
D - P A T R : A D e v e l o p m e n t E n v i r o n m e n t

f o r U n i f i c a t i o n - B a s e d G r a m m a r s

Lauri Karttunen

Artificial Intelligence Center
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

and
Center for the Study of Language and Information

Stanford University

1 Introduction

I)-PATR is a development environment for

unification-based grammars on Xerox l i00 series work

stations. It is based on the PATR formalism developed at

SRI International. This formalism is suitable for encoding

a wide variety of grammars. At one end of this range are

simple phrase-structure grammars with no feature

augmentations. The PATR formalism can also be used to

encode grammars that are based on a number of current

linguistic theories, such as lexical-functional grammar

(Bresnan and Kaplan), head-driven phrase structure

grammar (Pollard and Sag), and functional unification

grammar (Kay). At the other end of the range covered by

D-PATR are unification-based categorial grammars

(Klein, Steedman, Uszkoreit, Wittenburg) in which all

the syntactic information is incorporated in the lexicon

and the remaining few combinatorial rules that build

phrases are function application and composition.

Definite-clause grammars (Pereira and Warren) can also

be encoded in the PATR formalism.

What these approaches have in common is that

syntactic rules and lexieal entries can be written down as

sets of attribute-value pairs. Moreover, because a value at

the end of one path of attributes can be shared by another

path, the structures that are generated by such grammars

can be thought of as directed graphs Cdags"). Unification

is the key operation for building these structures.

Because unification is associative and commutative,

statements in a unification-based grammar formalism are

order-independent and bidirectional with respect to

parsing and generation. For a comprehensive

introduction to unification-based approaches to grammar,

see Shieber 1986 (forthcoming).

The idea that led to the present version of D-PATR was

to produce a simple compact system for experimenting

with unification-based grammars that would run on

machines smaller than the Symbolics 3600 for which the

original t'ATI~ implementation at SRI had been created.

The first version of I)-PATR, initially called }lUG, was

written at the Scandinavian Summer Workshop for

Computational Linguistics in Helsinki, Finland, at the

end of August 1985. Although the actual notation for

writing rules in D-PATR in some respects differs from the

notation in the original PATI¢ system, essentially both

systems implement the s a me gr a mma r formalism. To

emphasize this point, the two implementations are now

called Z-PATR (Zeta-LiSP PATR) and D PATR (Interlisp-D

PATR). A number of innovations that came in with

l) PATR (HUG) have since migrated to Z-PATR. A case in

point is the method for minimizing copying in unification

that is discussed in the section on parsing and unification.

Other implementation differences remain--for example,

in the parsing algorithm and in the treatment of

gaps--but grammars written for D-PATR are convertible

into Z-PATR format, and vice versa.

D-PATR consists of four basic parts:

• A unification package

• Interpreter for rules and lexical items

• Input output routines for directed graphs

• An Earley style chart parser.

These packages are written in simple Interlisp-D for

transportability to other dialects of LISP. They do not

depend on the features of any particular machine. The

only part of D-PATR that is specific to Xerox 1100 series

work stations is its user interface. This last set of

routines takes full advantage of the graphic capabilities

74

of D-machines . I t provides good faci l i t ies for w r i t i ng and

ed i t ing g r a m m a r s as wel l as m a n y debugg ing tools for the

, ~ r a m m a r wr i te r .

2 G r a m m a r F o r m a l i s m

2.1 Rules

A rule in I]-PATR is a l is t of a tomic eot~stituent labels

t h a t m a y be followed by speczfications. Specif ica t ions are

c o n s t r a i n t s upon one or more cons t i t uen t s of the rule. in

the s imples t case, the re are no specif icat ions and the

labels correspond to symbols in an o rd ina ry phrase

s t r u c t u r e rule. For example , the rule

S + NP VP

in I) PATR no ta t ion is wr i t t en as

(S NP VP)

Before a rule is used by the parser , I)-PATI{ compiles it

to a fea tu re set. A fea ture set can be d isplayed in d i [ferent

ways - - fo r example , as a m a t r i × or as a d i rec ted graph. [n

th is paper , we usua l ly r ep resen t fea ture sets as g raphs

but the m a t r i x no ta t ion will also be used occasionally. [n

these graphs , the c o n s t i t u e n t s of the rule are r ep resen ted

by labeled arcs, called attributes. The nodes in the g raph

are values. A va lue can be atomic or complex; a complex

wfiue is a n o t h e r se t of a t t r i b u t e - v a l u e pairs. By

convent ion , the symbol on the le f t -hand side of a phrase

s t r u c t u r e ru le is r ep resen ted by the num er i c a t t r i b u t e 0.

