
COL1NG 82, J. Horecky, {e,L)
North-Holland Publishing Company
(~ Academia, 1982

AN IMPROVED LEFT-CORNER PARSING ALGORITHM

Kenneth M. Ross

Computer Science Laboratory
Central Research Laborator ies

Texas Instruments Incorporated
Dal las, Texas

U.S.A.

This paper proposes a series of modi f icat ions to the l e f t
corner parsing a lgor i thm for contex t - f ree grammars. I t
is argued that the r e s u l t i n g a l g o r i t h m is both e f f i c i e n t
and f l e x i b l e and i s , therefore, a good choice for the
parser used in a natural language in te r face .

INTRODUCTION

G r i f f i t h s and Pet.rick (1965) propose several algori thms for recognizing sentences
of contex t - f ree grammars in the general case One of these algor i thms, the NBT
(Non-select ive Bottom to Top) Algor i thm, has since been ca l led a " l e f t - c o r n e r "
algor i thm. Of l a te , i n te res t has been rekindled in l e f t - co rne r parsers. Chester
(1980) proposes a modi f ica t ion to the G r i f f i t h s and Petr ick a lgor i thm which "com-
bines phrases before i t has found a l l of t h e i r components." Slocum (1981) shows
that a l e f t - co rne r parser inspi red by G r i f f i t h s and Pet r i ck 's a lgor i thm and by
Chester's performs qui te well when compared with parsers based on a Cocke-Kasami-
Younger a lgor i thm (see Younger 1967).

This paper w i l l propose modi f icat ions to G r i f f i t h s and Pet r i ck 's NBT algor i thm
which resu l t in a more e f f i c i e n t parsing algor i thm. A se lec t i ve version of th is
new algor i thm has been implemented in Maclisp on a DEC 2060 and in Lisp Machine
Lisp on an LMI Lisp Machine. I t is being used as the contex t - f ree component of
a parser being used to bu i ld natural language inter faces at Texas Instruments.
This a lgor i thm is l i ke the NBT algor i thm and d i f f e r s from Chester's in that i t
does not require the grammar to be in a special format. Any rule of a context-
free grammar is acceptable. The new algor i thm bui lds on the G r i f f i t h s and
Petr ick a lgor i thm and is an extension of the a lgor i thm proposed in Ross (1981).

The algor i thm given in G r i f f i t h s and Petr ick (1965) (henceforth G+P) is a rec-
ogn i t ion a lgor i thm, not a parsing algor i thm. Thus, i t w i l l only ind icate
whether or not a s t r ing can be produced from a grammar. I t w i l l not produce a
parse t ree. Although algori thms to recognize or parse contex t - f ree grammars can
be stated in terms of push-down store automata, G+P state t h e i r a lgor i thm in terms
of tur ing machines because the a lgor i thm is easier to understand in these terms.
A somewhat modif ied version of t he i r a lgor i thm w i l l be given in the next sect ion.
These modi f icat ions transform the algor i thm in to a parsing algor i thm and also
s imp l i f y i t a b i t .

The G+P algor i thm employs two push down stacks. The modif ied a lgor i thm to be
given below w i l l use three, ca l led alpha, beta and gamma. Turing machine ins t ruc-
t ions are o f the fo l lowing form, where A,B,C,D,E and F can be a r b i t r a r y s t r ings of
symbols from the terminal and nonterminal alphabet.

[A,B,C] --> [D,E,F] i f "Condit ions"

This is to be in terpre ted as fo l lows:

333

334 K,M. ROSS

I f A is on top of stack alpha,
B is on top of stack beta,
C is on top of stack gamma,
and "Conditions" are satisfied
then replace A by D, B by E, and C by F.

THE NBT ALGORITHM

The NBT algorithm is a nonselective version of the SBT (Selective Bottom to Top)
algorithm, also given in G+P. The only difference between the two is that the
SBT algorithm employs a reachability matrix to selectively eliminate bad paths
before trying them. For more on this, see G+P and Ross (1981). For the purpose
of this paper, i t is not necessary to say anything more than that the addition of
a reachability matrix modifies the algorithm only sl ightly and serves only to make
the algorithm more eff icient.

A version of NBT modified to employ a third stack and to parse rather than recog-
nize strings follows. This algorithm wil l be modified further throughout the
paper.

(1) [VI,X,Y] --> [~,V2 . . . Vn,t X,A Y]
i f A --> Vl V2 . . . Vn is a rule of
the phrase structure grammar
X is in the set of nonterminals and
Y is anything

(2) [X,t,A] --> [A X,~,~]
i f A is in the set of nonterminals

(3) [B,B,Y] --> [~,~,Y]
i f B is in the set of nonterminals or
terminals

To begin, put the terminal s t r i ng to be parsed fol lowed by END on stack alpha.
Put the nonterminal which is to be the root node of the t ree to be constructed
fo l lowed by END on stack beta. Put END on stack gamma. The symbol t is ne i ther
a terminal nor a nonterminal. I f END is on top of each stack, the s t r i ng has
been recognized. I f none of the tu r ing machine ins t ruc t ions apply and END is not
on the top of each stack, t he path which led to th is s i t ua t i on was a bad path and
does not y i e l d a va l i d parse.

