COLING 82, J. Horecky (ed.)
North-Holland Publishing Company
© Academia, 1982

A Parser Which Learns the Application Order
of Rewriting Rules

Makoto Nagao, Jun~ichi Nakamura

Department of Electrical Engineering
Kyoto University
Sakyo, Kyoto
Japan

0. Introduction

The efficiency of syntactic analy-
sis by using a set of rewriting rules
is greatly influenced by the order or
the arrangement of the rules for the
application. There are some trials
which subdivide the set of rules
subsets and specify the sequence of
rule applications, thus avoiding the
useless rule applications [1]. But the
subdivision of the rule set and the
specification of the sequence of rule
applications are not so easy for the
establishment of the most efficient a-
nalysis system.

We have developed a rewriting rule
system which can manipulate arbitrary
list of trees. The control mechanism of
this system can adjust the weight of
the rewriting rules, and can analyze
the most plausible sentential structure

f t, thus realizing the fast syntac-
t. analysis. The system learns (so to
558 } the weight of importance of the

reviiting rules during the analysis of;
input sentences.

1. Objectives of the Parser

We designed a new syntactic analy-

sis system (a parser) with the follow-
ing objectives.
(1) The function of rewriting rules

must be powerful enough to handle a
list of trees and to express trans-
formational rules.

All the possible sentential struc-
tures must be obtained for an input
sentence in the sequence that the
most plausible one is analyzed
first.

The analysis must be efficient e-
nough for practical applications.

(2)

(3)

(4) The syntactic parser must have a
learning mechanism as to the ap-
plication sequences of rewriting

into

253

rules to obtain the efficiency of
analysis.

2. Method of Analysis
The input data for this parser is

assumed as a word sequence which is the
output of a morphological analysis. The
output from this parser is a tree
structure. The analysis is controlled
by the best-first graph-searching
technique about the rule applications.

2.1, Description of Rewriting Rules

The rewriting rules transform a
list of trees into a list of trees. An
example of the rewriting rule in this
parser is shown in Fig. 1. It shows
that if there is a symbol sequence com-
posed of a tree not-Vierb), a tree
N {oun) P{hrase), a tree
C(ase-particle), and a tree
not-A{dverbial)~P(article) in this

order, this is transformed into a tree

NP-C.

X NP-C Y

<~~~ X NP C Y

NP C (not V) (not "AP)

Noun Phrase
Verb

NP:
Vi

C: Case-particle
AP: Adverbial-
Particle

Fig. 1 An example of the rewriting

rule
The right side of rewriting rules
is a matching pattern which is to be

found in the given input symbol string.

Table 1 shows the function symbols to
describe the matching patterns. By
using these function symbols, it |is
possible to specify the repetition of
pattern elements, to assign data to a
variable, and so on. It is also

254

possible to check the input data by
using usger-defined functions. These
functions enable us to describe complex
syntactic functions, semantic rela-
tions, and many heuristic checks.

Table 1 Function symbols of the
matching patterns

Function .

Match an arbitrary tree,
[3 Match any number of
arbitrary trees.
Evaluate function: fn
whose arguments are a
corresponding tree, al,
evse and an. When the
value is not NIL, matching
succeed.

From

{$F fn al ... an)

at xI ... xn]| Match any number of 1ists
of matching patterns xl
«.. Xn. Trees are assigned
to variable at.

Matching succeeds if all
xl, ..., xn are matched to
a tree,

Matching succeeds if one
of x1, ..., Xn 1s matched
to a tree.

Matching succeeds if x 1is
not matched to a tree.

($A x1 ... xn)

{30 x1 ... xn)

(3N x)

Table 2 Function symbols of the
creation patterns

Function

at it a s a variable, then
its value, otherwise at
itself,

The value of the function:
fn whose arquments are x1,

XnN.
The value of a2 generation
of x assigned to the
variable at.

Form

(*F fn x]1 .. xn)

cony

(*S at x)

The left side of rewriting rules
igs a creation pattern of new syntactic
structures. Table 2 shows the function
symbols for structure creation. User-
defined functions can also be used to
check certain relations in this crea-
tion pattern. We can generate an
arbitrary tree structure by this re-
writing rule system,

{(S)
NP-Ci NP-CJ NP-Ck VP
(NP-Ci)
NP-C3 NP-Ck VP

E;(NP-Ci NP-Cj BP-Ck VP
NP-C: Noun Phrase

+ Case-particle

VP: Verb Phrase

S: Sentence

(NP-Ci NP-Cj }
NP-Ck_yP

Fig. 2 An example of generating
three left sides from a right side

As shown in Fig. 2, we can specify
arbitrary numbers of structures in the
left side for the same right side in a
rewriting rule.