C o n s t i t u e n t s on the r i g h t - h a n d side of the rule are

n u m b e r e d lef t - to-r ight , s t a r t i n g wi th 1. The above rule

D PATR r e p r e s e n t s as the fol lowing fea ture set, shown

here f i rs t as a g r aph and t hen as the e q u i v a l e n t mat r ix .

O - - - - c a t - - S 0 [ca t S] -

i c a t - - N P 1 [ca t <
2 c a t - - V P 2 [ca t VF;]I
a r i t y - - 2

ar i t,y 2 I
t

l a b e l s I I - - N P l a b e l s NP
- - 2 - - V P V

specif icat ion is a two-i tem list of the form

({ a t t r i b u t e I pa th] [pa th [va l ue }).

Here attribute is an atom, path is a list, and value is

e i t h e r an atomic symbol, a l is t of specif icat ions, or an

a b b r e v i a t i o n tbr such a list. The las t case is

d i s t i ngu i shed from the f irst by pref ix ing the va lue symbol

wi th (,~) when it has an abb rev i a to ry role. Ignor ing the

(¢L>cases, th i s gives four d i f fe ren t k inds of specif icat ions:

(attribute vahte), (path value), (attribute path), and (path

path). The same fea ture se t can often be specified in

severa l d i f ferent ways; in choosing one, we genera l ly t ry

to min imize the n u m b e r of pa ren theses .

Below is a s imple example of a phrase s t ruc tu r e rule

a u g m e n t e d wi th specif icat ions.

(S NP VP
((0 f s e t) (2 f s e t))
((1 f s e t) (2 f s e t s u b j e c t))
((2 f s e t form) f i n i t e))

The first specit~cation is an ana logue of an I.F'~; T =

anno ta t ion ; the S node i nhe r i t s its feature set from the VP.

In addi t ion, N[' is VP's subject and vp's feature set

con ta ins the fea ture [form: finite]. I) I'ATI{ compiles th is

rule to the fol lowing graph. (From now on, we shal l omit

the two non -cons t i t uen t a t t r i bu t e s , arity and labels, fi-om

our display.)

~ c a t - - S
O - - - . f s e t

2 - - Q . / / f o r i ~ f i n i t e
f se t ~C . suba~c t " -~ [1

As the g raph shows, the fea ture set of the S-node is the

same a s VP'S fea ture set. The NP cons t i t uen t has been

unif ied with the subject in the fea ture se t of the S and the

vp.

2.2 Spec i f i cat ions

In the above rule, the cat fea ture is i n t e r p r e t ed by

[) PATR as a c o n s t r a i n t on the m a n n e r in which the

c o n s t i t u e n t can be i n s t an t i a t ed . More cons t r a i n t s can be

added by a n n o t a t i n g the rule wi th specif icat ions. A

It is permiss ib le in D p,.\'rR to write rules t h a t do not

ass ign the i r cons t i t uen t s to any specific syntac t ic

category, such as S, NP, \'P. and the like. The defau l t

a s sumpt ion is t h a t the c o n s t i t u e n t [abels also serve as

va lues of cat. By dec la r ing t h e m to be DummyCategories,

the g r a m m a r wr i t e r can overr ide th i s convent ion. The

75

defau l t d u m m y symbols are x, Y, and z. i n s t e a d of (S NP

VP), one could j u s t as well wr i te

(xYz
((0 cat) S)
((I cat) NP)
((2 cat) VP)

[t is also legal to leave cat en t i r e ly unspecif ied. Th i s

option is useful for express ing rules of funct ion

appl ica t ion and composi t ion in lexical ly-based ca tegor ia l

g r a m m a r s .

