COLING 82, J. Horecky (cd.)
North-Holland Publishing Company
© Academia, 1982

AN IMPROVED LEFT-CORNER PARSING ALGORITHM

Kenneth M. Ross

Computer Science Laboratory
Central Research Laboratories
Texas Instruments Incorporated
Dallas, Texas
U.S.A.

This paper proposes a series of modifications to the left
corner parsing algorithm for context-free grammars. It
is argued that the resulting-algorithm is both efficient
and flexible and is, therefore, a good choice for the
parser used in a natural language interface.

INTRODUCTION

Griffiths and Petrick (1965) propose several algorithms for recognizing sentences
of context-free grammars in the general case. One of these algorithms, the NBT
(Non-selective Bottom to Top) Algorithm, has since been calied a "left-corner®
atgorithm. Of late, interest has been rekindled in left-corner parsers. Chester
(1980) proposes a modification to the Griffiths and Petrick algorithm which "com-
bines phrases before it has found all of their components." Slocum (1981) shows
that a Teft-corner parser inspired by Griffiths and Petrick's algorithm and by
Chester's performs quite well when compared with parsers based on a Cocke-Kasami-
Younger algorithm {see Younger 1967).

This paper will propose modifications to-Griffiths and Petrick's NBT algorithm
which result in a more efficient parsing algorithm. A selective version of this
new algorithm has been implemented in Maclisp on a DEC 2060 and in Lisp Machine
Lisp on an LMI Lisp Machine. It is being used as the context-free compcnent of
a parser being used to build natural language interfaces at Texas Instruments.
This algorithm is like the NBT algorithm and differs from Chester's in that it
does not require the grammar to be in a special format. Any rule of a context-
free grammar is acceptable. The new algorithm builds on the Griffiths and
Petrick algorithm and is an extension of the algorithm proposed in Ross (1981).

The algorithm given in Griffiths and Petrick (1965) (henceforth G+P) is a rec-
ognition algorithm, not a parsing algorithm. Thus, it will only indicate

whether or not a string can be produced from a grammar. It will not produce a
parse tree. Although algorithms to recognize or parse context-free grammars can
be stated in terms of push-down store automata, G+P state their algorithm in terms
of turing machines because the algorithm is easier to understand in these terms.

A somewhat modified version of their algorithm will be given in the next section.
These modifications transform the algorithm into a parsing algorithm and also
simplify it a bit.

The G+P algorithm employs iwo push down stacks. The modified algorithm to be
given betow will use three, called alpha, beta and gamma. Turing machine instruc-
tions are of the following form, where A,B,C,D,E and F can be arbitrary strings of
symbols from the terminal and nonterminal alphabet.

[A,B,C] --> [D,E,F] if “Conditions™

This is to be interpreted as follows:

333

334 K.M. ROSS

If A is on top of stack alpha,

B is on top of stack beta,

C is on top of stack gamma,

and "Conditions" are satisfied

then replace A by D, B by E, and C by F.

THE NBT ALGORITHM

The NBT algorithm is a nonselective version of the SBT (Selective Bottom to Top)
algorithm, also given in G+P. The only difference between the two is that the

SBT algorithm employs a reachability matrix to selectively eliminate bad paths
before trying them. For more on this, see G+P. and Ross (1981). For the purpose
of this paper, it is not necessary to say anything more than that the addition of
a reachability matrix modifies the algorithm only slightly and serves only to make
the algorithm more efficient.

A version of NBT modified to employ a third stack and to parse rather than recog-
nize strings follows. This algorithm will be modified further throughout the
paper.

