
Requirements for Robust Natural Language
In ter faces: The LanguageCra f t T~4

and XCALIBUR expe r i ences

Jaime G. Carbonel l
Carnegie+Mellon University
and Carnegie-Group Inc.

Pittsburgh, PA 15213, USA

I n t r o d u c t i o n

Natural Language interfaces to data bases and expert systems
require the integration of several crucial capabilities in order to be
judged h a b i t a b l e by their end users and p r o d u c t i v e by the
developers of applications. User habitability is measured in terms of
linguistic coverage, robustness of behavior and speed of response,
whereas implementer productivity is measured by the amount of
effort required to connect the interface to a new application, to
develop its syntactic and semantic grammar, and to test and test
and debug the resultant system assuring a certain level of
performance• These latter criteria have not been addressed directly
by natural language researchers in pure laboratory settings, with
the exception of user-defined extensions to an existing interface
(e.g., NanoKLAUS [4], v e x [6]). But, in order to amortize the cost
of developing practical, robust and efficient interfaces over multiple
applications, the implementer productivity requirements are as
important as user habitability. We treat each set of criteria in turn,
drawing from our experience in XCALIBUR [2] and in
LanguageCraft TM [5], a commercially available environment and run
time module for rapid development of domain-oriented natural
language interfaces, f In our discussion we distill the general
lessons accrued from several years of experience using these
systems, and conducting several small-scale user studies.

U s e r H a b i t a b i l i t y

Natural language used for communication in task-oriented dialogs
differs from that of published text. Perhaps it should not be
surprising that dialog phenomena, especially e!lipsis and anaphora
[3] dominate over complex syntactic constructions, but the
implications of this observation for habitability of natural language
interfaces have not yet become widely known or accepted.
Conversely, the criteria for user habitability itemized below apply
only to interfaces, not to the comprehension of longer written texts•

• C o v e r a g e - All significant domain concepts (objects,
relations, states and actions) must be incorporated in the
grammar and knowledge base. Conceptual coverage is more
crucial than extended syntactic coverage, as users will adapt
to syntactic limitations but will not tolerate the total inability to
express concepts or operatrons llley lodge slgnlilcant.
Moreover, users of interactive natural language systems very
seldom type long complicated sentences of the type that
abound in literary works. Even such common grammatical
structures as subordinate clauses and clause-level
coordination occur with relatively low frequency in task-
oriented interfaces,

• E l l i p s i s R e s o l u t i o n - Brevity is the key to successful
communication. Natural language has been compared
unfavorably with artificial command languages on the
grounds that it is often more verbose, and typing is an activity
one wishes to minimize. However, we have found that in
many communications with expert systems and in some
database query tasks, fully half of all interactions are
expressed as extremely brief elliptical utterances. Exploiting
contextual information, one can sometimes communicate
with fewer keystrokes in natural language than in an artificial
language lacking in elliptical or anaphoric reference. Support
for ellipsis is therefore a centra l design component of
LanguageCraft and XCALIBUR,

• A n a p h o r a R e s o l u t i o n - Anaphora is almost as ubiquitous
as ellipsis. Using pronouns like "it" or dydatic references like
"that calculation" to refer to objects or actions of arbitrary
complexity makes communication more natural and much
briefer. A surprising result from one of our early user studies
showed that whereas it is possible to restrict users from
employing complex grammatical structures, it is not possible
for them to avoid use of anaphors. Users will understand and
follow the instruction to avoid anaphors for a couple of
sentences and revert back to using them as soon as they
concentrate on the task at hand.

M e t a l a n g u a g e - Utterances about other utterances occur
with some regularity, e.g., "1 meant to type gauss.for instead",
"Oops, I didn't mean that!", or "When I say 'print' I mean on
the terminal". However these are more difficult to handle
systematically and therefore go beyond the scope of the
current practical implementations.

Robustness - Users invariably cornrnit errors of
orthography, switch word order, violate agreement, omit
function words, insert spurious words, or use incorrect
punctuation• Moreover, they often do not notice their errors,
as task knowledge and redundancies in the language allow
for fairly easy human comprehension of sentences that fail to
respect all grammatical niceties. Approximately a third of all
sentences in our analyzed sample of several hundred
interactions were extragrammatical in a strict sense, mostly
due to sloppy user input. However, initial work at automated
recovery when possible, and focused interactive correction
when needed, shows promise for future improvements in this
important aspect of user habitability [1].

Response t ime - Next to grammatical coverage, perhaps
the most widely recognized requirernent for habitability is
real-time response. We find that whereas this is indeed an
issue, the combination of new parsing techniques [8], faster
hardware, and on-line parsing 2 mean that real time
performance will be less of a concern for developers of task
oriented natural language interfaces.

Back-end response - Last but certainly not least, the
manner by which the backend system responds to the user is
crucial. An ideal natural language recognizer coupled to an
expert system or data base that returns its answers in a form
totally incomprehensible to the user is of little use. Thus in
both XCALIBUR and I_anguageCraft we have developed
natural language generators (as well as graphics and tabular
output generators) to close the communication loop with the
user.

