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1 Introduction

D-PATR is a development environment for
unification-based grammars on Xerox 1100 series work
stations. It is based on the PATR formalism developed at
SRI International. This formalism is suitable for encoding
a wide variety of grammars. At one end of this range are
simple phrase-structure grammars with no feature
augmentations. The PATR formalism can also be used to
encode grammars that are based on a number of current
linguistic theories, such as lexical-functional grammar
(Bresnan and Kaplan), head-driven phrase structure
grammar (Pollard and Sag), and functional unification
grammar (Kay). At the other end of the range covered by
D-PATR are unification-based categorial grammars
(Klein, Steedman, Uszkoreit, Wittenburg) in which all
the syntactic information is incorporated in the lexicon
and the remaining few combinatorial rules that build
phrases are function application and composition.
Definite-clause grammars (Pereira and Warren) can also

be encoded in the PATR formalism.

What these approaches have in common is that
syntactic rules and lexical entries can be written down as
sets of attribute-value pairs. Moreover, because a value at
the end of one path of attributes can be shared by another
path, the structures that are generated by such grammars
can be thought of as directed graphs ("dags"). Unification
is the key operation for building these structures.
Because unification is associative and commutative,
statements in a unification-based grammar formalism are
order-independent and bidirectional with respect to
parsing and generation. For a comprehensive
introduction to unification-based approaches to grammar,
see Shieber 1986 (forthcoming).
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The idea that led to the present version of D-PATR was
to produce a simple compact system for experimenting
with unification-based grammars that would run on
machines smaller than the Symbolics 3600 for which the

original PATR implementation at SRl had been created.

The first version of D-PATR, initially called HUG, was
written at the Scandinavian Summer Workshop for
Computational Linguistics in Helsinki, Finland, at the
end of August 1985. Although the actual notation for
writing rules in D-PATR in some respects differs from the
notation in the original PATR system, essentially both
systems implement the same grammar formalism. To
emphasize this point, the two implementations are now
called Z-PATR (Zeta-LISP PATR) and D-PATR (Interlisp-D
PATR). A number of innovations that came in with
D-PATR (HUG) have since migrated to Z-PATR. A case in
point is the method for minimizing copying in unification
that is discussed in the section on parsing and unification.
Other implementation differences remain—for example,
in the parsing algorithm and in the treatment of
gaps——but grammars written for D-PATR are convertible

into Z-PATR format, and vice versa.

D-PATR consists of four basic parts:

® A unification package

® Interpreter for rules and lexical items

® Inputoutput routines for directed graphs

® An Earley style chart parser.
These packages are written in simple Interlisp-D for
transportability to other dialects of LISP. They do not
depend on the features of any particular machine. The
only part of D-PATR that is specific to Xerox 1100 series
work stations is its user interface. This last set of

routines takes full advantage of the graphic capabilities



of D-machines. It provides good facilities for writing and
editing gramroars as well as many debugging tools for the
grammar writer.

2 Grammar ¥ormalism

2.1 Rules

A rule in D-PATR is a list of atomic constituent labels
that may be followed by specifications. Specifications are
constraints upon one or more constituents of the rule. In
the simplest case, there are no specifications and the
labels correspond to symbols in an ordinary phrase
structure rule. For example, the rule

S » NP VP
in D-PATR notation is written as
(S NP VP)

Before a rule is used by the parser, D-PATR compiles it
to a feature set. A feature set can be displayed in different
ways—for example, as a matrix or as a directed graph. In
this paper, we usually represent feature sets as graphs
but the matrix notation will also be used occasionally. In
these graphs, the constituents of the rule are represented
by labeled arcs, called atiributes. The nodes in the graph
are values. A value can be atomic or complex; a complex
value is another set of attribute-value pairs. By
convention, the symbol on the left-hand side of a phrase
structure rule is represented by the numeric attribute 0.
Constituents on the right-hand side of the rule are
numbered left-to-right, starting with 1. The above rule
D-PATR represents as the following feature set, shown

here first as a graph and then as the equivalent matrix.
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2.2 Specifications

In the above rule, the cat feature is interpreted by
D-PATR as a constraint on the manner in which the
constituent can be instantiated. More constraints can be

added by annotating the rule with specifications. A

specification is a two-item list of the form
( { attribute | path } { path | value } ).

