
C a t e g o r i a l U n i f i c a t i o n G r a m m a r s *

Hans Uszkoreit
Artificial Intel l igence Center

SRI Internat ional and
Center for the Study of Language

and Information at Stanford Univers i ty

Abstract

Categorial unification grammars (CUGs) embody

the essential properties of both unification and categorial
grammar formalisms. Their efficient and uniform way of

encoding linguistic knowledge in well-understood and
widely used representations makes them attractive for

computational applications and for linguistic research.

In this paper, the basic concepts of CUGs and simple
examples of their application will be presented. It will be
argued that the strategies and potentials of CUGs justify

their further exploration in the wider context of research
on unification grammars. Approaches to selected

linguistic phenomena such as long-distance

dependencies, adjuncts, word order, and extraposition
are discussed.

0. Introduction

The work on merging strategies from unification

grammars and categorial grammars has its origins in
several research efforst that have been pursued in
parallel. One of them is the grammar development on

the PATR system (Shieber et al., 1983; Shieber, 1984) at
SRI. For quite a while now I have been using the
excellent facilities of PATR for the design and testing of

experimental[CUGs. Such grammars currently run on
two PATR implementations: Stuart Shieber's Zetalisp
version on the Symbolics 3600 and Lauri Kar t tunen 's

Interlisp-D w:rsion on the XEROX 1109. The work on
CUGs has influenced our efforts to develop a larger

PATR grammar, and will do so even more in the future.
On the theoretical side, this work is part of ongoing
research on such topics as word order variation,
modification, and German syntax within projects at SRI
and CSLI (Stanford University).

The structure of the paper reflects the diverse nature

of the enterprise. In the first section, I will introduce the
basic notions of CUGs and demonstrate them through
examples in PATR notation. The second section
discusses the motivation for this work and some of its
theoretical implications. The third section sketches a

linguistically motivated CUG framework with a strong

lexical syntax that accomodates word order variation.

The paper concludes with a brief discussion of possible

CUG approaches to long-distance dependencies.

1. Basic Notions of Categorial Unification

Grammars

1.2. Unif icat ion G r a m m a r s and Categorial

G r a m m a r s

Both terms, unification grammar (UG) and

categorial grammar (CG), stand for whole families of
related grammar formalisms whose basic notions are

widely known.l Yet, for the characterization of the class

of formalisms I want to discuss, it will be useful to review
the most central concepts of both UG and CG.

Unification grammar formalisms employ complex
feature structures as their syntactic representations.

These structures encode partial information about
constituents. Either term or graph unification is utilized
as the main operation for checking, propagating, and
merging of the information in these complex
representations. Most unification grammars also use the
complex feature structures for the l inking of syntactic
and semantic information.

In traditional categorial grammars, all information

about possible syntactic combinations of constituents is

encoded in their categories. Those grammars allow only
binary combinations. One of the two combined
constituents, the functor, encodes the combination
funtion, the other constituent serves as the argument to
this function. Instead ot7 phrase structure rules, the
grammar contains one or, in some formalisms, two
combination rules that combine a functor and an
argument by applying the function encoded in the

functor to the argument constituent. Most categorial
grammars only combine constituents whose terminal

strings concatenate in the input string, but this need not

be so. In most categorial grammar formalisms, it is
assumed that the syntactic functor-argument structure
in the corresponding compositional semantics.

187

There are usually two types of grammatical

categories in a categorial grammar, basic and derived

ones. Basic categories are just category symbols, derived

categories are functions from one (derived or basic)
category to another. A derived category that encodes a

function from category A to category B might be written

B/A if the functor combines with an argument to its right

or B ~ , if it expects the argument to i ts left. Thus, if we

assume just two basic categories, N and S, then N/S, S/N,

N\S, S\N, (S\N)/N, (N/S\(S\(N/N)), etc. are also categories.

Not all of these categories will ever occur in the

derivation of sentences. The set of actually occurring

categories depends on the lexical categories of the

language.

Assume the following simple sample grammar:

(2) Basic categories: N, S

lexical categories: N (Paul, Peter)

(S\N)fN (likes)

The grammar is used for the sample derivation in (3):

(3) Peter likes Paul

N (S\N)fin N

SkN

S

It should be clear from my brief description that the

defining characteristics of unification grammar have

nothing to do with the ones of categorial grammar. We

will see that the properties of both grammar types

actually complement each other quite wetl.

