatwind,),
extractsem(reason:Filler™In~oOut).

14) sem(open,obj:Filler™In~out,_) :-
(sem(Filler,isateventOpen, _);

sem{(Filler,isa:thingOpen,_)),
extractsem(object:Filler™In™~Out).

15) sem(open,with:Filler“In™~Out,_) :-
sem(Filler,isatinstrument, >,
extractsem{instrument:Filler™In™~out).

16) sem(open,P,8) -
isaCaction,P,lopeniS]);
isa(event,P, (openiS]).

13),14) and 1%) are slots named subj, obj and
with, which constitute open. Variable Filler is the
filler for these slots. The slot names represent the
syntactic constraints to be satisfied by the Filler.
Subj, obj and with show that the Iiller must play the
roles of the subject, object, and with~hcaded
prepositional phrase, respectively, in sentences. The
body of each of the Horn clauses corresponding to the
slots describes a pair composed of semantic constraint
and action (hereinafter called an CA pair). For
example, the bady of 13) describes four CA pairs, each
of them joined by or(";").

The first CA pair:

223

sem(Filler,isa:human,),
extractsem(agent:Filler™In~out);

shows that if the Filler 1is a human (a semantic
constraint), the action extractsem(agent:Filler~In~out)
starts making the deep case of the Filler the agent

case that is added to In sent to Out.

As described above, checking semantic constraints

can be replaced by direct Prolog program execution.
Therefore, relatively complex semantic constraints,
e.g., person of blood type A or AB, can be easily
described as shown below:
sem(Filler,isa:human,_),
(sem(Filler,boodTypeta,_);
sem(Filler,boodType:ab, _))
The meaning of the second, third and forth SA

pair in 13) is obvious now.

Form the foregoing exXplanation, the meaning of
the slots in 14) and 18) will be evident. - In addition
to "with", there are many slots corresponding to
prepasitional phrases, but they are omitted to
simplify the explanation.

16) shows that if the Filler cannot satisfy the
slots in 30), 31) and 32), the slots in the prototype
action or event is accessed automatically by
backtracking. This was explained in detail as
inheritance of knowledge in 2, and provides an example
of multiple inheritance of knowledge as well.

The descriptions of 13) through 16) can be
completely compiled, thus ensuring higher speed of
processing. This makes a good contrast with most
conventional systems which cannot compile a
description of lexical items because it is represented
as a large data structure.

3.2 Description of grammar rules

The DCG notation [Pereira 801 is used to describe
grammar rules. Semantic processing is performed by
reinforcement terms in DCG. An example of a simple
grammar rule to analyze a declarative sentence |is
given below,.

sdec(SynVp, SemSdec) -->
np(SynSubj,SemSubj),
vp(SynVp, SemVp),
{concord(SynSubj,SynVp),
seminterp(SemVp,subj:SemSubj,SemSdec)}.

encircled by {(} is a reinforcement
term. The predicate concord is to check concord
between subject and verb. The predicate seminterp,
intended to call sem formally, 1is a small program of
about five lines. In this example the grammar rule
checks 1if the head noun in SemSubj can satisfy the
subj slot of the main verb frame (e.g., open in 13) -
16)) in SemVp and returns the results of semantic
processing to SemSdec. Therefore, we can see that
there is little need to prepare a program for semantic
processing.

The part

As semantic processing is performed by
reinforcement terms added to DCG, syntactic processing
and semantic processing are amalgamated. This has
been held to be a psychologically reasonable language-~
processing model.

3.3 Test result
Some comments will be made on the results of

semantic processing based on the concept explained in
3.1 and 3.2. The sentence used in the semantic
processing is "He opens the door with a key."
[nput sentences:

He opens the door with a key.
Semantic structure is:

sem(open#5,P,8) :~- isa(open,P,[open#5iS]1).

sem(open#5,agent:he#d,).

sem(open#s, instrument:key#7,).
sem(open#5,o0bject:idoor#6,).

sem(he#4,P,S) :~ isa(he,P,[he#4iS]).
sem{(door#6,P,S) :- isa(door,P,l{door#6i57).
sem(door#6,det:the,).

sem(key#7,P,S3) :- isa(key,P,[key#7iS1).

sem(key#7,detia,_).

results of semantic processing of “"the door
are obtained but their explanation is

Besides,
with a key"
omitted.