Here attribute is an atom, path is a list. and value is
either an atomic symbol, a list of specifications, or an
abbreviation for such a list. The last case is
distinguished from the first by prefixing the value symbol
with @ when it has an abbreviatory role. Ignoring the
w-cases, this gives four different kinds of specifications:
(attribute value), (path value), (attribute path), and (path
path).  The same feature set can often be specified in
several different ways; in choosing one, we generally try

to minimize the number of parentheses.

Below is a simple example of a phrase structure rule
augmented with specifications.
(S NP VP

((0 fset)(2 fset))

((1 fset) (2 fset subject))
((2 fset form) finite))

The first specification is an analoguc of an LFG 1T =
annotation; the S node inherits its feature set from the vP.
In addition, NP is VP's subject and vP's feature set
contains the feature {form: finite]. D-PATR compiles this
rule to the following graph. (From now on, we shall omit
the two non-constituent attributes, arity and labels, from

our display.)

O__<1Cdt’"s

fSEt\
cat —t NP
l4
<fsej
cat—Vyp
2—= feot <Fom finite

subject =[]

As the graph shows, the feature set of the $-node is the
same as VP's feature set. The NP constituent has been
unified with the subject in the feature set of the 3 and the

AN

[t is permissible In D-PATR to write rules that do not
assign  their constituents to any specific syntactic
category, such as S, NP, v, and the like. The default
assumption is that the constituent labels also serve as
values of cat. By declaring them to be DummyCategories,

the grammar writer can override this convention. The
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default dummy symbols are X, Y, and 7. Instead of (S NP
vP), one could just as well write
(xvz

((0 cat) S)

((1 cat) NP)

((2 cat) VP)

It is also legal to leave cat entirely unspecified. This

option is useful for expressing rules of function
application and composition in lexically-based categorial

grammars.

2.3 Words and Stems

In its present form, D-PATR does not have a
morphological analyzer to relate inflected or derived
forms of words to entries in a morpheme lexicon. All
lexemes must be entered individually. In anticipation of
having a better solution available in the future, D-PATR
presently splits the lexicon into two parts: words and
stems. The format of the two lexicons is the same, but
entries in the word lexicon may contain a reference to an
entry in the stem lexicon. For example, the entries for
am, are. is, was, were, etc. in the word lexicon can refer to
the entry for be in the stem lexicon. Consequently, what
is common to all forms of the auxiliary can he stated in a

single place.

A lexical entry is a list consisting of a form and a list of
subentries. FEach subentry in turn is a list headed by a
morphological category and any number of specifications.
A specification can be a two-item list of the type discussed
in the previous section or a template. A template is an
abbreviation for a list of specifications. For example, the
entry for kisses in the word lexicon might look as follows:

(kisses (V kiss PresTense Sg3)
(N kiss P1)).

Here N and V are used as names of morphological
categories; kiss refers to an entry in the stem lexicon;
PresTense, Sg3 and Pl are templates. The fact that kiss is
a stem and Sg3 a template is not marked; it is rather
determined by where their definitions are found. The

entry for kiss in the stem lexicon could be, for example,

(kiss (V VMain TakesNP Dyadic)
(N)) .

When the definitions for kisses and kiss are
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interpreted, the templates and other specifications that
oceur in their subentries are processed sequentially from
left to right. Each item is compiled to a directed graph
and superimposed on the graph previously compiled. This
overwriting operation differs from standard unification in
that it never fails; if two specifications give conflicting
values to some path, the later specification overrules the
earlier one. The lexicon writer can take advantage of this
convention to set up a hierarchical feature system in
which initial default assignments can be overridden by

later specifications.

2.4 Templates

Definitions for templates have the same format as the
entries in the word and stem lexicons except that there
are no multiple subentries; templates are assumed to be
unambiguous. A template definition is simply a list
consisting of a template name and a number of
specifications. For example, the template names that
appear in the entries for kiss might be expanded as
follows: (Note that a specification may be either a
two-item list of the form discussed in section 2.2 or a name
of another template.)

(V OneBar)

(OneBar (barlevel one))

(VMain Predicate (invertible false))

(Predicate ((trans pred) (sense)))

(TakesNP ((syncat first cat) NP)

((syncat rest first cat) NP)
({syncat rest rest)(syncat tail)))
(Dyadic {(trans argl)
(syncat first trans))

((trans arg?)
(syncat rest first trans)))

With these definitions, the verb entry for kiss in the

stem lexicon compiles to the graph shown below.



parlevel—one
cat—V
invertible-—false

Tex
sense\
pre kiss

trans—¢&-argl

"The role of the template TakesNP in this entry is to
state that the verb kiss requires two NP's as its syntactic
arguments. The first element of the list is the value of the
path <syncat first>, the second is <syncat rest first>.
The template Dyadic links the two arguments in the
semantic translation of kiss to the translations of its

syntactic arguments.