1.2. A Sample CUG in P A T R Nota t ion

Since the first categorial unification grammars were

written in the PATR formalism and tested on the PATR

systems implemented at SRI, and since PATR is

especially well suited for the emulation of other

grammar formalisms, I will use its notation.

The representations in PATR are directed acyclic

graphs (DAGs) 2 . Rules have two parts, a head and a

body. The head is a context-free rewrite rule and the

body is a DAG. Here is an example, a simple rule that

forms a sentence by combining a noun phrase with a verb
phrase.

188

(4) head XO -~ X1, X2

body in unification notation

<X0 ca t> = S
<X1 cat> = NP
< X 2 c a t > = VP
<X1 agr> = < X 2 a g r >

body in graph notation

xo

r

S NP

The rule states that two constituents X1 and X2 can

combine to form a constituent X0 if the terminal string

covered by X1 immediately precedes the terminal string

of X2 and if the DAGs of X0, X1, and X2 unify with the

X0, X1, and X2 subgraphs of the rule body, respectively.

I will now show the most straight-forward encoding

of a categorial grammar in this notation. There are two

types of constituent graphs. Constituent graphs for basic

categories are of the following form:

(5)

N S

Of course, there might be more features associated with

the constituent:

(6)

/oe 7
N S Finite

3 Sg

Derived constituents have graphs of the following form:

(7)

arg

(t0b) Backward Funct ional Application (BFA)

va lue -~ functor a rgumen t
< va lue > = < functor v a l >
< a r g u m e n t > = <func to r a r g >
< f lmc to r d i r > :--: Left.

This is the graph associated with the VP likes Paul:
in graph notation:

(8)

,. / ~ Left / ~ agr

ca~//pers / form cat /pers~nu m

S Finite N 3 Sg

I t corresponds to the der ived-category symboh

(9)

S \ N

form : Finite pers : 3
num: Sg

(10a) and (10b) are the rules tha t combine const i tuents .

As in t rad i t iona l categorial g rammars , two such rules

sufice.

(10a) Forward Func t iona l Applicat ion (FFA)

va lue -~ functor a rgumen t
< v a l u e > = < f u n c t o r v a l >
< a r g u m e n t > = < f u n c t o r a r g >
< f u n c t o r d i r > = Right.

in graph notat ion:

val u e ~ J - ~ ~ ' ~ .
/ f u n c t ° r l . ~ r g u

R i g h t

ment

val u e ~ - - J J - ~ - ~ r g u ment

/
Left

If Backward Funct ional Applicat ion is used to

combine the const i tuents Peter and likes Paul, the resul t

is a finite sentence.

However , if the same rule is applied to the identical

const i tuents likes Paul and likes Paul, again a finite

sentence is obtained. ']['his is so because the graph for

likes Paul actual ly unifies with the va lue of arg in the

same graph. This can be easi ly remedied by modifying

the graph for the VP slightly. By s t ipu la t ing that the

a rgumen t mus t not have an unfil led a r g u m e n t position,

one can rule out derivcd categories as subject a rguments

tbr the VP:

(II)

/0o-i /°e?Tum
S Finite N 3 Sg

1.3. E x t e n s i o n s to t h e Bas ic F o r m a l i s m

In this subsection [want to discuss very briefly a few

extensions of' the basic model tha t make it more sui table

for the encoding of na tu ra l - l anguage grammars . The first

one is the sort ing of f imctors according to their own

syntactic category. This move migh t be described

a l t e rna t ive ly as def ining the type of a const i tuent as

being defined by both a set of syntactic (and semantic)

189

attributes and a function from categories to categories.

This function is also expressed as the value of an
attribute. For a basic category the value of the function
attribute is NIL. The following graph is a simplified

example of a functor category (prenominal adjective in a
language with case and number agreement within the

NP).

~ ~/ ~ ~'~unction

ca;~/ ~ s : : m - - ~ g r

The combination rules need
accordingly. This is the modified
functional application.

to be changed
rule of forward

value -~ functor argument
< v a l u e > = <functor function va l>
< argument > = < functor function arg >
<functor function d i r> = Right.

In a traditional categorial grammar, a derived

category is exhaustively described by the argument and
value categories. But often, syntacticians want to make
more fine grained distinctions. An example is VP
modification. In a traditional categorial grammar, two

different VP modifiers, lets say an adverb and an
adverbial clause, would receive the same translation.

(12) Peter called him angrily

N (S\N)fN N (S\N)/(S~q)

(13) Peter called him at work

N (S\N)/N N (S\N)/(S~aN)

190

But what should be the category for very? If it receives

the category ((S\N)\(S\N))/((S\N)\(S~N)) to allow the

derivation of (14), the ungrammatical sentence (15) is

also permitted.