2.3 W o r d s a n d S t e m s

In i ts p r e s en t form, D-PATR does not have a

morphological ana lyze r to re la te inf lected or der ived

forms of words to en t r i e s in a m o r p h e m e lexicon. All

lexcmes m u s t be en t e red individual ly , i n an t i c ipa t ion of

h a v i n g a b e t t e r so lu t ion ava i l ab le in the future , D-PATR

presen t ly spl i ts the lexicon into two parts : words and

stems. The fo rma t of the two lexicons is the same, bu t

en t r i e s in the word lexicon m ay con ta in a reference to an

en t ry in the s t em lexicon. For example , the en t r i e s for

am, are. ts, was, were, etc. in the word lexicon can refer to

the en t ry for be in the s t em lexicon. Consequen t ly , w h a t

is common to all forms of the aux i l i a ry can be s t a t ed in a

s ingle place.

A [exical e n t r y is a l is t cons i s t ing of a form and a l ist of

subentrtes. Each s u b e n t r y in t u r n is a l ist headed by a

morphologica l category and any n u m b e r of specifications.

A specif icat ion can be a two- i tem l is t of the type discussed

in the previous sect ion or a template. A templa t e is an

abb rev i a t i on f o r a l i s to f spec i f i ca t ions . For example , the

en t ry for kisses in the word lexicon m i g h t look as follows:

(kisses (g kiss PresTense Sg3)
(N kiss PI)).

I Iere N and V are used as names of morphologica l

categories; kiss refers to an en t ry in the s t em lexicon;

PresTense, S t 3 and PI are t empla tes . The fact t h a t kiss is

a s t em and S t 3 a t e m p l a t e is not marked ; i t is r a t h e r

d e t e r m i n e d by where t h e i r def in i t ions are found. The

en t ry for kiss in the s t e m lexicon could be, for example ,

(kiss (V VMain TakesNP Dyadic)
(N)).

W h e n the def in i t ions for kisses and kiss are

76

in te rp re ted , the t e m p l a t e s and o the r specif icat ions t h a t

occur in t h e i r s u b e n t r i e s are processed s e q u e n t i a l l y from

left to r ight . Each i t em is compiled to a d i rec ted g raph

and super imposed on the g raph previously compiled. This

ove rwr i t i ng opera t ion differs fl'om s t a n d a r d uni f ica t ion in

t h a t i t neve r fails; if two specif icat ions give conf l ic t ing

va lues to some path , the l a t e r specif icat ion over ru les the

ea r l i e r one. The lexicon wr i t e r can take a d v a n t a g e of th i s

conven t ion to se t up a h ie ra rch ica l fea ture sys tem in

which in i t i a l de fau l t a s s i g n m e n t s can be over r idden by

la te r specif icat ions.

2.4 T e m p l a t e s

Def in i t ions for t e m p l a t e s have the same fo rmat as the

en t r i e s in the word and s t em lexicons except t h a t the re

are no mul t ip le suben t r i e s ; t e m p l a t e s are a s s u m e d to be

unambiguous . A t emp la t e def in i t ion is s imply a List

cons i s t ing of a template name and a n u m b e r of

specif icat ions. For example , the t empla t e n a m e s t h a t

appea r in the e n t r i e s for kiss m i g h t be expanded as

follows: (Note t h a t a specif icat ion may be e i t h e r a

two- i tem l is t of the form discussed in sect ion 2.2 or a n a m e

of a n o t h e r templa te ,)

(V OneBar)
(OneBar (barlevel one))
(VMain Predicate (inver t ib le false))
(Predicate ((trans pred) (sense)))
(TakesNP ((syncat f i r s t cat) NP)

((syncat rest f i r s t cat) NP)
((syncat rest rest)(syncat t a i l)))

(Dyadic ((trans argl)
(syncat f i r s t trans))

((trans arg2)
(syncat rest f i r s t t rans)))

With these def in i t ions , the ve rb e n t r y for kiss in the

s t em lexicon compiles to the g raph shown below.

barl evel -- one
cat--V

invertible--false
l e x ~
sense ~ - - . - ~

/pred~kiss
t r a n s - - ~ a r g 1 ~

a r g 2 " ~ ~ a NP

syncat--L ~ / f i r s t - - < ~
\ - r e s t - - < k t r a n s

\t il- --r st\II

T h e role of the t emp la t e TakesNP in th i s en t ry is to

s ta te t h a t the ve rb kiss requ i res two NP's as i ts syn tac t ic

a r g u m e n t s . The f i rs t e l e m e n t of the l ist is the va lue of the

pa th <syncat f i r s t > , the second is <syncat r e s t f i r s t > .

