Condilioned Unificalion for Nalural Language Processing

Kaiti Haswda

Mecetrotechnical Labeatory
Umczono 1-1-4, Sakura-Mura, Niibari-Gun,
Ibaraki, 305 Japan

ASTRACT

This paper presents what we call a conditioned unification, a
new method of unification for processing natural languages.
The key idea is to annotate the patterns with a certain sort
of conditions, so that they carry abundant information. This
metlhod transmils informalion from one pattern to another
more efliciently Lthan procedure atlachments, in which
information conlained in the procedurce is embedded in the
program rather than direclly attached to pallerns. Coupled
with Ltechniques in formal linguistics, morcover, conditioned
unification scrves most types of operations for natural
language processing.

1. Introduction

A current major trend of natural language processing is
characterized by the overall use of unification (Shicber
(1984), Kay (1985), Proudin and Pollard (1985), Percira
(1985), Shieber (1985), cte.) reflecting the recent develop-
ments in nontransformational lingwstic formalisms, such as
Lexical Functional Grammar {Bresnan (1982)), Generalized
Phrase Struclurce Grammar (GPSG) (Gaxzdar, Klein, Pullum
and Sag (1985)), llead Grammar (Pollard (1981)), and Head-
Driven Phrase Structure Grammar (HUPSG) (Pollard
(1985a,b)). These formalisms dispense with global opera-
tions such as transformalion, and instead cxploit local
operations cach confined within a local tree. Such local
operations arce formulated in terms of unification

However, Lhe ordinary unification as in Prolog is
insufficient, seen [rom both scientific (here, alias linguislic)
and engincering points of view. The problem is that pat:
terns Lo be unified with each other lack the capacity for car-
rying informalion.

In this paper we present a new method of unification
which we call conditioned unification. The essence of the
method is to deal wilh patlerns annolated by some sort of
condilions. These conditions are so constrained as Lo be
cfliciently operated on, and yet to be able to carry rich
enough information to caplure linguistic generalizations.

2. 'l'he Problem
Ordinary patlerns as in Prolog lack cxpressive power,
because variables thercin are simply indeterminale and
Lhus carry almost no informalion. Therefore, such patlerns
and unificalion among them are insufficient for capluring
Lthe grammalical generalizalion and the processing
efficiency. let us look at some examples below. A gram-
malical calegory is assumed to be a list of features. A
feature consists of a fealure name and a value, and
represented as a terim like name (value).
The lexical entry of English verb put, for instance, can-
not. be described as a Prolog pattern, but needs some anno-
Lation (i.e., put_tns_psn_nmb (T, I, N)) as in (1).

m lexicon(put, [tense(T), person(l?), number(N)]) :—
pul_lns_psn_nmb(l, P, N).
Here, features other than fense, person, and number are
omitled, and predicate put_fns_psn_nmb is defined as in

(2).

(2) put_tns_psn_nmb{present, P, N)
nol_3rd sng(P, N)
put_tns.psn_nmb(l, I, N) = not_pres(T)
not_3rd_sng(1st, N). nol_pres{past)
not 3rd_sng(2nd, N). nol_pres{past_participle)
not_drd. sng(3rd, plural). not_pres{base).

I'or a bil more complicaled instance, consider the rela-
tionship between a syntaclic gap and its filler. In GI'SG,
1HPSG, cte., this relationship is capturced in terms of the
SLASIH feature, which represents gaps. In the calegory of 7
think is crazy, for example, the SLASH feature is specified
as |NP]. Here SLASH is assumed to take as its value a list of
categories. Stated below is a simplified principle about the
distribution of this fcaturce in Lypical cases.

(3) In a local tree, the mother category's SLASH
fecalure is oblained by concalenating from lefl Lo
right the SLASIH fealures of her daughters

In order to describe this prineiple, something more than a
mere pattern s required again:

(1) local_tree([slash(X)], [slash(Y)], [slash(Z)]) -

append(Y, 74, X).
eatures other than SLASH are omitted here.

The so-called procedure altachments is the most com-
mon way of complementing the poor deseriplive capacity of
ordinary paltlerns. For instance, you may regard the bodies
of Horn clauses (1) and (4) as allached procedures

The drawback of procedure atlachment is in the fact
that the only way of using the procedures 1s Lo exccute
them. For this reason, procedures arce merely embedded in
programs, rather than atlached Lo those patlerns which
these programs operate on. The information which
procedures contain cannol generally be ecarried around
across several parlial structures cach of which a procedure
direcclly operates on, because, once a procedurc is cxe-
cuted, the informalion which iU contamed is partially lost
I'or inslance, when lexical entry (1) is cxploited,
put_ins_psn.amb (T, P, N) is exccuted and 7 and £ are
instantialed to be present and ist, respectively. Thus left
behind s the information about the other ways to instan-
tiate those variables.