(14) Peter called him very angrily

N (S\N)/N N ((S\N)\(SLN))/ (S\N)/(S~X[)
((S\N)\(S~N'))

(15) *Peter called him very

N (S\N)/N N ((S\N)\(S~))/
((S\N)\(S\N))

at work

(S\N)/(S~)

If functor categories are permitted to carry features

of their own that are not necessarily bound to to any
features of their argument and value categories, this
problem disappears. Adverbs and adverbial clauses could

receive different features even if their categories encode
the same combination function.

Another solution to the problem involves the
encoding of the difference in the value part of the functor.
Yet this solution is not only unintuit ive but also

contradicts a linguistic generalization. It is unintui t ive
because there is no difference in the distribution of the
resulting VPs. The only difference holds between the

modifiers themselves. The gene~:alization that is violated
by the encoding of the difference in the value subgraphs

is the endocentricity of the VP. The modified VP shares
all syntactic features with its head, the lower VP. Yet
the feature that indicates the difference between adverbs
and adverbial phrases could not be in both the argument
and the value parts of the functor, otherwise iterations of
the two types of modifiers as they occur in the following
pair of sentences would be ruled out.

(16a) Peter called him very angrily at work.

(16b) Peter called him at work very angrily.

Another augmentation is based on the PATR
strategy for l inking syntax and semantics. Most

grammars written in PATR use the constituent graphs

also for encoding semantic information. Every
constituent has an attribute called trans or semantics.
The value of this attribute contains minimally the
internal semantic fnnction-argument structure of the

constituent, but may also encode additional semantic
information. The separate encoding of the semantics

allows for a compositional semantics even in construction

in which syntactic and semantic structure divert as in
certain raising constructions. The following graph for a

ficticious prenominal adjective that was introduced
earlier contains translation attributes for the functor,

the argument and the value. The meaning of the

adjective is indicated by the atom Red.

cat ~ / functi% ~rans
Adj

Acc ing ~ . _ ~ g
Red

At first glance, the lexical graphs--even the ones
that are used in the highly simplified examples--seem to
exhibit an excessive degree of complexity and
redundancy. However, the lexical approach to syntax is

built on the assumption that the lexicon is structured. To
create a lexicon that is structured according to linguistic

generalizations, we introduced lexical templates early on

in the development of PATR.

Templates are graphs that contain structure shared
by a class of lexical entries. Lexical graphs can be
partially or fully defined in terms of templates, which

themselves can be defined in terms of templates. If a
template name appeam in the definition of some graph,

the graph is simply unified with the graph denoted by the
template.

The next augmentation is already built into the
formalism. Categorial grammarians have recognized the

limitations of fimctional application as the sole mode of
combining constituents for a long time. One of the

obvious extensions to classical categorial grammar was
the utilization of functional composition as a further

combination mode. A good example of a categorial
grammar that employs both functional application and

functional composition is Steedman (1985). Forward
functional composition permits the following
combination of categories:

(21) A/B + B/C = A/C

The resulting category inherits the argument place for C

from the argument B/C.

Neither Steedman's nor any other CG I am aware of
permits functional composition in its full generality. In

order to prevent overgeneration, functional composition

as well as other combination modes that are discussed by
Steedman are restricted to apply to certain categories
only. This somehow violates the spirit of a categorial

grammar. Steedman's combination rules, for instance,
are net universal.

In CUG, functional composition is subsumed under

functional application. It is the functor category that
determines whether simple functional application, or

functional composition, or either one may take place.

Conjunction is a good case for demonstrating the
versatility.

Consider the following sentences: 3

(22a) Peter andPaul like bananas.

(22b) Peter likes bananas and Paul likes oranges.

(22c) Peter likes and buys bananas.

The conjunction and may combine two simple
argument categories (22a), two functors with one unfilled
argument position (22b), or two functors with more than
one unfilled argument position (22c). If the conjuncts

have unfilled argument positions, the conjoined phrase
needs to inherit them through functional composition.

The simplified lexical graph for a n d is given under (23).
In order to avoid a thicket of crossing edges, I have
expressed some of the relevant bindings by indices.

191

(23) c ~

.... r (

The most appealing feature of this way of utilizing

functional composition is that no additional combinators
are required. No restriction on such a rule need to be
formulated. It is only the lexical entries for functors that
either demand, permit, or forbid functional composition.