The t e m p l a t e Dyadic l inks the two a r g u m e n t s in the

s eman t i c t r a n s l a t i o n of kiss to the t r a n s l a t i o n s of its

syn tac t i c a r g u m e n t s .

2.5 l , e x i e a l R u l e s

The expans ion of m o r p h e m e def in i t ions by means of

t e m p l a t e s is a s t r a i g h t f o r w a r d ma t t e r : an in i t i a l g raph

acqui res add i t i ona l f ea tu res and, perhaps , new va lues for

f ea tu res i t a l r eady has. I)-['A'I'I{ also al lows a more radical

t r a n s f o r m a t i o n by m e a n s of lexical titles. A lexical rule is

a special k ind of t emp la t e wi th two a t t r i bu t e s : m and out.

[n app ly ing a lexical rule to a graph , the l a t t e r is J]rst

unif ied wi th the va lue of in. If the opera t ion succeeds, the

va lue of out is passed on as the resul t . Because the va lues

unde r out cart be l inked select ively to the cor responding

va lues u n d e r in, the usua l resu l t of app ly ing a [exical rule

is a m e t a m o r p h o s i s of the inpu t graph. As an example .

let us consider the g raph cor responding to a possible

lexieal rule for Passive in Engi i sh . To m a k e it eas ie r to

see the effect of the rule, the g raph is t u r n e d a roud so t h a t

the out va lues are opposite to the cor responding Ln values;

the i n d e t e r m i n a t e s in the middle are uni f ied wi th t he i r

c o u n t e r p a r t s in the word to which the rule is applied.

i n -

cat l/ c(~t\

le_~ [/ - t,_.x~

....... ~ntics--relatior,-fl- ,',d,dion\ \

S O M E B O D Y - - a r R ! 7 sem(lnticsl-out

/

The effect of the rule is to m a k e a t r ans i t i ve verb lose

the object slot in its syn tac t i c f rame, even though

s eman t i ca l l y it r e m a i n s a two-place predicate . The

s eman t i c effect of the rule is to unify arg2 with the

subject ' s s e m a n t i c s and to ass ign to argl the va lue

SOMEI}OI)Y. Th i s is s im i l a r to the ana lys i s of passives in

some LI,'G g r a m m a r s .

2.6 F i l l e r s a n d G a p s

Cons t ruc th)ns such as the fb[lowing conta in

c o n s t i t u e n t s tha t , s eman t i ca l l y and syntac t ica l ly , fill a

v a c a n t s l o t - - a gap--somewhere in the ad jacent s t ruc ture .

That paper [don ' t i n t end to read - - .
Good aw)cados are ha rd to find - - .
The ne ighbor whose car you asked to borrow - - called.
Is th i s the company the ht.stogr'am of whose productmrt

she w a n t s to display - - ?

From a parser ' s point of view, there are two m a i n

problems to be solved. For the parse to succeed, the filler

needs to be ava i l ab le when the incomple te s t ruc tu re is

encounte red . The re mus t also be a way to e t l s u r e Chat a

de s igna t ed fi l ler will be consumed by a gap somewhere . A

th i rd problem is tha t , in re la t ive clauses, the filler mus t

con ta in a re la t ive pronoun.

Many so lu t ions to these problems have been proposed

and could be i m p l e m e n t e d in D PATR. A s a convenience ,

D PAI'It also m a k e s ava i l ab le to the g r a m m a r wr i te r a

bu i l t - in de fau l t m e c h a n i s m for d i s t r i b u t i n g the

in fo rma t ion abou t fillers, gaps, and re la t ive pronouns in

an appropr ia t e way. The or ig ina l idea, conceived by

F e r n a n d o Pere i ra , was i m p l e m e n t e d for gaps in z PATR

by S t u a r t Shieber . The scheme in I)-t)A'I'R is an

i m p r o v e m e n t in t h a t i t also hand l e s sen tences wi th

nes ted f i l ler-gap dependencies .