(1) [v1,X,¥] --> [#,v2 ... Vn,t X,A Y]
if A --> V1 V2 ... Vn is a rule of
the phrase structure grammar
X is in the set of nonterminals and
Y is anything

(2) [XstsA] -=> [A X!ﬂa”]

if A is in the set of nonterminals

(3) [ByBaY] -—> [ﬂaﬂ,Y]
if B is in the set of nonterminals or
terminals

To begin, put the terminal string to be parsed followed by END on stack alpha.
Put the nonterminal which is to be the root node of the tree to be constructed
followed by END on stack beta. Put END on stack gamma. The symbol t is neither
a terminal nor a nonterminal. If END is on top of each stack, the string has
been recognized. If none of the turing machine instructions apply and END is not
on the top of each stack, -the path which led to this situation was a bad path and
does not yield a valid parse.

The rules necessary to give a parse tree can be stated informally (i.e., not in
terms of turing machine instructions) as follows:

When (1) is applied, attach V1 beneath A.

When (3) is applied, attach the B on alpha B as the
right daughter of the top.symbol on gamma.

Note that there is a formal statement of the parsing version of NBT in Griffiths
(1965). However, it is somewhat more complicated and obscures what is going on
during the parse. Therefore, the informal procedure given above will be used
instead.

Intuitively, what NBT does is put the symbols on alpha together in a bottom-up
manner with the ultimate goal of constructing a tree that has, at its top, what-
ever nonterminal symbol is on top of beta. So, to parse a sentence of English,
NBT would begin with the lexical categories of the words to be parsed as a
sentence on alpha and the nonterminal "S" on beta. An application of turing
machine instruction (1) reduces this problem to a simpler one. (1) finds some
phrase structure rule containing the symbol that is on top of alpha immediately

AN [MPROVED LEFT-CCRNER PARSING A*.GORITHM 335

after the arrow. So, if the first symbol on alpha was "det", the phrase structure
rule NP --> det AdjP N would qualify. By this application of (1), the problem

is reduced to building an AdjP and finding an N from the symbols on alpha. Once

_ this is done, the trees for the "det", the "AdjP" and the "N" would be combined
into an NP. By application of (2), the NP would be put on alpha. Then a rule
with NP immediately following the arrow would be tooked for so that (1) could
apply again. .

NBT is a nondeterministic algoritim. The nondeterminism comes from two places.
Firstly, rule (1) can apply in more than ons way. For this to happen, there
would need to be two phrase structure ruies with the same nonterminal symbol
immediately after the arrow. The following two rules are an example of this.

X -->Y 71 72 73
R -->Y X1 X2

Secondly, rule (3) and rule (1) could apply in the same situation. Intuitively,
an application of rule (3) indicates that a tree topped by node B was being
searched for and a tree topped by node B has been found, so use the tree just
found as the tree that was sought. Rule (1) could apply as well if a phrase
structure rule of the form X --> B YT Y2 ... Yn existed. Applying (1) indicates
that the B being sought is not the B that was just built. Rather, the B that was
Just built is an initial subtree of the B being sought.

RULZS WITH ABBREVIATIONS

<n important aspect of the modified algorithm being proposed ‘s that it can deal
directly with rules which employ abbreviatory ccnventions which ave utilized by
linguists. Thus, parentheses {expressing ontional nodes) and curly brackets
(expressing the fact that one of the set of nodes in brackets should be chosen)
can appear in the rules that the parser accesses when parsing a string.

Assume cthat left and right parenthesas are put on stack bsta as separate elements.
Also assume that left and right curly brackets are put on stack beta as separate
items. Given these assumptions, to modify NBT to handle rules with parenthesized
elements, the following turing machine instructions must be added.

(4) [X,A(Cl €2 ... Cn),Y] --> [X,C] C2 ... Cn.Y]
(5) [x, (€1 ¢C2 ... c¢cn)Yl -~> [X,9,Y]

For all i, Ci = (€Cj Ci+1 ... Cp) or
FCH e+t ... Cm ¥ or

v

if X is ia the set of terminals.