M. NAGAO and J. NAKAMURA

Each rewriting rule has a weight
{basic score) and a function
(fittedness function). The basic score
is a static weighting measure which re-
flects the importance of a rule com-
pared to the other rules of the same
category. The basic score is adjusted
by a learning process which will be ex-
plained in section 3. The ' fittedness
function gives a dynamic weighting
measure which expresses the fittedness
of the rule application to a sentential
structure. The function is a user~
defined one which can use the data in
both the right side and the left sides
of the réwriting rules.

The basic score and the fittedness
function are used for the sequence con-
trol of rule applications in the best-
first graph-searching, which is the es-
sential strategy to get the most
plausible structural analysis first.

2,2, Flow of Analysis

Fig. 3 shows an intermediate
structure in the course of a sentence
analysis.

{ Np-C VP TENSE)
Nl|> v
N

Dataset Wo Shiteisur U
(specify)

Fig. 3 The structure of a sentence
during the analysis (LOT)

This structure is represented by a
list of trees. We call this structure
as a LOT (List of Trees). An analysis
step is an application of a rewriting
rule to a LOT as shown in Fig. 4. which
changes the content of the LOT.

(N C V TENSE)
| NP <--- N
(NP C V TENSE)
WNP-C <=-=- NP C

N {
(NP-C V TENSE)

Nf c

N

Fig. 4 Progress of an analysis

PARSER LEARNING ORDER OF REWRITING RULES 255

To obtain the result of an analy-~
sis one by one in the order of
plausibility, we use the best-first
graph-searching technique. If we regard
a LOT as a node in a search graph, the
new LOT created by the application of a
rewriting rule to an old LOT is a sis~
ter node, When geveral rules are ap-
plicable to a LOT or the rule has
several left sides, the same number of
sister nodes are created from one moth-
er node. The progress of analysis can
be represented by an expansion tree (in

general, by a graph) as shown in Pig.
5.
(6 A A) LOT = node

r'd N ™ ... Application of

(A A) (A A) rewriting rule

A N\ ... = expansion

(A)

Fig. 5 Search tree

This tree can be regarded as a

search tree. We expand the node which
has the highest evaluation value (the
score assigned to the LOT) first. The
expansion 1is the application of a re-
writing rule to a LOT. The evaluation
value is obtained by the summation of
the following four values:

{1) the evaluation value of the mother

node.

(2 the basic score which is attached
to the applied rule,

(3) he wvalue obtained from the
tittedness function which | is

attached to the applied rule.

(4) the score of the sentential pattern
(SP: which will be explained in
gection 2.5), if it matches to the
LOT.

Analysis is executed by principle
of the Dbest-firgst graph-searching
technique as follows:

(1) Pind the LOT which has the highest
evaluation value. :

(2) Apply rewriting rules to the se-
lected LOT.

(3) If a rule is applicable, create new
nodes (LOTs).

(4) Assign the new evaluation values to
the new LOTs by the above method.
(The initial 1LOT value is the
summation of the scores attached to
words.)

{5) Go to (1l).

2.3, Application of Rewriting Rules.

The detail of the rule application
sequence to a LOT which is selected by
the best-first graph-searching
technique is the following order:

(1) Prom left elements of the LOT.

(2) From the rule which has the longest
right side.

(3) FProm the rule whose basic score is
the largest.

’ (A B C D) <---LOT
(1) (X Y 2)
(2 (x'Y') application
(3)y (Xx*) order of
(4) (X Y 2) rewriting
(5) (X' Y') rules
(6) (x")
(7) (x'y')
(8) (x")
9) (x") v

Fig. 6 An example of the application
order of rewriting rules

Fig. 6 shows a simple example of
the rule application when rewriting
rules have (X Y Z), (X Y), and (XW)
as their right side, and (X"), and the
selected LOT is (A BC D). First (A B
C) is matched with (X Y 2). If the
matching is not successful, (A B) is
matched with (X' Y'), If the matching
is not successful, (A) is matched with
(X"). If the matching is not successful
again, (B C D) is matched with (X Y 2Z),
and so on.