77

The defau l t m e c h a n i s m uses four special fea tures : gapln,

gapOut, relIn and relOut. These f ea tu res need to be

m e n t i o n e d expl ic i t ly only in ru les t h a t in t roduce fillers,

such as the re la t ive -c lause rule, and in the lexical en t r i e s

of re la t ive and i n t e r roga t i ve pronouns . O t h e r rules are

au toma t i ca l l y a u g m e n t e d by I)-PAI'R in the appropr ia t e

m a n n e r w h e n t hey are compiled to fea ture sets used by

the parser . By d e a c t i v a t i n g th i s facil i ty, the g r a m m a r

wr i te r can also t ake care of f i l lers and gaps in a m a n n e r of

his own choosing.

3 P a r s i n g a n d U n i f i c a t i o n

D PATR uses an act ive c h a r t pa r se r t h a t proceeds in a

top-down, b read th - f i r s t m a n n e r . Because the

cons t i t uen t s in a rule are fea ture sets r a t h e r t h a n a tomic

symbols, the t a sk is a b i t more compl ica ted t h a n in

s t a n d a r d i m p l e m e n t a t i o n s of Ear ley ' s a lgor i thm. We

consider two cases here.

Let us a s sume t h a t the parser is in the process of

t ry ing to build an ins tance of the rule A ~ I~ C and t h a t it

has successful ly i n s t a n t i a t e d B as B'. At th i s point , it will

en t e r a pa r t i a l i n s t a n t i a t i o n of the rule on the char t . We

des igna te th i s act ive edge as A'(B'): C'. Here the colon

m a r k s the l ine be tween d a u g h t e r c o n s t i t u e n t s t h a t have

been found and d a u g h t e r s t h a t s t i l l need to be

i n s t a n t i a t e d . W h e n an act ive edge is added to the char t ,

the parse r needs to find all the rules t h a t m a t c h the f irst

u n i n s t a n t i a t e d c o n s t i t u e n t to the r i gh t of the colon. In

the case a t hand, it needs to ma tch C' a g a i n s t the le f t -hand

sides of all ru les to d e t e r m i n e w h a t rules i t should now try

to i n s t a n t i a t e . For example , if the re is a rule C ~ D in the

g r a m m a r and C is compat ib le wi th C', a looping C: I) or C':

I)' edge should be added to the char t .

In the case of an o rd ina ry p h r a s e - s t r u c t u r e g r a m m a r ,

th i s m a t c h i n g task is s imple because c o n s t i t u e n t s are

r ep resen ted by a tomic ca tegory labels. F u r t h e r m o r e , A =

A', B = B', and C = C'. For D PATR, the s i t ua t i on is more

78

complicated. F i r s t of all, the c o n s t i t u e n t s are f ea tu re sets;

second, the c o n s t i t u e n t s in a pa r t i a l l y [n s t a n t i a t e d rule

are gene ra l ly no t equa l to the co r respond ing c o n s t i t u e n t s

in an u n i n s t a n t i a t e d rule. Because of the l inks among

c o n s t i t u e n t s in a un i f ica t ion-based g r a m m a r ,

i n s t a n t i a t i n g B as B' in the rule A - , B C m a y also have an

effect on the fea ture sets of A and C. Th i s is why we label

the r e s u l t i n g edge A'{13'): C'. Us ing the fea ture se t C' to

find the rules t h a t could i n s t a n t i a t e i t is no more diff icult

t h a n us ing the o r ig ina l C, bu t it is iess eff ic ient because

the r e su l t c a n n o t be saved and reused w h e n a n o t h e r

ins t ance of C m u s t be bu i l t later .

l.) PATR s o l v e s th i s problem by ca r ry ing the o r ig ina l

rule a long wi th i ts pa r t i a l ly i n s t a n t i a t e d form on act ive

edges. The m a t c h i n g task for the predic t ion step of

Ear l ey ' s a l go r i t hm is performed us ing the c o n s t i t u e n t

from the or ig ina l rule r a t h e r t h a n i ts c u r r e n t ins tance .