Extensions to the formalism that I have
experimented with that cannot be discussed in the frame

of this paper are the use of multiple stacks for leftward
and rightward arguments and the DCG-like encoding of
the ordering positions in the graphs. In Sections 3. and
4., I will discuss further extensions of the formalism and
specific linguistic analyses. The following section
contains a summary of the motivations for working on

and with CUG and the main objectives of this work.

2. Motivation and Theoretical implications

Both terms, unification grammar and categorial
grammar are used for classes of grammar formalisms, for

individual grammar formalisms, and finally for
grammars that are written in these formalisms. In

addition, they might also be used by linguists to denote
linguistic theories that are buil t around or on top of such

a formalism. This is the type of terminological
overloading that linguists have learned to live with--or

at least gotten accustomed to.

As I indicated in the previous section, I consider
CUG to stand for a family of grammar formalisms that

might be described as the intersection of categorial and

192

unification grammar formalisms. What has been

proposed so far is therefore not a new grammar
formalism and even less a linguistic framework.

The proposal is simply to further explore the

usefulness and formal properties of subclasses of CUG.
This proposal can be supported by a number of reasons.

Both types of formalisms have clear advantages.
Categorial grammars have been hailed for their

conceptual clarity and their potentials for l inking syntax

and semantics. The fact that they have been around for a
long time and that they are currently enjoying a

renaissance in the works of Steedman, Bach, Dowty, and
many others demonstrates their virtues. Unification

grammars are spreading last and lend themselves to
powerfifl but efficient computer implementations.

Traditionally, categorial grammars have been

lacking syntactic sophistication. In a functor category

such as A/B, only domain and range of the function are
specified but nothing is said about bow they are related;

how, for instance, the features of the argument influence
the features of the value. The graph notation expresses

the relation between argument and value categories
quite well; it is expressed in a set of bindings between
subgraphs of the two categories.

In the context of this discussion, some remarks are in
order on the specific role PATR has played for the

experiments with CUGs. The philosophy behind the

development of PATR has been to provide a tool for
writing, testing, and comparing grammars of very

different types in a powerful formalism with
well-understood formal properties and a well-defined
semantics (Shieber 1984).

Thus PATR could be useful for writing grammars,
designing grammar formalisms, and for exploring classes
of such formalisms. The work on exploring categorial

unification formalisms has not only benefitted from the
features of PATR but it has in a way also influenced the
development of the PATR formalism. It was, for
instance, essential for the writing of categorial
grammars to allow category variables in the context-free

phrase structure part of the rules. How else could one
formulate the rules of functional application. The
implementation of this facility through Stuart Shieber,

however, raised interesting problems in connection with
the prediction aspect of the Earley-parser. Original
Earley prediction works on category symbols. An answer

to these problems was presented by Shieber (1985) who
proposed to do Earley prediction on the basis of some
finite quotient of all constituent DAGs which can be

specified by the grammar writer.

Another example for the influence of the CUG efforts

on the development of PATR is a new template notation

introduced by Lauri Kar t tunen in his Interlisp-D version
of PATR. Since categorial grammars exhibi t an

extens ive embedding of categories within other
categories, it is useful to unify templates not only with
the whole lexical DAG but also with its categorial

subgraphs. The @-notation permits this use of templates

(Karttunen, 1986)3

3. A CUG G r a m m a r Model tha t Aecomodates Word

Order Var ia t ion

Worder order variation has always been one of the

hardest problems for categorial grammars. Functional
composition together with type-raising can be used to
obtain all permutations of the sentences that are

generated by a traditional categorial grammar. Totally

free word order does therefore not pose an
unsurmountable problem to the categorial approach. As

with other types of grammar formalisms, it is semi-free

word order that is difficult to accommedate.

GPSG, LFG, and FUG all have mechanisms for

encoding ordering regularities. Such a device does not

exist in the categorial grammars that i am aware of.
However, Uszkoreit (1985a,b) argues (on the basis of
data fl'om German) for an application of l/near

precedence rules to the valency list of syntactic functors.

This approach presupposes that the valency list contains

adjuncts as well as complements as the flmetor's

syntactic a rguments)

The model can be summarized as follows. The

lexicon lists uninstantiated entries. For functors, these
entries contain a set of thematic roles. The

uninstantiated lexical entry may also state whether
thematic roles have to be filled, whether they may be
filled more than once, and whether idiosyncratic

properties of the fnnetor predetermine the syntactic
features of certain syntactic arguments.