To speed up the rule applications,
matching patterns which are right sides
of rewriting rules are reconstructed in
a tree structure such as shown in Fiq.
7.

original reconstructed

rewriting rules rewriting rules

rl (A B C) A->B-~>C

2 (A B D) -—> L D

r3 (A E)

t4 (F G} F=>G

Fig. 7 Reconstruction of rewriting
rules

In FPig. 7, if the first element of the
LOT does not match with A, we do not
need to test the rules rl - r3. So the
rule r4 alone is tested for the ap~
plication. By this reconstruction, the

" number of rules which are to be applied

to a LOT is decreased grately.

256 M. NAGAO and J. NAKAMURA

2,4, Pruning Rule

This parser is essentially a
bottom-up parser, and there are cases
that unnecessary expansions are ex-
ecuted. ‘fo minimize such unnecessary
expansions, we introduced a mechanism
of pruning such unnecessary nodes by
certain pruning rules, ¥or enxample, in
the analysie of Japanese sentencar,
therz must be come verb phrases (VP) t»
the right of a noun phrase (NP}, so we
usa the pruning rule shown in Fig. 8.
It ratches with LOT, if LOT consists of
some trees, & tree N, NP or NP-C, and
trees which are not v, VY-DA of VP in
this order.

(# (30 (? N 3) (? NP §) (? NO~C #))
(%# NIL (3N (30 (? V &)
{(? V-DA §)
(z @ 1)))

(There mnust be V,
right of N, NP or NP-C,)

Fig. 8 An examnple of the pruning rule

The pruning rules are described by
matching pattarns just the same zs the
right side of rewriting rules. They are
matched with the whola LOT at the time
that a LOT is created. If a pruning
rule matches with the LOT, the node is
pruned.

2.5. Sentential Pattern
Sentential pattern (SP) exprosses

the global structure of a sentence.
Fig. 9 shows examples of 8P.

V-DA or VP in thel

(NP~Ck NP-Cm VPl TENSE NP V~-DA TENSE)
JSEUPDTE~program Ha Source-
program-library Wo Shuseisuru(modify)
Dataset-~utility Dearu(is).

(JSEUPDTE program is a Dataset
utility which modifies source program
libraries.)

Bach element of sentential pattern is a
grammatical category name, not a tree
structure. The elements of a sentential
pattern are compazed with the sequence
of grammaticzl category names in a
node., SP (1) rupresents that WP-CK
(JSEUPDTE-progrem- Ha) is related to VPl
{the first embedded wverb, Shuseisuru
{medify)). SP (2) represents that NP-Ck
is relateC to v-DA (main verb DA (is)).
The parier assigns 3P-score and
SP-rule to a sententlal ypattern. SP-
score iz z numboer such as shown in Fig.
¢. This zxpress2s the plaueibility of
the styles of sentences. iIn this exam-
ple. 8B (i) is assigned the numerical
viues -1, and 8P (2) is essigned the
:+ 4+, as the SP-scove., Thesa two
values mean that; when thz wmain verb is
V-4, the fizst NP-C hae tendency to
be related to the main verb rather than
to the firat embedéed verb. This 8P~
secore is added to the evaluation value
explzined in eection 2.2. Therefore, &~
nalysis (1) tekes precedence over anal-
ysis (2) in this case.

{ NP=C NP C VP
((Tule-1 2}
rule-2 1
1

1

TENSE } : Sp

¢ SP-~rulc
rule-3
rule-4

o~~~
~— o —

)

Fig. 10 An exawple of SP-rule

(L (5-0BJ1i NP V-DA TENSE } : -1
(2} (NP-Ck $-0BJ3} NP V~Da TENSE ; : +1
{a) Sentential patterns
(1« 5-0BJ1{ NP V-Dk TENSE)

NP-Ck HP-Cm VPl TENSE
(2) (NP-Ck S-0BJj HP V-DA TENSE)

NP-Cm VPL TEWSE
{b) Corresnonding LOTs
(NP-Ck WP-Cm VPl TENSE V~DA ~TENSE)

{¢) Original LOT

Fig. 9 Examples of Sentential Pattern
(sp) j

The top two lines are the LOTs
which are intermediate structures from
an input sentence:

#ig. 10 ghows an example of SP-
rule. The sentential pattern whose SP-
score is positive has at 1least one
corzect analysis. &And a sequence of
rule applicationc to the sentential
structure is guaranteed. 5P--rules rep-
resent this sequence. However, it Iis
not evident whether the sentential
pattern whose SP-score is negative has
correct analyses, because it has at
least one incorrect analysis. So we do
not attach any SP-rule to it.