A s imi l a r problem ar i ses when an inac t ive edge is

en te red on the char t . When the parser has i n s t a n t i a t e d C

as c:" and en te red it on the char t , it has to find all the

incoming active edges a t the s t a r t i n g ver tex of C" t h a t

could be ex tended wi th the newly found cons t i tuen t . If('"

were :m atomic symbol, th is task would be s imple because

it would involve only s imple equa l i ty checks: because C" is

a fea ture set, we would have to use unif ica t ion, which is a

more t ime-consuming operat ion. I) PATR avoids the

p rob lem en t i r e ly by keep ing t rack, as p a r t of the

predic t ion step, of w h a t edges C" could be used to extend.

W h e n an active edge is en te red on the cha r t , one piece of

i n fo rma t ion in the edge label is a poin ter to the edges t h a t

could be ex tended wi th it. In i t ia l ly , the l is t con ta ins only

the edge t h a t gene ra t ed the new edge; o the r edges m a y be

added later . This in fo rmat ion is passed a long on

w h e n e v e r an ex is t ing edge is ex tended to a new one. At

the point a t which C" is added to the char t , no checks are

necessa ry because the new edge a l ready has a po in te r to

every incoming edge a t the s t a r t i n g ve r t ex t h a t can now

pe rhaps be extended.

Le t us now consider a s i tua t ion , in which the c h a r t

con ta ins two adjacent edges A'(B'):C' and C".

In the course of t ry ing to extend the the active edge

with C" to build A", the parser has to unify it with the C"

const i tuent of the act ive edge. The nature of char t

parsing is :inch Chat, whether or not this unificat, ion

succeeds, it must not a l ter the contents of the two operand

edges. Both A'IB'):C' and C" must remain on l, he char t

because they may be needed later on for some other

unification.

Because unificaLion is a destruct ive operation, some of

the ear l ie r implementa t ions of unification-based chart

parsing, e.g. Z-PATR, never apply it directly, instead, the

feature sets are first copied and unil icat ion is then applied

to the copies. In this way, the operands are left

untouched, us the pars ing a lgor i thm requires, but t.he

method is computa t ional ly inefficient because it involves

a great deal of copying. 1) PATI{ solves the problem in a

novel way. In [)-PATR, unification is implemented so that

the or iginal s tate of the input s t ructures can be restored

after the operat ion has been completed. Whenever a

destruct ive change is about to be nmde in the value of an

at t r ibute , the eell and its contents are saved in an array.

After unification, all the effects of the operation can be

undone by restor ing the saved values. I) PATI{ takes

advantage of this option in the following way.

When the. parser tr ies to extend A'(B'): C' to A" by

unifying C' with C", the operat ion is applied directly to the

two feature sets wi thout them being copied in advance. If

the unification fails, its effects are simply cancelled by

res tor ing the or iginal feature sets from the save array. If

the operat ion succeeds, the resul t ing s t ructure is copied

and then the or iginal feature sets are then restored. The

copied resul t remains of course unaffected by the

cancellation. The following sketch summarizes the

difference between I) PATI{ and ear l ier versions of Z.PATR

with respect to copying and unification. Here X and v

stand for the or iginal feature sets, z for the result, and the

copied s t ructures are identified with primes.

Z-PATR (OLD)

× - ~ - ~ x'

Y {op t> ¥'

D-PATR

x
restore X

u n i f y ~> Z copy -~, Z'

y restore Y

As the i l lustrat ion shows, the new me~,hod entai ls

mak ing only one copy, not two, when the operation

succeeds. In the event of failure, 1) I'ATR simply restores

the original s t ruc tures wi thout copying anything; the old

method always copies both input structures.

In the case of Z-PATR, the new method has shortened

parsing t imes by a factor of three. It is expected that this

technique can be further improved by hnplcment ing some

fmm of s t ructure shar ing [Kar t tunen :~nd Kay 1985;

Pereira 1.9851 to minimize the need for copying.

4 C o n c h l s i o n

Unl ike some other g r ammar development

sys tems- - for example, Ronald Kaplan 's IA,'(~ Grammar

Wri ter ' s Workbench [Kiparsky 84]--I)-PATR [S not an

implementa t ion of a par t icular l inguistic theory. It is

designed to be an efficient generic tool for expJoring a

,'ange of g r a m m a r formalisms in which unit~cation plays

a central role. Because of its fl 'iendly interface and

display facilities, I)-PA'rR can also be used for educational

purposes, in par t ieular , to demonst ra te char t pars ing and

unification.