The first rule will apply when the parenthesized node is present. The second ruie
will apply when the nodz is nor present. The i variable handle cases of nested
parentheses or curly brackets. Informally, a Ci is a variable that stands for a
nenterminal, a terminal, a left parenthesis followed by some number of expressions
which are Ci's followed by & right parenthesis, or a left curly bracket followed
by some number of expreszions which dare Ci's followed by a right curly bracket.

The following rules are necessary to directly parse with rules containing curly
brackets.

(6) [X,{ CT X,¥T --> [X,{,¥]

17) IX,{ 71 X,51 -=> [X,C1 :,Y]
1f X not = }

(8) [Xo: 1,¥] -~ [X,8,Y]

(9) [X. ¢ Q1 3.¥Y > O6,0,Y]

336 K.M. ROSS

(10) [X.: C1,Y] --> [X,:,Y]

where : is a special symbol which is
neither a terminal or a nonterminal symbol,

Cl1 is a Ci type variable as defined earlier.

Once these modifications are incorporated, the resulting algorithm will be more
efficient than if the NBT algorithm were used with abbreviated rules completely
expanded into many distinct rules. To see why this is so, consider a situation

in which there was a rule of the form X --> Al A2 ... An (Z). If this was
replaced by two rules, X --> Al A2 ... An Z and X --> Al A2 ... An, the parse
would have to be split immediately upon encountering X. However, if the alterna-
tive solution being proposed were used, rather than parsing for Al, A2, ..., to

An twice, they would only be parsed for once. The parse path would not split
until it came time to decide whether we wanted to look for Z or not. In general,
every rule which has, following the arrow, some number of obligatory elements
followed by a parenthesized element will result in a savings. Thus, any such rule
can be parsed with more efficiently than the two rules 1% would be turned into if
parentheses were eliminated. Note that the additional cost here is quite small.
For each parenthesized element, (4) and (5) will each apply once. In the alterna-
tive solution, many rules might apply unnecessarily to the parse for the nodes
which came before the parenthesized node.

There is a class of grammars for which the solution proposed here will require a
bit more work than the solution where parentheses are simply eliminated from the
grammar. These are grammars that only have rules in which parenthesized items
come first and have no rules in which obligatory items precede optional ones. In
a grammar with both kinds of rules, the savings made far outweigh the amount of
extra work needed. Since the classes of grammars used in parsing systems
generally have both kinds of rules, my solution will result in a savings for
these. Note that a similar efficiency argument can be made for the curly bracket
case.

The above rules will handle all occurrences of parentheses and curly brackets
except for those in which the item immediately following the arrow in a phrase
structure rule is in parentheses or curly brackets. The algorithm could be
modified to handle these cases directly, however, this will not increase
efficiency. Items in curly brackets ox parentheses that immediately follow the
arrow in a phrase structure rule must be expanded immediately upon encountering
them. There is no savings in postponing this expansion until run time. Putting
off the choice of how to expand such a phrase structure rule will not allow paths
to be merged ‘together. Therefore, the best way to handle these is to expand all
such rules into rules that do not have this property.

Linguistically, the above is an interesting result. Linguists have claimed that
use of parentheses simplifies the grammar. Since simpler grammars are preferred
to more complex ones, a solution which collapses two rules to one by parentheses
is preferable to a solution that has two distinct rules. In parsing, we see that
in many instan¢es, the uyse of one rule with parentheses rather than two rules
without results in the parser operating more efficiently. It is able to merge
parse paths together which would have been distinct had several context-free rules
not been collapsed together as one, using the abbreviatory conventions. Thus, a
notational device which was originally proposed to simplify phrase structure rules
actually results in a more efficient parse in many cases. Therefore, at least for
some cases, we have additional evidence for the use of parentheses in phrase
structure rules.

AN IMPROVED LEFT-CORNER PARSING ALGORITHM 337

DEPTH OR BREADTH FIRST?

There has of yet been no discussion of the order in which the algorithm proceeds.
The statement of the algorithm is completely neutral in this respect. However, an
implementation must impose some control structure. When a parse is started, there
is one 3-tuple containing the information on stacks alpha, beta, and gamma. In
general, there are many different rules of the parsing algorithm that can be
applied after this point. In order to assure that all possible paths are pursued
to completion, it is necessary to proceed in a principled way.