1LanguageCraft, Plume and Gramrnar Writer's Workbench are trademarks of
Carnegie Group Inc.

2On-line parsing means that a system parses the input as it is being typed from left
to right, and thus exploits user typing time that would otherwise be idled away.

162

S y s t e m B u i l d e r P r o d u c t i v i t y

The more elaborate a natural language interface, the harder it is to
port to new application domains. In this manner there is some
tension between habitability and complexity of development. But, in
order to ease the difficulty without materially sacrificing the
habitability requirements set forth above, several principles and
development tools have emerged,-to wit:

Decompos i t i on - Traditionally, the syntactic recognition
and semantic interpretation components of a natural
language system were compartamentatized into separate
subsystem,'~ because the former is domain general whereas
the latter is domain specific. However, such separation
entails serious performance compromises, both in speed and
accuracy of the resultant analysis (e.g. the inability to resolve
syntactic ambiguities without semantic criteria, and the
inability to recover from ill-formed input unless both semantic
and syntactic constraints are u~fified in the recognition
process). Lately, a new approach is emerging, where
separate syntactic and semantic knowledge sources are
precompiled into a unified grammar [7], thus sharing the
advantages o f separation of knowledge sources at
development time and integrated robust parsing at run time.

• G r a m m a r deve lopmen t w o r k b e n c h e s - In order to
speed the development of a new interface, and to ensure
consistency and well-formedness of new grammars and
lexicons, specialized software tools are begin developed,
much like the structured editors ~md prnura!nnfing
environments that improve programmer prodLIctivily.
Moreover, grammars are more highly structured tlutn
computer programs, thus such tools have an even qreater
impact in improving grammar-writer productivity.

® Run- t ime t rac ing and d isp lays - Once again borrowing
from software engineering, utilities to trace the application of
a grammar to a set of examples (and to display the processing
and output in meaningful ways exploiting graphic capabilities
of the new workstations) are enhancing the debugging and
quality assurance aspects of new grammar development.

S y s t e m a t i c b a c k e n d t rans la to r - As the productivity of
the grammar developer increases, the effort to connect the
parser to the bacl;,end application becomes a larger fraction
of the total development cost.]he major part of this problem
entails the translation of semantic structures output by the
parser (such as case frames) into the input language required
by the application (such as data base query languages). In
order to enhance developer productivity and minimize errors
of ad-hoc programming, we have developed a systematic
transformation I~nguage (KAFKA) in XCALIBUR, and a rule.
based translator in LanguageCraft.

The systematic develqpment of natural language interfaces
requires a run time system capable of providing the habitability
requirements listed in the previous section, and a development
environment capable of providing the grammar-writer and
applications engineering support listed here. LanguageCraft is the
first commercial system to provide most of these capabilities.
Plume, its case-frame run-time parser, contains a substantial part of
common English syntax (and recently a JPLUME contains Japanese
syntax), and manages dialog issues such as ellipsis resolution and
interactive disambiguation. The Grammar Writers Workbench
provides the LanguageCraft development environment, consisting
of a structured grammar editor, a consistency checker, debugging
and tracing facilities, and support for a rule-based language to
connect to different applications. We expect these facilities to
improve in LanguageCraft, especially as it becomes multilingual and
our experience base with different applications increases. And, we

also expect other systems to emerge that incorporate different
methods for meeting the requirements set forth in the present
document.

References

1. Carbonell, J. G. and Hayes, P. J., "Recovery Strategies for
Parsing Extragrarnmatical Language," American ,Journal of
Computational Linguistics, Vol. 9, No. 3-4, 1983, pp. 123-146.

2. Carbonell, J. G., Boggs, W. M., Mauldin. M. L. and Anick, P. G.,
"The XCALIHLJI~ Project, A Natural Language Interlace to
Expert Systems and Data Ilases," in Applications in AHilicial
Inlellige.nce, S. Andriole, ed., Petrocelli Books Inc., 1985.

3. Carbonetl, J. G., "Discourse Pragmatics in Task-Oriented
Natural Language Interface,;," Proceedings of the 21st atlndlal
meeting el the Association for Computational Linguistics, 1983.

4. Haas, N. and Hendrix, G. G., "Learning by Being Tdld:
Acquiring Knowledge for hfformation Management," in Machine
l.eaming, An Artificial Intelligence Approach, R. S. k, lici/~l.lski,
J. G. Carbonell and T. M. Mitchell, eds., Tioga Press, Pale Alto,
CA, 1983.

5. Carnegie Group Ioc., The LanguageCraft Reference Manual,
Pittsburgh, PA, 1985.

6. Meyers, A., " v e x - An Extensible Natural Language Processor,"
Proceedings of IJCAI-85. Los Angeles, CA, 1985, pp. 821-825.

7. Tomita, M. and Carbonell, J. G., "Another Stride Towards
Knowledge-Based MachiNe Translation: An Entity Oriented
Approach," Proceedings of COLING-86, 1986.

8. Tomita, M., Efficient Parsing for Natural Langauge, Kluwer
Acadmic Pulishers, 1986.

163