The rules necessary to give a parse t ree can be stated in fo rma l l y (i . e . , not in
terms of tu r ing machine ins t ruc t i ons) as fo l lows:

When (I) is app l ied , at tach V1 beneath A.

When (3) is app l ied, at tach ~he B on alpha B as the
r i g h t daughter of the top,symbol on gamma.

Note that there is a formal statement of the parsing version of NBT in G r i f f i t h s
(1965). However, i t is somewhat more complicated and obscures what is going on
during the parse. Therefore, the informal procedure given above w i l l be used
instead.

I n t u i t i v e l y , what NBT does is put the symbols on alpha together in a bottom-up
manner with the u l t imate goal of construct ing a t ree that has, at i t s top, what-
ever nonterminal symbol is on top of beta. So, to parse a sentence of Engl ish,
NBT would begin with the lex i ca l categor ies of the words to be parsed as a
sentence on alpha and the nonterminal "S" on beta. An app l i ca t i on o f tu r ing
machine i ns t ruc t i on (I) reduces th is problem to a simpler one. (I) f inds some
phrase s t ructure ru le contain ing the symbol that is on top of alpha immediately

AN ff~PROVED LEFT-CORNER PARSING ALGORITHM 335

a f t e r the arrow. So, i f the f i r s t symbol on alpha was "de t " , the phrase s t ruc tu re
ru le NP - -> det AdjP N would q u a l i f y . By t h i s a p p l i c a t i o n o f (I) , the problem
is reduced to bu i l d ing an AdjP and # ind ing an N from the symbols on alpha. Once
th i s is done, the t rees f o r the "de t " , the "AdjP" and the "N" would be combined
i n to an NP. By a p p l i c a t i o n o f (2) , the NP would be put on alpha. Then a ru le
with NP immediately f o l l ow ing the arrow would be looked f o r so tha t (I) could
apply again.

NBT is a nondetermin is t i c a lgor i thm. The nondeterminism comes from two places.
F i r s t l y , ru le (I) can apply in more than one way. For t h i s to happen, there
would need to be two phrase s t r uc tu re ru les wi th the same nonterminal symbol
immediately a f t e r the arrow. The fo l l ow ing two ru les are an example o f t h i s .

X - -> Y Z1 Z2 Z3
R - -> Y Rl X2

Secondly, ru le (3) and ru le (I) could apply in the same s i t u a t i o n . I n t u i t i v e l y ,
an a p p l i c a t i o n o f ru le (3) ind ica tes tha t a t ree topped by node B was being
searched f o r and a t ree topped by node B has been found~ so use the t ree j u s t
found as the t ree tha t was sought. Rule (I) could apply as wel l i f a phrase
s t ruc tu re ru le o f the form X - -> B Y1 Y2 . . . Yn ex i s ted . Applying (I) ind ica tes
tha t the B being sought is not the B tha t was j u s t b u i l t . Rather, the B tha t was
j u s t b u i l t is an i n i t i a l subtree o f the B being sought.

RULZS WITH ABBREVIATIONS

~ important aspect o f the modi f ied a lgor i thm being proposed is tha t i t can deal
d i r e c t l y wi th ru les which employ abbrev ia to ry conventions which are u t i l i z e d by
l i n g u i s t s . Thus, parentheses (expressing o p t i o n a l n o d e s) and cu r l y brackets
(expressing the f a c t t ha t one o f the set o f nodes in brackets should be chosen)
can appear in the ru les tha t the parser accesses when parsing a s t r i n g .

Assume ~hat i e f t and r i g h t parentheses are put o~ stack beta as separate elements.
Also assume chat l e f t and r i g h t cu r l y brackets are put on stack beta as separate
items. Given these assumptions~ to modify NBT to handle ru les wi th parenthesized
elements, the f o l l ow ing tu r i ng machine i ns t r uc t i ons must be added.

(4) IX, (Cl C2 , . . Cn) ,Y] - -> IX,C] C2 . . . C,~,Y]
(5) [X , (C! C2 . . . Cn) ,Y] - -~ [X,~,V]

For a l l i , Ci = (Cj Cj+l . . . Cp) or
C1 Cl+i . . . Cm ~ or

X
i f X is i. i the sec o f te rmina ls .