Actual procedure attachments must be arranged so
Lthal information should nol be lost when procedures are
exccuted. Freeze of Prolog (Colmeraucr (1982)), for
instance, is a means of this arrangement. By execculing
freeze (X, 1), alomic formula ¥ is frozen; i.c., Lhe execution
of ¢ is suspended until variable X s instantiated. If ¢ con-
taing ¥, thercefore, hopefully not so much information is lost
when ¢ is executed

Nevertheless, freeze is problematic in lwo respects.
First, informalion can still be lost when the frozen pro-
cedures arce execulted. Second, teo much information can
be accumulated while several procedures are frozen. Sup-
pose, for instance, that freeze (X, member (X, fa, b}])) and
Sreeze (Y, member (Y, b, ¢])) have been exccuted. Then, X
and Y can be unified with cach other without awakening
cither procedure. In that case, the information that X may
be b is redundanl between the lwo procedures, and the
olher part of information those procedures contain is incon-
sistent. Whal one mighl hope here is Lo instantiate X (and
Y1 lo be b If we had cexceuted freeze (Y, member (Y, {c,
@) instead of freeze (Y, member(Y, |b, ¢]), camputational

85

resources would be wasted as Lhe price for a wrong process-
ing.

Alter all, it is up to a programmer Lo take a deliberate
carc so thal information should be efficiently transmitted
across patlerns. This causes scveral problems interwoven
with one another. TFirst, since those programs reflect the
inlended order of execution, they fail Lo straightforwardly
capture the uniformitics captured by rules or principles
such as (3). Accordingly, programming takes much labor.
Moreover, the resulting programs work efficiently only along
Lhe inilially intended order.

3. Conditioned Unification

3.1. Condilicned Patlerns

These problems will be sctiled if we can attach informa-
tion lo palterns, instcad of atlaching procedures to pro-
grams. Ilere we consider that such information is carried
by some conditions on variables. Variables are then
regarded as carrying some information rather than remain-
ing siruply indcterminate

By a condilioned patlern let us refer to a pair of a pat-
tern and a condilion on the variables contained in that pat-
tern. For simplicity, assume that the condition of a condi-
lioned pattern consists of atomic formulas of Prolog whose
argument positions are filled with variables appearing in the
paltern, and that the predicales heading those atomic for-
mulas are defined in terms of Horn clauses. TFor instance,
we would like to regard the whole thing in (1) or (4) as a con-
ditioned pattern.

3.2. Modular Conditions

The condilions in conditioned patterns must not be cxe-
cuted. or the contained information would be partially lost.
The conditions have to be somehow joined when conditioned
patlerns are unified, so that the information they contain
should be Lransmitled properly in the sense that the result-
ing condition is cquivalent to the togical conjunction of the
input conditions and contains neilher redundant nor incon-
sistent information. We call such a unification a conditioned
unification.

A simple way to reduce redundancy and inconsistency
in a condilion is Lo let cach parl of each possible value of
cach variable be subject to at most one constraint. Let us
formulale this below. We say that a condition is
superficially modular, when no variable appcars twice in
that condition. For instance, {5a) is a superficially modular
condition, whereas (&b,c) are not. (Conditions are some-
times wrilten as lists of atomic formulas.)

(5) a. [a(X, Y), b(Z), a(U, V)]

b, [a(X,Y), b(Y)]

c. la(X, Y, X)]
Further we say that a condition ® is modular, when all the
relevant conditions are superficially modular. Here, the
relevant condilions are ¢ and lhe bodies of Horn clauses
reached by descending along the definitions of the predi-
cates appearing in ¢. A predicate is said to be modular
when its definilion contains only those Horn c¢lauses whose
bodies are modular conditions. A predicate is potentially
modular when it is equivalent to some modular predicate.

A modular condition does not impose two constraints
on any onc part of any variable, and therefore contains nei-
ther redundancy nor inconsistency. Hercafter we consider
that the condition in every conditioned pattern should be
modular.

3.3. DIxpressive Power
Conditioned palterns can carry rich enough informa-
tion for capturing the linguistic generalily. Obviously, at

86

first, they can describe any finite sel of finite patterns. ¥For
instance, {1} is recgarded as a conditioned pattern with
modular condition [put_ins_psn_nmb (', P, N)]. Moreover,
also some recursive predicates arc modular, as is demon-
strated below.

