
COLING 82, J. Horeclc)) (ed.) 
North-Holland Publishing Company 
© Academia, 1982 

NATNRAL LANGUAGE UPDATES* 

Sharon C. Salveter 
David Maier 

Computer Science Department 
State University of New York at Stony Brook 

Stony Brook, New York 11794 
USA 

A great deal of research effort has been expended in support of natural language 
(NL) database querying. English and English-like query systems already exist, 
such as ROBOT[Ha77], TQA[Da78], LUNAREWo76] and those described by Kaplan[Ka79], 
Walker[Wa78] and Waltz[Wa75]. Little effort has gone to NL database update 
[KD81, Br81, Sk80, CHSI]. We want to extend l~ interaction to include data 
modification (insert, delete, modify) rather than simply data extraction. The 
desirability and unavailability of NL database modification has been noted by 
Wiederhold, et al[WiSl]. Database systems currently do not contain structures 
for explicit modelling of real world changes. 

N~ querying of a database requires that the correspondence between the semantic 
description of the real world and the database definition be explicitly stated. 
The NL query system must translate a question phrased in terms of the semantic 
description into a question phrased in terms of the database definition, that is, 
into a data retrieval command in the language of the database system. For NL 
database modification, a stative correspondence between database states and real 
world states is not adequate. To suoDort NL undate we need to renresent an active 
correspondence, the connection between real world changes and database updates. 
We have a means to describe the actions that change the state of the real world: 
active verbs. We also have a means to describe a change in the database state: 
a data manipulation language (DML) command. We must capture the notion that an 
action in the real world causes changes in the real world that must be reflected 
in the database, as shown in Fig. i. But given a real world action, how do we 
find a DML sequence that will accomplish the corresponding changes in the 
database? We need to connect verbs like "schedule," "hire" and "reserve" with 
some structures that dictate appropriate D~ sequences that perform the corres- 
ponding updates to the database. In addition, a verb may denote various actions, 
that is, it may have different senses. 

There is no explicit database object that re~resents all the changes in the data- 
base that correspond to the changes in the real world brought about by 
actions such as "schedule." The desired situation is shown in Fig. 2, where RWSi 
statively corresponds to DBSi. We have an active correspondence between 
"schedule" and a parameterized database transaction PT. Different instances of 
the schedule action, S1 and $2, cause different changes in the real world state, 
from RWSI to RWS2 or RWS3. From the active correspondence of "schedule" and PT 
we want to select the proper transaction, T1 or T2, to effect the correct change 
in the database. 

We propose a structure, a ~ ,  to represent action verbs on the database 
side. One verbgraph is associated with each sense of a verb; its structure will 
represent all variants of that sense. A verbgraph exploits commonalities among 
the variants of a verb sense and also distinguishes the variants. A verbgraph 
is used to select DML sequences appropriate to reflect the actions of each 
variant of a verb sense. The primitives in the structures are relations, attrib- 
utes and values from the database, employed in DML-like expressions. 

345 



346 S.C. SALVETER and D. MAIER 

Verbgraphs are extensions of frame structures used to represent verb meaning in 
Moran[Sa78, Sa79]. A verbgraph is directed acyclie graph with five kinds of 
nodes: header~ footer, information~ AND and OR. An example of a verbgraph is 
shown in Fig. 3. The header is the source of the graph, the footer is the sink. 
Every information node (represented by a rectangle) has one incoming and outgoing 
edge. An AND or OR node (represented by,and O , respectively) can have any 
number of incoming and outgoing edges. A variant corresponds to a complete 
directed path in the graph. We define a complete path to be a connected subgraph 
such that (i) the header is included; (2) the footer is included; (3) if it con- 
tains an information node, it contains the incoming and outgoing edge; (4) if it 
contains an AND node, it contains all lncoming and outgoing edges; and (5) if it 
contains an OR node, it contains exactly one incoming and outgoing edge. An 
example of a complete path in Fig. 3 is the header, the footer, information nodes 
A,B,D,J, and connector nodes a,b,c,d,g,k~l~n. 

Expressions in information nodes can be of two basic types: asslgnment and re- 
striction. An example of the assignment type (node D in Fig. 3) is RES.date ÷ 
APFT.date. An example of the restriction type (node B in Fig. 3) is APPT.who i__n_n 
RI, where, in this case, R1 is the result of a query against the database. 

A verbgraph supports NL update in the following manner. Assume we have only 
a single sense for each verb. When a user update command is entered, information 
is first extracted from the command, classified by domain and used to instantiate 
elements of the information nodes. We then examine the graph to see if a unique 
path has been determined. If not, we generate from the graph a question whose 
response further constrains the possibilities. Once a unique complete path is 
determined~ the information in that path is used to instantiate the parameterized 
DML in the footer. 