2.5 Lexical Rules

The expansion of morpheme definitions by means of
templates is a straightforward matter: an initial graph
acquires additional features and, perhaps, new values for
features it already has. D-PATR also allows a more radical
transformation by means of lexical rules. A lexical rule is
a special kind of template with two attributes: in and out.
In applying a lexical rule to a graph, the latter ig first
unified with the value of in. If the operation succeeds. the
value of out is passed on as the result. Because the values
under out can be linked selectively to the corresponding
values under in, the usual result of applying a lexical rule
is a metamorphosis of the input graph. As an example.
let us consider the graph corresponding to a possible
lexical rule for Passive in English. To make it easier to
see the effect of the rule, the graph is turned aroud so that
the out values are opposite to the corresponding in values;
the indeterminates in the middle are unified with their

counterparts in the word to which the rule is applied.

cat 1% cat

lex ] {ex
in-pse mantics —-relation—{[ | ~———————relution
SOMEBODY ————argl —) semantics J-oul
arg?
NONE - object
object2—[[— object?
syntax—<—obll i obll—}-syntax

obl2——[]— obl2
[/Z

semantics——subject

The effect of the rule is to make a transitive verb lose
the obhject slot in its syntactic frame, even though
semantically It remains a two-place predicate. The
semantic effect of the rule is to unify arg2 with the
subject's semantics and to assign to argl the value
SOMEBODY. This is similar to the analysis of passives in

some LI'G grammars.

2.6 Fillers and Gaps

Constructions such as  the following contain
constituents that, semantically and syntactically, fill a
vacant slot—a gap—somewhere in the adjacent structure.

That paper I don't intend to read — .

Good avocados are hard to find — .

The neighbor whose car you asked to borrow — called.

Is this the company the histogram of whose production

she wants to display — 7

From a parser's point of view, there are two main
problems to be solved. For the parse to succeed, the filler
needs to be available when the incomplete structure is
encountered. There must also be a way to ensure that a
designated filler will be consumed by a gap somewhere. A
third problem is that, in relative clauses, the filler must

contain a relative pronoun.

Many solutions to these problems have been proposed
and could be implemented in D-PATR, As a convenience,
D-PATR also makes available to the grammar writer a
built-in  default mechanism for distributing the
information about fillers, gaps, and relative pronouns in
an appropriate way. The original idea, conceived by
Fernando Pereira, was implemented for gaps in Z-PATR
by Stuart Shieber. The scheme in D-PATR s an
improvement in that it also handles sentences with

nested filler-gap dependencies.
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The default mechanism uses four special features: gapln,
gapOut, relln and relOut. These features need to be
mentioned explicitly only in rules that introduce fillers,
such as the relative-clause rule, and in the lexical entries
of relative and interrogative pronouns. Other rules are
automatically augmented by D-PATR in the appropriate
manner when they are compiled to feature sets used by
the parser. By deactivating this facility, the grammar
writer can also take care of fillers and gaps in a manner of

his own choosing.

3 Parsing and Unification

D-PATR uses an active chart parser that proceeds in a
top-down, breadth-first manner. Because the
constituents in a rule are feature sets rather than atomic
symbols, the task is a bit more complicated than in
standard implementations of Earley's algorithm. We

consider two cases here,.

Let us assume that the parser is in the process of
trying to build an instance of the rule A > 1 € and that it
has successfully instantiated B as B'. At this point, it will
enter a partial instantiation of the rule on the chart. We
designate this active edge as A'B): C'. Here the colon
marks the line between daughter constituents that have
been found and daughters that still need to be
instantiated. When an active edge is added to the chart,
the parser needs to find all the rules that match the first
uninstantiated constituent to the right of the colon. In
the case at hand, it needs to match €' against the left-hand
sides of all rules to determine what rules it should now try
to instantiate. For example, if there is a rule C - D in the
grammar and C is compatible with C', a looping ¢: D or C"
' edge should be added to the chart.

