RULE-BASED INFLEXIONAL ANALYSIS -

Zbigniew Jurkiewicz

University of Warsaw, Institute of Informatics
Palac kultury i nauki, 00-901 Warszawa, P,0.Box 1210, Poland

This paper presents a system for representation and use
of inflexionel knowledge for Polish language. By inflexional
knowledge we mean information about rules of inflection/de-
flection for regular words together with a list of exceptions,
Such knowledge can be successfully manipulated by a rule-based
gystem., The research is a part of big undertaking, aimed at
construction of a system able to converse in Polish with
casual user,

The problem we are concerned with may be stated as
follows. For each word in input sentence the system should
find its baesic form and dictionary in ormation connected with
it.

- The simplest approach to this problem is to store all
forms of words in the forms dictionary, which associates them
with their bgsic forms. This method is aoceptable for small
gets of words. It places too big strain on system resources
for bigger dictioneries. The way to minimize resource usage
i8 to exploit regulerities in the inflection,

Each language posgesses some regularites in its inflex-
ion. The e;tent of these regularities i1s different in differ-
ent languages. Also the number of different inflectional forms
may be different, e.g. an average polish verb can have about
100 forms. This forced us to think seriously about using re-
gularities even in lexical components for small subsets of

v - 146 -

of language. We view the inflectionel enalysis system as
composed out of two parsss '
= an exception dictionary with all forms taken as ir-
regular,
- g8 mechanism exploiting regularities for getting necess-
ary efficiency in search and seving resources.

We based our mechanism on $he anelysis of endings. The
ending is defined as a part of wor@ which is changed while
reducing the word to its basic (dictionary) form. Polish
language is charecterized by many zrules of deflection, which
may be applicable to a given ending. A& single word may be
interpreted in as meny weys as meny endings we can distingw
uish in it, multiplied by e aumber of applicable rules for
each ending. Therefore such candidate ending muet be confirm-
ed by checking result in the dictionary of basic forms after
applying proposed deflectiom rule.

The described knowledge was written down in rule-based
system "FORS"., "FORS" is rather classical forward-driven rule
system with some degree of extensibility. It is written in
programming language LISP and is composed out of three parts:s

~ facts, represented as list structures stored in a
fully indexed data base;
- rules of the form
condition =p actiom action ...
= control mechanism for choosing and applying rules.

Eaoch condition is a sequence of patterns of facts,
which must be asserted in a database for rule to be applicab-
le.

Patterns may contein typed variables. The type of a
variable is identified by one-letter long prefix. Prefix must
be a non-alphanumericel character. Variable type may de define
ed by providing matching functions for this type.

- 147 -

Inflexional knowledge is represented in "FORS" as follows,
Each dictionary entry is represented as fact of the following
form:

(ENTRY (BASIC~-FORM) (CATEGORY) (OTHER PARAMETERS))
The woxrd cﬁrrently processed is saved as:
(RECEIVED(WORD))
The exceptions are represented as rules ‘of the form

(RECEIVED (WORD-FORM)) (ENTRY (BASIC-FORM)...)
s> (ANSWER...)

The rules for deflection by endings replacement are stored as

(RECEIVED w#VAR~(ENDING1)) (ENTRY #VAR-(ENDING2) +.o)
(ANSWER...)

The prefix ¥ is used for variables typed “"suffixed", All
variables in "FORS" get values by matching to fact elements. -
Por suffixed variable without value, the value is assigned
after cutting a given ending from item element (1f possible,
otherwise the matching fails), While matching suffixed variab-
le which already has gome value, Pinal value is obtained by
concatenating given sufix to it.

There may exist many competing rules for recognized
ending. Also, for a given word a .couple of allowed endings
may be indentified (e.g. one letter long, two letters long
etce). The control component in "FORS" allows to specify the
sequencing between such completing rules. In a current version,
the set of rules for regular endings is divided into groups
according to the ending in

(RECEIVEDvseo)
pattern. We asociate a node with each such group. The nodes
form a directed graph, called control graph. We associate a
node with exception rules group too. One node is selected as
8 starting node. The arcs in this graph speaify (partial)

- 148 -

order between nodes, thus defining sequencing between groups
of rules. All nodes must be accessible from starting node (in
other terms, control graph must be a direocted acyoclic connect~
ed graph).

The syastem works in cycles. At each oycle it reads the
next word from input sentenoce and tries to find a rule applic-
able to this word. Rules are tried acocording to the order
defined by a ocontrol graph, starting from the starting node.
For each node, the rules agsociated with it are checked,
until one is found with satisfied condition, This rule is then
run and the next cycle begins. If no rule was applicable,
system goes to one of successor nodes, guided by analysed word
endings, ' .

The advantages of representing inflectional knowledge in
such a form are many. The system is moduler, because each rule
is independent from all others. Therefore rules may be added
or deleted at will, allowing additional sources of knowledge
to be tried.

The behaviour of the system is easily observable by non=-
programmer (in linguistic terms such as rules, endings etc.).

The set of rules may be adjusted to e given application,
especially for small systems with specialised dictionaries.

The independent control component allows to experiment
with different rule groupings in the search of minimization
of resource usage. The grouping according to the cgncluded
"syntactic category may sllow to exploit eyntactic expectations,
provided from parser., As for -now, we succeeded in incorporat-
ing only most popular deflectiom rules (about 600 of them). We
are going to incorporate some additional phonetic rules to
take care of alterations. This could hopefully diminish the
number of deflection rules.

- 149 -

