PET: PROCESSING ENGLISH TEXT

F. Oppacher

Dept. of Computer Science, Concordia University, Montreal,
Canada

This paper describes a new parser that combines top
down and bottom up strategies and the natural language pro-
cessing system PET which uses the parser, PET is designed to
facilitate the interactive construction of natural laﬁguage
front ends and to support experiments in computational ling-
ulstics., The system, which has been implemented in UT-LISP,
provides facilities for performing the following tasks: natur-
el language parsing according to context-free and transformat-
ional grammars; disambiguation of word senses by pattern-
~directed inference; comstruction of a semantic network deta
base from English sentences; deductive information retrieval
to answer simple English questions.

Most extant natural language processing systems have
very complicated control structures and are, therefore,
difficult to extend modularly. It appears that the lack of
modularity of these systems is due to the fact that their
syntactic expertise is not conveniently located in one rout-
ine but, in effect, distributed throughout the entire program.

In the system descoribed here, modularization is achieve
ed by meking the control structure largely transpareat, i.e.
by allowing it to reside in the parser.

The method, in a nutshell, is this: the parser outputs
e phrase structure tree, or, if the analyzed sentence is
structurally embiguous, a list of several phrase structure

- 214 =~



trees. A tree for a sentence is generated in bottom up fashion
under the control of context-free rules and restricted context-
-gensitive rules. The latter consist of tests and tree-modi-
Iying functions. The context-sensitive tests inspect the
immediate environment of & node about to be entered into the
tree. Depending on the outcome of such tests, the tree-modify-
ing tunctions can change partially constructed parse trees.

The interior nodes of the tree are occupied by functions cor-
responding to transformational and/or semantic rules, and the
leaf nodes are occupled by the dictionary entries of the words
in the surface'string. Since LISP, unlike other high level
languages, makes no distinction between programs and data
structures, the tree genmerated by the parser can be immediate-
ly executed as a programe. The tree, interpreted as program,
constitutes the control structure referred to above, and go-
verns the semantic interpretation of the sentence whose structi~
ure it reflects.

As can be seen from this very rough description, control
issues involved in processing natural language text are in-
deed largely taken care of by the syntactic component. However,
to eliminate semantically uninterpretable parses and to help
resolve subtle syntactic ambiguities, the parser must occasion~-
ally communicate with the semantic component.

The parser attempts to eliminate the overhead incurred
by pure top down (TD) or bottom up (UP) algorithms. TD algo=-
rithms may have to do a lot of backtracking because of wrong-
1y predicted goals. BU algorithms build many temporary struct-
ures which will not figure in the final perse. Both backtrack-
ing and the generation of all possible BU interpretations can
be avoided by suitablj combining TD and BU strategies: TD
expectations based on the gremmar itself and on what hes been
parsed so far guide esnd constrain the BU search, while BU
results are used at once to refute or confirm TD expe%tations.

- 215 -



The parser is described and contrasted with several
other TD and BU parsers.

The most notable features of the operation of the par-
ser are the following, As the sentence is traversed from left
to right, TD expectations are associated with each position
in the sentence., Each word in the sentence is thought of as
lying between & beginning and an ending position, so that the
i-th word lies between positions i1-1 and i. Nodes are buillt
only when they agree with prior expectations and when they
meet additional context-sensitive tests.

At each moment, the parser attempte to keep the forest
of partiel trees as shallow a8 possible., After the input words
have been processed from left to right, the roots of the
trees constructed so far are visited in alternating right to
left and left to right order. With each pass the height of
gsome trees in the parse forest increases until the root for
the entire sentence is built. '

- 216 -