(8) a. append({], Y, Y):
|

append([U | X}, Y, [U|7]) :— append(X, Y, 7).
b, sublist{[],)
sub]ibt([Y1 U Y] = sublisl{X, Y).

sublist(X U | YD) = sublist(X, Y).
Thus, (4) is also a conditioned pattern.

However, some recursive predicates are not potentially
modular. They include reverse (the binary predicate which
is salisficd iff ils two arguments are the reversals of each
olher, as in reverse([[a,b]. c, d] [d, c,[a,b]]), perm
(the binary predicate satisfied iff its arguments are permu-
tations of cach other, as in perm ([1, 2, 3], [2, 1, 3])), subset
(the binary predicate which obtains iff the first argument is
a subsct of the sccond, as in subset([d, b], [a, b, c, d])),
cle. -

Nevertheless, this causes no problem regarding natural
language processing, because potentially infinite patterns
come up only out of features such as SLASH, which do not
require those non-modular predicates.

3.4. The Unifier

Shown below is a'trace of the conditioned unification
between conditioned patterns (7) and (8) (herc we use the
same notation for conditioned patterns as for Horn clauscs),
where the predicates therein have been defied as in (9).
(The definitions of ¢0 and ¢3 are not exploited.) First, we
unify [X, Y, 2, W] and [A, I3, €, D] with one another and get
X=A Y=D13 /=C,and ¥ = P. In the environment under
Lhis unification, the two conditions are concatenated, result-
g in [eO(X), c LY, Z), c2(Z, W)]. The major task of this
condilioned unification is lo obtain a modular condition
cquivalent Lo this non-modular condition. This is the job of
function modularize . Modularize calls function integrate,
which returns an atomic formula cquivalent to the given
condition. The Llermination of a modularize or an integrate
is indicated by => preceding the return-value, with the
sarmme amount of indentation as the outset of this function-
call was indicaled with. When an integrate calls a modular-

e, the alphabetic identifier of the exploited tlorn clause is
indicated to the left-hand side, and the temporal unification
to the right-hand side. Atemic formulas made in integrate
is written following V. Fach llorn clause entercd into the
definition is shown following * and given an alphabetic
idenlifier indicaled to the right-hand side.

(7) [X, Y, 74, W] :— cO(X), c1(Y, 7).

(8) [A, B, C, D} i~ c2(C, D).

(9) c1(0, 1). (a)

c1(Q, 2). (b)

cR({1, P) = c3(P). (c)

cR(?, 0). (d)
modularize([c0(X), c1(Y, Z), c2(Z, W)])

, el (Y
integrate([CO(X)]
=3 c0(X)
integrate([c1(Y, 7), c2(Z, W}])

Lea(Y, 7, W)
(a) modularize([¢2(t, W)Y =0, 7

integrate([c2(1, W)])

L eh(W)

(¢) modularize([c3(P)]) W =P
integrate([c3(P)])
=> ¢3(P)

=> [e3(P)]

te5(P) = c3(P). (1)

= c5(W)

=> [e5(W)]

ted(0, 1, W) - chH(W). 1)
(b) mox \11(\11/.(:(e2(2 WMDY =Q 2 =2
integrate([c2(2, W)])
b eB(W)
(d) modularize({) W = 0

=[]
t ¢6(0). (k)
=> c6(W)
=> | eB(W)]
+ca(Q, 2, W) i cB(W).)

= cA(Y, %, W)
=> [cO(X), ed(Y, 7, W)

We can refine the program of tntegrate so thal it should
avoid any predicate whose definition contains only one Horn
clause. For instance, the definition of €5 Lonsists only of (i)
Instead of (j), Ltherefore, we may have ¢41(0, 1,) — ¢ 3(P)
Also (1) can be replaced by ¢ 4(@, 2, 0), based on (k).

We are able to work out recursive condilions from given
recursive conditions. For example, consider how X and 7
arc unificd under the condition (10), where member is
defined as in (11).

(10) [member(X, Y}, cO{4)]
(11) member(A, [A]B]). (a)
merber(A, [C] B} (= member(A, 3) (b}
The trace of this unification is shown below, where predicate
¢ 1 is recursively defined basced on the recursive defimbion of
member.

modularize([member{X, Y), cO(X}])
integrale(| member(X, Y), c0(X)])
Lel(X,Y)
(a) modularize([cO(A)]) X = A, Y = [A|B]
integrate([c0(A)])
=3 c0O(A)
=> | cO(A)]
rcl(A, [A]B]) = cO(A).