One strategy is to push one state as far as it will go. That is, apply one of

the rules that are applicable, get a new state, and then apply one of the appli-
cable rules to that new state. This can continue until either no rules apply or a
parse is found. If no rules apply, it was a bad parse path. If a parse is found,
it is one of possibly many parses for the sentence. In either case, the algorithm
must continue on and pursue all other alternative paths. An easy way to do this
and assure that all alternatives are pursued is to backtrack to the last choice
point, pick another applicable rule, and continue in the manner described earlier.
By doing this until the parser has backed up through all possible choice points,
all parses of the sentence will be found. A parser that works in this manner is

a depth-first backtracking parser. This is probably the easiest control structure
to use for a left-corner parser.

Alternative control structures are possible. For instance, rather than pursuing
one path as far as possible, one could go down a parse path to some desired
distance, save that state for later, and come back up to the top and start some
other parse path. The original parse path could be pursued later from the point
at which it was stopped. The problem with such an approach is keeping track of
all the options.

In the algorithm being proposed here, the decision of whether the parse proceeds
in a depth-first or breadth-first manner is governed by a parameter which is
adjustable. Thus, the parser can proceed to a setable depth down each parse path
before going off and pursuing others. This mechanism works by saving the state
of the parser when it reaches the desired depth down a particular parse path.
Once all paths are pursued to this depth, the parser is called again with each of
the states that were saved.

To enable the parser to function as described above, the control structure for a
depth-first parser described earlier is used. To introduce the ability to proceed
in a breadth-first manner, the parser is only given a subset of the input string.
Then, the item MORE is inserted after the last item that is given to the parser.
If no other instructions apply and MORE is on top of stack beta, the parser must
begin to backtrack as described earlier. Additionally, the state -must be saved.
Once all backtracking is completed, more input is put on beta and parsing begins
again with each of the saved states.

By changing the amount of input that is given, the degree to which the parser pro-
ceeds either depth or breadth first can be controlled. If one word is given at a
time, the parser is completely breadth-first. If the entire sentence is given,

it is completely depth-first. Any other amount results in some combination of the
two.)

This mechanism enables the algorithm to easily incorporate a well-formed substring
table. A1l that needs to be done is compare the set of saved states and merge the
ones that have subgoals in common. By setting the parameter to different values,
the degree to which the well-formed substring table is used can be controlled.
This is particularly important in 1ight of Slocum's results which indicate that
the overhead involved in maintaining such a table can exceed the savings that it

338 K.M. ROSS

gives. By having the degree to which the table “s used be adjustable, the proper
setting can be determined, based on the grammar and the sorts of queries that are
asked most often.

Additionally, the algorithm can be used to process the sentence word by word as it
is typed in. When used as the parser in a natural language interface, this can
increase the speed of a parse since work can proceed as the user is typing and
composing his input.

Bibliography

[1] Chester, D., A parsing algorithm that extends phrases, American Journal of
Computational Linguistics, 6-2 (1980) 87-96. .

[2] Griffiths, T., On procedures for constructing structural descriptions for
three parsing algorithms, Communications of the ACM, 8 (1965) 594.

[3] Griffiths, T. and Petrick, S.R., On the relative 'efficiencies of context-free
grammar recognizers, Communications of the ACM, 8 (1965) 289-300.

[4] Ross, K., Parsing English phrase structure, Ph.D. Dissertation, Dept. of
Linguistics, Univ. of Mass. (Sept. 1981).

[5] Slocum, J., A practical comparison of parsing strategies, Proceedings of the
19th Annual Meeting of the ACL, (1981) 1-6.

[6] Younger, D., Recognition and parsing of context-free language in time n3,
Information and Control 10 (1967) 189-208.