The f i r s t ru le w i l l apply when the parenthesized node is present . The second ru]e
w i l l apply when the node is not present . The Ci va r i ab le handle cases o f nested
parentheses or cu r l y brackets. I n fo rma l l y , a Ci is a va r i ab le tha t stands f o r a
nonterminal , a te rm ina l , a l e f t parenthesis fo l lowed by some number o f expressions
which are Ci 's fo l lowed by a r i g h t parenthes is , or a l e f t cu r l y bracket fo l lowed
by some number o f expressions which are Ci 's fo l lowed by a r i g h t cu r l y bracket .

The f o l l ow ing ru les are necessary to d i r e c t l y parse with ru les conta in ing cu r l y
brackeLs.

(6) [X, { C1 X,Y] - -~ [X , { ,Y]
(7) Ix , { ~I x , ,] --> [X,Cl : ,v]

I f X not = }
(8) I x , : }ov] [x ,o ,Y]
(~ [x~ < Cl } ,¥] - -> [x ,c~,Y]

336 K.M. ROSS

(I0) [X, : CI,Y] --> [X , : , ¥]

where : is a special symbol which is
ne i ther a terminal or a nonterminal symbol,

C1 is a Ci type var iab le as defined e a r l i e r .

Once these modi f icat ions are incorporated, the resu l t i ng a lgor i thm w i l l be more
e f f i c i e n t than i f the NBT algor i thm were used with abbreviated rules completely
expanded in to many d i s t i n c t ru les. To see why th is is so, consider a s i t ua t i on
in which there was a ru le of the form X --> ~I A2 . . . An (Z). I f th is was
replaced by two ru les , X --> A1 A2 . . . An Z and X --> A1 A2 . . . An, the parse
would have to be s p l i t immediately upon encounteging X. However, i f the a l te rna-
t i ve so lu t ion being proposed were used, rather than parsing fo r AI, A2 to
An twice, they would only be parsed for once. The parse path would not s p l i t
un t i l i t came time to decide whether we wanted to look fo r Z or not. In general,
every ru le which has, fo l lowing the arrow, some number of ob l i ga to ry elements
fo l lowed by a parenthesized element w i l l r esu l t in a savings. Thus, any such ru le
can be parsed with more e f f i c i e n t l y than the two rules ~t would be turned in to i f
parentheses were e l iminated. Note that the add i t iona l cost here is qu i te small .
For each parenthesized element, (4) and (5) w i l l each apply once. In the a l te rna-
t i ve so lu t ion , many rules might apply unnecessari ly to the parse fo r the nodes
which came before the parenthesized node.

There is a class of grammars fo r which the so lu t ion proposed here w i l l require a
b i t more work than the so lu t ion where parentheses are simply e l iminated from the
grammar. These are grammars that only have rules i nwh ich parenthesized items
come f i r s t and have no rules in which ob l i ga to ry items precede opt ional ones. In
a grammar with both kinds of ru les , the savings made fa r outweigh t~e amount of
ext ra work needed. Since the classes of grammars used in parsing systems
genera l ly have both kinds of ru les , my so lu t ion w i l l resu l t in a savings fo r
these. Note tha t a s im i l a r e f f i c i ency argument can be made for the cur ly bracket
case.

The above rules w i l l handle a l l occurrences o f parentheses and cur ly brackets
except fo r those in which the item immediately fo l lowing the arrow in a phrase
s t ructure ru le is in parentheses or cur ly brackets. The a lgor i thm could be
modif ied to handle these cases d i r e c t l y , however, th is w i l l not increase
e f f i c i ency . Items in cur ly brackets or parentheses tha t immediately fo l low the
arrow in a phrase s t ructure ru le must be expanded immediately upon encountering
them. There is no savings in postponing th is expansion un t i l run time. Putt ing
o f f the choice of how to expand such a phrase s t ruc ture ru le w i l l not a l low paths
to be mergedtbgether . Therefore, the best way to handle these is to expand a l l
such rules in to rules that do not have th is property .

L i n g u i s t i c a l l y , the above is an i n te res t i ng resu l t . L inguists have claimed that
use of parentheses s imp l i f i es the grammar. Since s impler grammars are preferred
to more complex ones, a so lu t ion which col lapses two rules to one by parentheses
is preferable to .a so lu t ion that has two d i s t i n c t ru les. In parsing, we see that
in many instanc'~s, the ~se of one ru le with parentheses ra ther than two rules
wi thout resul ts in the parser operat ing more e f f i c i e n t l y . I t is able to merge
parse paths together which would have been d i s t i n c t had several con tex t - f ree rules
not been col lapsed together as one, using the abbrev ia tory conventions. Thus, a
n o t a t i o n a l d e v i c e which was o r i g i n a l l y proposed to s imp l i f y phrase s t ructure rules
ac tua l l y resul ts in a more e f f i c i e n t parse in many cases. Therefore, at least fo r
some cases, we have add i t iona l evidence for the use of parentheses in phrase
s t ructure ru les.