A'(BY):C

(1] ]

In the case of an ordinary phrase-structure grammar,
this matching task is simple because constituents are
represented by atomic category labels. Furthermore, A =

A, B = B, and C = C'. For D-PATR, the situation is more
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complicated. First of all, the constituents are feature sets;
second, the constituents in a partially instantiated rule
are generally not equal to the corresponding constituents

in an uninstantiated rule. Because of the links among

constituents in a  unification-based  grammar,
instantiating B as B' in the rule A -» B C may also have an
effect on the feature sets of A and C. This is why we label
the resulting edge A'BY: C'.  Using the feature set C' to
find the rules that could instantiate it is no more difficult
than using the original C, but it is less efficient because
the result cannot be saved and reused when another

instance of C must be built later.

D-PATR solves this problem by carrying the original
rule along with its partially instantiated form on active
edges. The matching task for the prediction step of
Earley's algorithm is performed using the constituent

from the original rule rather than its current instance.

A similar problem arises when an inactive edge is
entered on the chart. When the parser has instantiated C
as " and entered it on the chart, it has to find all the
incoming active edges at the starting vertex of C" that
could be extended with the newly found constituent. If ¢
were an atomic symbol, this task would be simple because
it would involve only simple equality checks: because " is
a feature set, we would have to use unification, which is a
more time-consuming operaﬁon. D-PATR avoids the
problem entirely by keeping track, as part of the
prediction step, of what edges C" could be used to extend.
When an active edge is entered on the chart, one piece of
information in the edge label is a pointer to the edges that
could be extended with it. Initially, the list contains only
the edge that generated the new edge; other edges may be
added later.

whenever an existing edge is extended to a new one. At

This information is passed along on

the point at which C" is added to the chart, no checks are
necessary because the new edge already has a pointer to
every incoming edge at the starting vertex that can now

perhaps be extended.

Let us now consider a situation, in which the chart

contains two adjacent edges A'(B"):C* and C".



In the course of trying to extend the the active edge
with C" to build A", the parser has to unify it with the C"
constituent of the active edge. The nature of chart
parsing is such that, whether or not this unification
succeeds, it must not alter the contents of the two operand
edges. Both A'3%:C' and C" must remain on the chart
because they may be needed later on for some other

unification.

Because unification is a destructive operation, some of
the earlier implementations of unification-based chart
parsing, e.g. Z-PATR, never apply it directly. Instead, the
feature sets are first copied and unification is then applied
to the copies. In this way, the operands are left
untouched, as the parsing algorithm requires, but the
method is computationally inefficient because it involves
a great deal of copying. D-PATR solves the problem in a
novel way. In D-PATR, unification is implemented so that
the original state of the input structures can be restored
after the operation has been completed. Whenever a
destructive change is about to be made in the value of an
attribute, the cell and its contents are saved in an array.
After unification, all the effects of the operation can be
undone by restoring the saved values. D-PATR takes

advantage of this option in the following way.

When the parser tries to extend A'BY: C' to A" by
unifying C' with C", the operation is applied directly to the
two feature sets without them being copied in advance. If
the unification fails, its effects are simply cancelled by
restoring the original feature sets from the save array. If
the operation succeeds, the resulting structure is copied
and then the original feature sets are then restored. The
copied result remains of course unaffected by the
cancellation. The following sketch summarizes the
difference between D-PATR and earlier versions of Z-PATR
with respect to copying and unification. Here X and ¥
stand for the original feature sets, % for the result. and the

copied structures are identified with primes.

Z-PATR (OLD) D-PATR
copy .
X X X restore X
unify \ unify 57 copy >
v Coeb v v restore Y

As the illustration shows, the new method entails
making only one copy, not two, when the operation
succeeds. In the event of failure, D-PATR simply restores
the original structures without copying anything; the old

method always copies both input structures.

In the case of Z-PATR, the new method has shortened
parsing times by a factor of three. It is expected that this
technique can be further improved by implementing some
form of structure sharing {Karttunen and Kay 1985;

Pereira 1985] to minimize the need for copying.

4 Conclusion

Unlike  some  other  grammar  development
systems—for example, Ronald Kaplan's LG Grammar
Writer's Workbench [Kiparsky 84|—D-PATR is not an
implementation of a particular linguistic theory. It is
designed to be an efficient generic tool for exploring a
range of grammar formalisms in which unification plays
a central role. Because of its friendly interface and
display facilities, D-PATR can also be used for educational
purposes, in particular, to demonstrate chart parsing and

unification.

D-PATR is not a commercial product. It is made
available to users outside SRI who might wish to develop
unification-based grammars. D-PATR is currently being
used for grammar development at sk International, CSLIL
and Xerox PARC. For a more comprehensive discussion of

D-PATR and its features, see Karttunen (forthcoming).
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