The verbgraph SCHEDULE-APPOINTMENT in Fig. 3 is based on the following database 
schema: 

~MP(name, office, phone, supervisor) 
APPOINTMENT(name, date, time, duration, who, topic, location) 
MAILBOX(name, date, time, from, message) 
ROOMRESERVE(room, date, time, duration, reserver) 

with domains (permissible sets of values): 

DOMAIN ATTRIBUTES WITH THAT DOMAIN 

personname name, who, from, reserver, suDervlsor 
roomnum room, location, office 
phonenum phone 
calendardate date 
clocktime time 
elapsedtime duration 
text message, topic 

The basic variations for this verbgraph are whether the person being scheduled is 
in the company, whether a room should be reserved and whether ones supervisor 
should be notified. 

Suppose we have the update command "Schedule an appointment With James Parker on 
April 13," where James Parker is a company employee. Interaction with the verb- 
graph proceeds as follows. First, information is extracted from the command and 
classified by domain. For example, James Parker is in domain personname, which 
can only be used to instantlate APPT.name, AFFT.who, ApPT2.name and APPT2.who. 
However, since USER is a system variable, the only slots left are APPT.who and 
ApPT2.name, which are necessarily the same. Thus we can instantiate APPT.who and 
APPT2.name with "James Parker." We classify "April 13" as a calendardate and 



NATURAL LANGUAGE UPDATES 347 

Instantiate APPT.date, APPT2.date and RES.date with it, because all these must be 
the same. No more useful information is in the update request. 

Second, we examine the graph to see if a unique path has been determined. In 
this case it has not. However, other possibilities are constrained because we 
know the path must go through node B. This is because the path must go through 
either node B or node C and by analyzing the response to retrieval RI, we can 
determine it must be node B (i.e., James Parker is a company employee). 

Now we must determine the rest of the path. One determination yet to be made is 
whether or not node D is in the bath. Because no room was mentioned in the query, 
we generate from the graph a question such as "Where will the appointment take 
place?" Suppose the answer is "my office." Presume we can translate '~y office" 
into the scheduler's office number. This response has two effects. First, we 
know that no room has to be reserved, so node D is not in the path. Second, we 
can fill APPT.where in node F. 

Finally, all that remains to be decided is if node H is on the path. A question 
like "Should we notify your supervisor?" is generated. Supposing the answer is 
"no." Now the path is completely determined: it contains nodes A, B and F. 

Now that we have determined a unique path in the graph, we discover that not all 
the information has been filled-in in every node on the path. We now ask ques- 
tions to complete these nodes, such as What time?, For how long? and What is 
the topic? At this point we have a unique complete path, so the appropriate 
calls to INFORM can be made and the parameterized DML in the footer can be 
filled-in. 

Note that th e above interaction was quite rigidly structured. In particular, 

i) After the user issues the original command, the verbgraph 
instantiation program chooses the order of the subsequent 
data entry. 

2) There is no provision for default, or optional values. 

3) Even if optional values were allowed, the program would 
have to ask questions for them anyway, since the user has 
no opportunity to specify them subsequent to the original 
command. 

We want the interaction to be more user-directed. Our general principle is to 
allow the user to volunteer additional information during the course of the inter- 
action, as long as the path has not been determined and values remain unspecified. 
We could use the following interaction protocol. The user enters the initial 
command and hits return. The program will accept additional lines of input. 
However, if the user Just hits return, and the program needs more information the 
program will generate a question. The user then answers that question, followed 
by a return. As before, additional information may be entered on subsequent lines. 
If the user hits return on an empty llne, another question is generated, if 
necessary. 

The following advantages accrue from letting the user volunteer information. The 
user may choose the order of data entry. We can now have optional values, but not 
have to ask questions about them. Since the user has an opportunity to volunteer 
any values, if he or she does not volunteer the value, a default value will be 
used. 

From our previous example, suppose topic is optional, with default null string. 
Consider the following interaction under our new paradigm. 

i > Schedule an appointment with James Parker ,on April 13 



348 S.C. SALVETER and D. MAIER 

2 > At 3:00pm for 15 minutes 

3 > 

4 > Where will the appointment take place? 

5 > My office 

6 > Notify my supervisor 

7 > 

The user enters the initial command on llne i. In line 2 she volunteers supple- 
mental information. Since llne 3 is empty, the program generates the question in 
line 4. The user responds to the question in llne 5 and volunteers information 
at line 6. At line 7, a value for topic still has not been snecified, but the 
user has the option. Since an empty line is entered, and all non-obligatory 
slots are filled in, the command interaction terminates, and the program uses the 
default for the optional slot. DML can now be executed. 

Verbgraphs are also a means for specifying non-database operations, such as send- 
ing a confirmation letter when an appointment is made. The verbgraph can also be 
used to express integrity constraints on the uDdate operation, just as functional 
dependencies represent constraints on states of the database. We can also easily 
express integrity constraints on successive states of the database. Finally, 
there is the opportunity for computer aided design of the verbgraDhs. 