There are three types of rules that instantiate lexical

entries: feature instantiat ion rules, valency

instantiat ion rules, and order instantiation rules.

An instantiated functor has an ordered valency list
containing syntactic specifications of complements and

adjuncts together with the appropriate semantic

bindings. The model can account for the interspersing of
complements and adjuncts as they occur in many
languages including English. The model can also
account for right-extraposition phenomena.

t

Therefore, the valency list may constain adjuncts

that do not fill a thematic role of the functor but combine

semantically with some constituent inside a linearily

preceding member of the same valency listfi

In the proposed model, the dependency between the

extraposed phrase and its antecendent is neither

established by functional application/composition nor by
feature passing. It is assumed that there is a different

matching process that combines the noncontiguous

phrases. A process of this kind is independently needed
for the matching of adjuncts with thematic roles that are

embedded in the meaning of the functor:
(26a) Tel lme about French history.
(26b) Start in 1700.

The year 1700 is obviously not the start time for the

telling.

(27a) His call was very urgent.

(27b) lie tried desperately from every phone booth on

campus.

It is not try that supplies here the source role but the

implicit theme of try. If the theme role is filled, everybody

would analyze the from PP as semantically belonging to

the theme of try:

(28) He tried to call her desperately from every phone

booth on campus.

I want to conclude this discussion with a remark on

the parsing problem connected with the proposed model.

In older PATR Phrase-Structure grammars as well as in

the categorial PATR grammars, all graphs that may be
connected with a word in the input string are either
retrieved from the lexicon or from a cache of ah'eady built

lexical graphs, or they are constructed on the spot fi'om
the [exical entries through the morphology and through
lexical rules.

For obvious reasons, this approach cannot be used in

conjunction with the categorial model just proposed. If
all adjuncts are included in the valency list, and if
moreover all acceptable linearizations are performed in

the extended lexicon, there is no upper bound on the
number of acceptable lexieal graphs for functors. This

means that lexical entries cannot be fully instantiated

when the word is recognized.]'hey need to be
instantiated incrementally as potential arguments are

encountered.

In Uszkoreit (1985b) it is argued that the ordered
valency lists of a functor admitted by the lexical
[nstantiation rules form a regular language. [f further

research confirms this hypothesis, the incremental
{nstantiation of valency lists could be performed through

sets of finite state machines.

193

4. A Note on L o n g - d i s t a n c e D e p e n d e n c i e s in CUGs

In S t eedman ' s (1985) categorial g rammars ,

long-dis tance dependencies are endcoded in the

func t ion -a rgumen t s t ruc tu re of categories, The

categories t h a t form the path be tween filler and gap in a

der ivat ion t ree all carry a valency slot for the filler. This

uniform encoding of both subeategorizat ion and

long-dis tance dependencies in the a r g u m e n t s t ruc ture of

categories seems at f i rs t glance super ior to the HPSG or

PATR approaches to long-distance dependencies , in

which the two types of informat ion are marked in

di f ferent fea ture sets. However, it t u rns out tha t the

S teedman g r a m m a r s have to mark the long-distance
valency slots in order to d i s t inguish them from other

valency slots.

There could stil l be a just i f icat ion for encoding the

two types of dependencies in the same a r g u m e n t stack.

One m i g h t loose impor t an t nes t ing informat ion by

sepa ra t ing the two types of slots. However, I have not ye t

seen a convincing example of nes t ing cons t ra in t s among

subcategor iza t ion and long-distance dependencies .

Therefore, I consider the quest ion of the appropr ia te

place for encoding long-distance dependencies still open.

A last r emark on long-distance dependencies. In a

unificat ion based sys tem like PATR it is not tr ivial to

ensure t h a t gap informat ion is passed up from one

daugh t e r cons t i tuen t only when a rule is applied. There

are two ways to enforce th is cons t ra in t . The first one

involves a mul t ip l ica t ion of rules. For a binary rule A

- -> B C, for ins tance , one could introduce three new

rules, one of which does not do any gaP passing, ano ther

one the pass ing of a gap from B to A, and the third the

pass ing of a gap from C to A.