(b) modularize(member(A, B), cO(A)]) X = = [C B
inlegrate([member(A, B), cO(A)])
'f> C.l (A, 13)
22> e 3)|
T(I(A Bl) = c1(A, B).

=> ¢1(X, Y)
= [c1(X,)}

It is a job of infegrate Lo handle recursive definition. The
last infegrate above rccognizes that the first infegrate,
which is trying Lo define ¢ 1, was called with Lthe same argu-
ments exeepl the variable names. Hence the last integrate
simply returns ¢ 1(4, 1#), because the content of ¢1 is now
being worked out under the first integrate and thus it is
redundant for the last integrate to further examine ¢ 1.

It is not always possible for the above unifier Lo unify
patterns under recursive conditions. [or instance, ib cannot
unify X with ¥ under [append (X, ¥V, 4)], because Lthe result-
ing condition is not potentially modular. Ilowever, such a
situation does not scem Lo occur in actual language process-

ing.

4. Conclusion

We have presented a new method of unification, which
we call a condilioned unification, where palterns to be
unificd are annolated by a certain sort of conditions on Lhe
variables which occur in those patterns. These conditions
are so reslricted that Lhey conmtain as little redundancy as
possible, and thus arc always assured to be satisflable.

This method has Lhe following welcome characteristics
IFirst, Lthe patterns to be unified can carry abundant infor-
malion represented by the conditions hanging on them. The

expressive capacity of these conditions is suflicient for cap-
Luring linguistic generalities. Second, such informalion is
cffectively transmitled, by integrating the conditions when
pallerns are unificd. Unlike procedure attachiments, in this
conneclion, the information-conveying efliciency of our con
dilioned unification is not aflected by the direction of the
data~flow. Thercfore, our conditioned unificalion 1s com-
pletely reversible, and thus is promising as a tool for
deseribing grammars for bolh sentence comprehension and
production

Owing to these characteristies, our conditioned
unification provides a new programming paradigm for
natural language processing, replacing procedure allach-
ments which have traditionally enjoyed the ubiquity thal
they do not deserve

References

Bresnan, J. {ed.) (1982) The Mental Kepresentation of
Crammatical [elations, MIT Press, Cambridge, Mas
sachuselts.

Colmerauer, A. (1982) Prolog 11 lleference Manual and
Theoretical Model, I1RA CNRS 3683, Groupe d'Intelligence
Artificiclle, Universile de Marscille, Marselle.

Garzdar, G, I Klein, G. K. Pullum, and 1. A, Sag (1985) Gen
eralized Phrase Structure Grommar, Basil Blackwell
Oxford.

Kay, M. (1985) “Parsing in Functional Unification Gram-
mar,” Natural lLanguage Parsing. pp. 201-278, Cam-
bridge Universily Press, Cambridge, Fngland.,

Pereira, I Co N (1985) “A Structure-Sharing Representa-
tion for Unificalion-Based Gramiuar Formalisms,'
I'roceedings of the 28rd Annaal Meeling of the Associa-
tion for Computational [inguistics, Unmversily of Chi-
cago, Chicoago, Minois.

Pollard, C. J. (1984) Generalized Fhrase Structure Oram.
mar, Head Crammars, and Natwural Janguaeges, Doc-
toral dissertation, Stanford University, Stanford, Cali-
fornia.

Pollard, C. J. (198ba) Lecture Notes on Head-Driven [hrase-
Structure Grammar, Center for the Study of Language
and Information,

Pollard, C.J. (1985b) “Phrase Structure Grammar withoul
Motarules,” [Proceedings of the Fourth West Coast
Conference on [Formeal Ianguisites, Universily of South-
crn California, Los Angeles, California

Proudin, D and C. J. Pollard (1985) "Parsing lHecad-Driven
Phrase Structure Grammar,” Proceedings of the 23rd
Annual Meeting of The Ass omui:nn Jor Computational
linguistics, Universily of Chicago, Chicago, Tllinois.

Shicher, S0 M (l<)8) ““fhe Design of a Compuler Language
for Linguistic Informalion,” [Proceedings of the 10th
International Conference on Computational Iinguis-
tics, Stanford University, Stanford, California

Shieber, S M. (1985) “Using restriction to Fixtend Parsing
Algorithms for Complex-Feature-Based Formalisms.”
I’receedings of the 23rd Annual Meeting of the Assacra-
tron for Computational [ainguistics, Universily of Ch
capgo, Chicago, Hlinois

87