Here it is to be noted that results of semantic
processing are alse in DCKR form. By obtaining
semantic processing results in DCKR form, it is
possible to get, for example,

sem(open#J,instrument:X,)

from the interrogative sentence "With what does he
open the door?" and get the answer

—————————— iInference! t
{Context |----- 1Engine I R e E L L i
{Analysis! i | H H !
! | { 1
—————————— i T T e e e e e H H

L bt iKnowledge Base(DCKR + ?)! } {
~~~~~~~~~~ | ! [ it
iSemantici-~--~www- H {____1{_iSentence!
lAnalysis! I e T H ! !{Genera-

H { i 1 Dictionary(DCKR)! | i ition
---------- I H | | |
! H ! ! ! !
——————————— o ! H ! 1

ISyntacticl~==-w--- I e ek ! ! |
H |
H 1

iAnalysis |
]

!
Input Sentence(Source)

Fig. 1}

224

Ansver (Target)

DCKR and Natural-Language-Understanding System



X=key#7

by merely executing that.

4, Conclusion

Now the relationship between DCKR and a natural
language understanding system will be touched an.
From what has no far been discussed, we can envision a
natural-language-understanding system architecture as
illustrated in Fig. 1.

The shaded vparts in Fig. 1 are those will be
achieved by the interpreter built in Prolog. From the
foregoing explanation, it will be seen that if part of
general knowledge and a dictionary are described in
DCKR, part of context-processing and the greater part
of semantic processing can be left to the functions

built in Prolog. As for syntactic processing, the
grammar rules described in DCG [Pereira 801
automatically converted intao a Prolog program, and
parsing can be replaced by Prolog program execution.

Given the foregoing facts and assuming the

inference engine to be the Prolog interpreter, it may
be concluded that a Prolog machine plus something else
will be a natural-language-processing machine. 1¢
asked what that something will be, we might say that
it will be a knowledge base machine. Anyway, this
concept is in line with what the Japanese fifth-
generation computer systems project is aimed at.

[Acknowledgment)

Authors wish to express their great gratitude to
Mr.Kazuhiro Fuchi, the director of the Research Center
of ICOT, and Dr.Koichi Furukawa, the chief of the
Research Center of ICOT, for their encouragements and
valuable comments, Mr.Haruo Koyama,Mr.Manabu Okumura,
Mr.Teruo lkeda, Mr.Tadashi Kamiwaki, who are students
of Tanaka Lab. of Tokyo Institute of Technology,
helped us to implement some application programs based
on DCKR. Mrs. Sachie Saito helped us for preparing
this manuscript.

5. References

[Bobrow 77) Bobrow,D.G. et.al.: An Overview of KRL-O,
Cognitive Science, 1, 1, 3-46(1977).

{Bowen 851 Bowen,K.A.: Meta-Level Programming and
Knowledge Representation, Syracuse Univ.,(1985).

[Colmeraure 78] Colmeraure,A.: Metamorphosis Grammer,
in Bolc (ed):Natural Language Communication with
Computers, Springer-Verlag 133-190(1978).

[Goebel 851 Goebel, R.: Interpreting Descriptions in a
Prolog-Based knowledge Representation System,
Proc.of IJCAI'85,711-716(1988).

[Hayes 801 Hayes,P.J.: The Logic of Frame Conceptions
an Text Understanding, Walter de Gruyer, Berlin,
46~61(1980).

[Koyama 851 Koyama,H. and Tanaka,H.: Definite Clause
Knowledge Representation, Proc.of LPC'85, [COT
95-106(1986), in Japanese.

[Matsumoto 83] Matsumoto,Y. et.al.: BUP-~A Bottom-UP
Parser Embedded in Prolog, NEW Generation
Computing, 1, 2, 145-158(1983),

{Mukai 851 Mukai,K.: Unification over Complex
Indeterminates in Prolog, Proec.of LPC'85, [ICOT
271-278(1985).

[Nilsson 80} Nilsson,N.J.: Principles of Artificial
Intelligence,Tioga, (1980).

[Pereira 80] Pereira,F. et.al: Definite Clause Grammar
for Language Analysis --A Survey of the Formalism

and a Comparison with Augmented Transition
Networks, Artificial Intelligence, 13, 231-278
(1980).

[Tanaka 841 Tanaka,H. and Matsumoto,Y.: Natural
Language Processing in Prolog, Information

Processing, Society of Japan, 25, 12, 1396-1403
(1984), in Japanesc.

[Tanaka 85a] Tanaka,H. et,al: Pefinite Clause
Dictionary and its Application to Semantic
Analysis of Natural Language, Proc. of LPC'85,
ICOT, 317-328(1985), in Japanese.

{Tanaka 861 Tanaka,H.: Definite Clause Knowledge
Representation and its Applications, ICOT-TR(in
press).

225