We are currently considering hierarchically structured transactions, as used in 
the TAXIS semantic model [MBW80], as an alternative to verbgraphs. Verbgraphs 
can be ambiguous, and do not lend themselves to top-down design. Hierarchical 
transactions would seem to overcome both problems. Hierarchical transactions in 
TAXIS are not quite as versatile as verbgraphs in representing variants. The 
hierarchy is induced by hierarchies on the entity classes involved. Variants 
based on the relationship among particular entities, as recorded in the database, 
cannot be represented. Also all variants in the hierarchy must involve the same 
entity classes, where we may want to involvesome classes only in certain variants. 
However, these shortcomings do not seem insurmountable. 

Real World Database 

Rwsl ~ ) DBSl 

~action [ DNL 
RWS2 ( ) DBS2 

FIGURE i 

induced connections 

I 
_ RWS2 ~ DBS2 

"Schedule"4~Parameterized 
Transaction PT 

Figure 2 



NATURAL LANGUAGE UPDATES 349 

APPT.who i__nnRl 
APPT2.name ÷APPT.who 
APPT2.who ÷ APPT.name 
APPT2.time ÷APPT.time 

i A P P T 2 . d a t e  ÷ A P P T . d a t e  
:APPT2.topie ÷APPT.tople 

~ SCHEDULE-APPOINTMENT> 

APPT.name + USER 
APPT.time +In_n~utfrom elocktime 
APPT.duration +innp~ from elapsedtime 
APPT.date ÷ input from calendardate 
APPT.who ~inputfro____mmpersonname 
i APPT.topie + input from text 

% 
,, ,% | 

[ PT.who not in I 1 
IRES.room + APPT.where 

APPT2.where + APPT.where ..... IRES.date ÷ APPT.date 

call INFORM(APPT.who, ~RES.reserver ÷ APPT.name 
IRES.time ÷ APPT.time 

~-~,name, 'Meeting ~RES.duration ÷ APPT.duration 
]with me on %APPT.date 
~at %APPT.time') IAPPT'where ÷ i n  np_ut,  from roe== 

÷ in ut from R3 APPT.where J ~ PT .where ot R2 

• J k % 

IAPPT.where not in R3] G 

1 m ' 
) 

L ~ ,  APPT. name, Meeting 

i~ _ . -- lwith %APPT.who on %APPT.date in 
P,I = i__nn ~ retrieve name Iroom %APPT.where') 

EMP retrieve office where ~ , 
R2 i_~n name~ame - -  ~ . 

in DiP retrieve office where %~ 
--name~e or name=APPT.name /]i- APPOINTMENT insert APPT, A P P T 2 ~  
in EMP retrieve supervisor where {|~tt ROOMRESERVE ~ RES ~) 
-- name=APPT, name k~ In ~ y 

Figure 3 



350 

[Br81] 

[CH81] 

[Da78] 

[Ha77] 

[I~79] 

[D~8I] 

[MAW80] 

[Sa78] 

[Sa79] 

Esk8o] 

[Wa78] 

[wisl] 

[Wo76] 

S.C. SALVETER and D. MAIER 

Brodie, M.L., On modelling behavioral semantics of database. VLDB VII, 
Cannes, Prance, 1981. 

Carbonell, J. and Hayes, P., Multi-strategy construction-specific 
parsing for flexible database query and update. CMU Internal Report, 
July 1981. 

Damereau, F.J., The derivation of answers from logical forms in a 
question answering system. American Journal of Computational 
Linguistics, Microfiche 75, 1978, pp. 3-42. 

Harris, L.R., Using the database itself as a semantic component to aid 
the parsing of natural language data base queries. Dartmouth College 
Mathematics Dept. TR 77-2, 1977. 

Kaplan, 8.J., Cooperative responses from a natural language data base 
query system. Stanford Univ. Heuristic Progra~ning Project paper 
HPP-79-19. 

Kaplan, S.J., and Davidson, J., Interpreting natural language updates. 
Proceedings of the 19th Annual Meeting of the Association for 
Computational Linguistics, June 1981. 

Mylopoulos, J., Bernstein, P., and Wong, K., A language facility for 
designing database - intensive applications. ACM TODS,5, 2, 1980, 
pp. 185-207. 

Salveter, S.C., Inferring conceptual structures from pictorial input 
data. University of Wisconsin, Computer Science Dept., TR 328, 1978. 

Salveter, S.C., Inferring conceptual graphs. Co~nitlve Science, 3, 
pp. 141-166. 

Skuce, D.R., Bridging the gap between natural and computer language, 
Proc. of Int'l Congress on Applied Systems, and Cybernetics, Acapulco, 
December 1980. 

Walker, D.E., Understanding Spoken Language. American Elsevier, 1978. 

Wiederhold, G., KaDlan, S.J.. and Sagalowicz, D., Research in knowledge 
base management systems. S~GMOD Record, VII, #3, April 1981, pp. 26-54. 

Woods, W., et al., Speech understanding systems: final technical report. 
BBN No. 3438, Cambridge, MA, 1976. 