PATR uses a l i t t le more e legant method which has

been first sugges ted by Fernando Pereira . Two fea tures

are th readed th rough every tree, one of which carr ies a

gap up a tree, pass ing through all the cons t i tuents to the

left of the gap, and a second one t h a t is set to NIL if a gap

has been found and tha t is then sent th rough all the

cons t i tuen ts to the r igh t of the gap, unifying it on the

way with potent ia l gaps. It requires tha t informat ion

about the two special fea tures be added to every rule. In

PATR a preprocessor of rules adds this informat ion for

all rules in which the g r a m m a r wri ter did not include

any gap th read ing informat ion herself, e.g., for encoding

island cons t ra in ts .
In a CUG tha t only conta ins two (or at least very

• few) rules, the first method of dupl ica t ing rules appears

preferrable over the gap th read ing approach. Rules tha t

propagate gap informat ion migh t also include rules t ha t

permit parasi t ic gaps along the lines of S teedman ' s rules

of functional subs t i tu t ion .

194

References

Bar Hillel, Y. (1964) Language and information. Wesley, Reading,
Mass.

Johnson, M. (1986) "Fronting and the Internal structure of the VP in
German." ms. Stanford University.

Karttunen, L. (1986) "D-PATR: A development environment for
unification-based grammars." in this volmne

Shieber, S. M., If. Uszkoreit, F.C.N. Pereira, JJ . Robinson, and M.
Tyson (1983) "The Formalism and implementation of PA'PR-[I "
in: Research on Interactive hcqui~'ition and Use nf Knowledge.
Artificial intelligence Center, SRI International. ~,lenlo Park,
California.

Shieber, S. (1984) "The Design of a Computer t, anguagc, tbr
Linguistic Intbrmation." in Shieber, S., L. Karttunen, and F
Pereh'a (eds.), Notes fi'om the Unification Underground A
Compilation ~f Papers on Unification.based Grammar
Formalisms, Technical Note 327, SRI-lnternational, Menlo
Park, Cal

Shieber, S. {1985) "Using Restriction to Extend Parsing Algorithms
For Complex Feature Based Formalisms," in: Proceedings of the
ACL I985.

Steedman, M. (1985) "l)ependency and Coordination in the
Grammar of Dutch and English." Language 61: 523-568.

Uszkoreit, H. (1982) "German Word Order in GPSG." In I).
Flickinger, M. Macken, and N. Wiegand (Eds.), Proceedings of
the First West Coast Conference on Formal Linguistics, Stanford
University, Stanford, California.

Uszkoreit, H. (1985a) "Problematische Konstruktionen ffi
kontextfreie Phrasenstrukturgrammatiken des Deutschen." in
Klenk, U. (Ed.) Strukturen und Verfuhren in der maschinellen
Sprachverarbeitung, AQ-Vetlag, Dudweiler

Uszkoreit, H. (1985b) "Linear Precedence in Discontinuous
Constituents." paper presented at the Conference on
Discontinuous Constituency, July 1985, Chicago', Illinois, (to
appear in Syntax and Semantics 201

Uszkoreit, H. {1986) "Constraints on Order " CSLI Report 46,
Stanford University (also to appear in Linguistics.)

Notes

*The research for this paper was made possible through a gift by the
System l)evelopment Foundation.

tFor an introduction to the family of unification grammar models
refer to Shieber (forthcmning). A good introduction to the basic
notions ofcategorial grammar is Bar [tiliel (1964).

2The PATti implementations that arc currently used at SR[actually
permit cyc l ic graphs.

:IRight-Node-Raising (RNR) which leads to sentences as: Peter likes
and Paul buys bananas will be neglected here (although RNR is an
attractive lopic for catcgorial grammarians and one of my grammars
~ctnally handles many cases of RNR.)

IAn even lilt)re general notation can })e used that does not
distinguish between root templates and subgraph templates. As long
as template names are marked by some typographic convention.
could be freely used wherever a graph is described.

~The version of t!le linear precedence rule component proposed b~
Uszkoreit {1982. 1986) is {\tlI> compatible with this approach. The.,
proposal permit> the formalization of partially free word order as [t
results fl'om the interaction of potentially conflicting ordering
principles and as it probably occurs to some degree in all natural
languages

6Sag (1985) proposes a mechanism for IIPSG that allows the
syntactic binding of an extraposcd phrase to a complement or
adjunct slot of a complement or adjunct. However, this approach is
too restricted. Although there is a strong tendency to only extrapose
complements and adiunets of top-level complements and adjuncts,
there is certainly no such constraint in languages like English or
German. The following sentence could not be handled since the
extraposed relative clause modifies an adjunct of the subject.
Petitions from those people were considered who had not filed a
complaint before.

7Mark Johnson (1986) has worked out a quasi-categorial solution of
this phenomenon in the framework of HPSG.