I)-PATR is not a commercial product. It is made

avai lable to users outside SRI who migh t wish to develop

unification-based grammars . I)-I'ATR is current ly being

used for g r a m m a r development at s['d In ternat ional . ('5LI.

and Xerox I'AIIC. For a more comprehensive discussion of

I) PATI{ and its features, see Kar t tunen (forthcoming).

79

Acknowledgments

I)-PATR i s a close relative of Z-PATR, the first I'ATR

implementation, whose main architect is Stuar t Shieber.

Many of the ideas in D-PATR come from the work of Ronald

Kaplan, Martin Kay, and Fernando Pereira. The matr ix

display package for feature sets in D-PATR was written by

Per-Krist ian Halvorsen. I would also like to thank Annie

Zaenen and Hans Uszkoreit for their help in designing

the system.

This research, made possible in part by a gift from the

System Development Foundation, was also supported by

the Defense Advanced Research Projects Agency under

Contract N00039-84-C-0524 with the Naval Electronics

Systems Command.

References

Kaplan, R. and J. Bresnan, "I,exical-functional grammar:
A Formal System for Grammatical Representation,"
The Mental Representation of Grammatical Relations,
J. Bresnan, ed., MIT Press, Cambdridge,
Massachusetts, 1983.

Karttunen, L. and M. Kay, "Structure Sharing with
Binary Trees," Proceedings of the 23rd Annual
Meeting of the ACL, Association for Computational
Linguistics, 1985.

Kart tunen, L. D-PATR: A Development Environment for
Unification-Based Grammars, CSLI Report, Center for
the Study of Language and Information, Stanford,
California (forthcoming in 1986).

Kay, M., "Parsing in Functional Unification Grammar,"
Natural Language Parsing, D. Dowty, L. Kart tunen,
and A. Zwieky, eds., Cambridge University Press,
Cambridge, England, 1985.

Kiparsky, C. "LFG Manual," manuscript, Xerox Palo Alto
Research Center, Palo Alto, California (1985).

Pereira, F. C. N., "A Structure-Sharing Representation
for Unification-Based Grammar Formalisms,"
Proceedings of the 23rd Annual Meeting of the ACL,
Association for Computational Linguistics, 1985.

Pereira, F. C. N. and D. H. D. Warren, "Definite-Clause
Grammars for Language Analys is - -a Survey of the
Formalism and a Comparison with Augmented
Transit ion Networks," Artificial Intelligence,
13:231-278, 1980.

Pollard, C., Generalized Phrase Structure Grammars.
Head Grammars, and Natural Languages, Ph.D.
dissertation, Stanford University, Stanford, California
(1984).

Pollard, C., Lecture notes on head-driven
phrase-structure grammar, Center for the Study of
Language and information, unpublished (February
1985).

Shieber, S. M., H. Uszkoreit, F. C. N. Pereira, J. J.
Robinson, and M. Tyson, "The Formalism and
Implementation of PATR lI," Research on Interactive
Acquisition and Use of Knowledge, B. Grosz and M.
Stickel, eds., Sill Final Report 1894, SRI Internat ional ,
Menlo Park, California, 1983.

Shieber, S. M., L. Kart tunen, and F. C. N. Pereira, Notes
from the Unification Underground: A Compilation of
Papers on Unification-Based Grammar Formalisms.
Technical Report 327, Artificial Intelligence Center,
SRI International , Menlo Park, California (June
1984).

Shieber, S. M., An Introductton to Untficatton-Based
Approaches to Grammar, CSLI Lecture Notes Series,
(University of Chicago Press, Chicago Illinois,
forthcoming in 1986).

Steedman, M., "Combinators, Categorial Grammars, and
Parasit ic Gaps," paper presented at the Tucson
Conference on Categorial Grammar (June 1985).

Uszkoreit, H., "On Categorial Unification Grammars," in
this volume.

Wittenburg, K., Some Properties of Combinatory
Categorial Grammars of Relevance to Parsing.
Technical Report HI-012-86, Microelectronics and
Computer Technology Corporation, Austin, Texas,
(January 1986).

80