AN IMPROVED LEFT-CORNER PARSING ALGORITHM 337

DEPTH OR BREADTH FIRST?

There has of yet been no discussion of the order in which the algorithm proceeds.
The statement of the algorithm is completely neutral in this respect. However, an
implementation must impose some control structure. When a parse is started, there
is one 3-tuple containing the information on stacks alpha, beta, and gamma. In
general, there are many dif ferent rules of the parsing algorithm that can be
applied after this point. In order to assure that al l possible paths are pursued
to completion, i t is necessary to proceed in a principled way.

One strategy is to push one state as far as i t wi l l go. That is, apply one of
the rules that are applicable, get a new state, and then apply one of the appli-
cable rules to that new state. This can continue unti l either no rules apply or a
parse is found. I f no rules apply, i t was a bad parse path. I f a parse is found,
i t is one of possibly many parses for the sentence. In either case, the algorithm
must continue on and pursue al l other alternative paths. An easy way to do this
and assure that a l l alternatives are pursued is to backtrack to the last choice
point, pick another applicable rule, and continue in the manner described ear l ier .
By doing this until the parser has backed up through al l possible choice points,
al l parses of the sentence wi l l be found. A parser that works in th is manner is
a depth-f irst backtracking parser. This is probably the easiest control structure
to use for a left-corner parser.

Alternative control structures are possible. For instance, rather than pursuing
one path as far as possible, one could go down a parse path to some desired
distance, save that state for later , and come back up to the top and start some
other parse path. The original parse path could be pursued later from the point
at which i t was stopped. The problem with such an approach is keeping track of
al l the options.

In the algorithm being proposed here, the decision of whether the parse proceeds
in a depth-f irst or breadth-f irst manner is governed by a parameter which is
adjustable. Thus, the parser can proceed to a setable depth down each parse path
before going off and pursuing others. This mechanism works by saving the state
of the parser when i t reaches the desired depth down a part icular parse path.
Once al l paths are pursued to this depth, the parser is called again with each of
the states that were saved.

To enable the parser to function as described-above, the control structure for a
depth-f irst parser described ear l ier is used. To introduce the ab i l i t y to proceed
in a breadth-f irst manner, the parser is only given a subset of the input string.
Then, the item MORE is inserted after the last item that is given to the parser.
I f no other instructions apply and MORE is on top of stack beta, the parser must
begin to backtrack as described ear l ier . Addit ionally, the state must be saved.
Once al l backtracking is completed, more input is put on beta and parsing begins
again with each of the saved states.

By changing the amount of input that is given, the degree to which the parser pro-
ceeds either depth or breadth f i r s t can be controlled. I f one word is given at a
time, the parser is compleZely breadth-f irst. I f the entire sentence is given,
i t is completely depth-f irst. Any other amount results in some combination of the
two.

. This mechanism enables the a lgor i thm to e a s i l y incorpora te a wel l - formed subst r ing
tab le . A l l tha t needs to be done is compare the set o f saved s ta tes and merge the
ones tha t have subgoals in common. By s e t t i n g the parameter to d i f f e r e n t va lues,
the degree to which the wel l - formed subs t r ing tab le is used can be c o n t r o l l e d .
This is p a r t i c u l a r l y important in l i g h t o f Slocum's r esu l t s which i nd i ca te tha t
the overhead invo lved in mainta in ing such a tab le can exceed the savings tha t i t

338 K.M. ROSS

gives. By having the degree to which the table :s used be adjustable, the proper
set t ing can be determined, based on the grammar and the sorts of queries that are
asked most often.

Add i t i ona l l y , the algor i thm can be used to process the sentence word by word as i t
is typed in. When used as the parser in a natural language in te r face , th is can
increase the speed of a parse since work can proceed as the user is typing and
composing his input.

Bibl iography

[1] Chester, D., A parsing algor i thm that extends phrases, American Journal of
Computational L ingu is t i cs , 6-2 (1980) 87-96.

[2] G r i f f i t h s , T., On procedures for construct ing s t ructura l descr ipt ions for
three parsing algor i thms, Communications of the ACM, 8 (1965) 594.

[3] G r i f f i t h s , T. and Petr ick, S.R., On the r e l a t i v e ' e f f i c i e n c i e s of context - f ree
granTnar recognizers, Communications of the ACM, 8 (1965) 289-300.

[4] Ross, K., Parsing English phrase s t ructure, Ph.D. Disser ta t ion, Dept. of
L ingu is t ics , Univ. of Mass. (Sept. 1981).

[5] Slocum, J . , A pract ica l comparison of parsing s t ra teg ies , Proceedings of the
19th Annual Meeting of the ACL, (1981) 1-6.

[6] Younger, D., Recognition and parsing of context - f ree language in time n3,
Information and Control I0 (1967) 189-208.