SP-rule in Pig, 10 shows that we
can get a correct analysis, if we apply
rule~l - rule-4 to the LOT. Pig. 11
shows this process of rule applica-
tions. The sequential rule application
of these four rules is equivalent to a

PARSER LEARNING ORDER OF REWRITING RULES 257

rewriting rule shown in Pig. 12. But
the rewriting rules of the form shown
in Pig. 10 are much better because the
semantic check functions can be easily
introduced to the simpler rules such as
those in Pig. 10 rather than to such
complex rules as those in Fig. 12,

(NP-C NP C VP TENSE)
| ==== NP-C <~== NP C { rule-l)
(NP-C NP-C VP TENSE)}

(S-NUCL TENSE
| ===- §~0BJ <--- S-NUCL TENSE (rule-3)

(S-0BJ)
} ==== 8§ ¢=== S-0BJ { rule-4)
{ S }
Pig. 11 An example of the SP-rule

application

{ ===~ 8-NUCL <==-- NP-C NP-C VP { rule-2)

S
ns
S=NUCL TENSE
NP-C NP-C VP
NP C

Fig. 12 An example of the equivalent
rewriting rule

Each LOT is compared to sentential
patterns from the first element of the
1OT. The LOT is regarded as matched if
the £irst part of the LOT matches a
sentential pattern.

3. Supervised Learning of Basic Scores,
SP-gcores and SP-rules
]

To increase the efficiency of the
analysis, the parser controls basic
scores attached to rewriting rules,
SP~scores and SP-rules. It is not easy
for rule writers to assign scores to
rewriting rules and to sentential
patterns, and also to write SP-rules
for a sentential pattern. We tried to
adjust these scores and to get SP-rules
by the supervised learning in which the
user teaches the correctness of an a-
nalysis to the parser.

Fig. 13 shows an example of a
search graph when a sentence is ana-
lyzed. - Each node of the search graph
corresponds to a LOT. Each arc
corresponds to a rule application. We
can regard the LOTs on the path from
the root node to the successful node as
useful structures, and the rewriting

<= NP-C NP C VP TENSE

rules on the path as useful rules for
the future analysis of similar senten-
tial structure. On the other hand, oth~-
er LOTs and rewriting rules in the
search graph are regarded as useless to
the future usage. But the nodes and
arcs [i) in Pig. 13 are not the direct
reason of the failure. The direct cause
for the failure comes from the nodes
and arcs [ii] in Fig. 13,

SP (~) ¢
not expanded .,
P
-,
B /
Loy~

! SP (+) J

failed not expanded succeeded failed

RR: Rewriting Rule
SP: Sentential Pattern

Fig. 13 Relation between the state
of the expansion and
failure or success of the analysis

The parser changes the scores of

rewriting rules and SP-scores in the
following way:
(1) Increase the scores of the rewrit-

ing rules and SP-gcores on the path
from the root node to the success-
ful node, and those on the pathes
which flow into the successful
pathes.

(2) Decrease the scores of the rewrit-
ing rules and SP-scores on the
first arcs of the pathes which flow
out the successful pathes.

SP-rules are gathered for each
sentential pattern on the successful
pathes by using the information in the
search graph.

4. Result of Some Experiments

The sample sentences to be ana-
lyzed are taken from a computer manual

in Japanese. About 150 sentences are
used for the experiments. Conjunction
structures of noun phrases are

eliminated from these sentences. Among

258 M. NAGAO and J. NAKAMURA'

150 sentences, 20 sentences are used
for the supervised learning. These are
selected randomly. The rewriting rules
are created from the grammar ' proposed
by Okutsu [2]. The number of rewriting
rules is 54. The rewriting rules in
this experiment do not have the seman-
tic check functions for simplicity.
They are prepared to get the syntactic
structures for a sentence.

4.1. Experiment 1 - Learning of Basic
Scores of Rewriting Rules,

To see the efficiency improvement
of the analysis from the contribution
of basic scores, SP-scores and SP-rules
are not used. The initial order of the
rewriting rules is determined by random
numbers. The initial basic scores are
set the same value 1 for all rules. We
adjusted basic scores 4 times, every
time after 20 sentences for learning
are analyzed. We compared the CPU-times
of the 2nd, 3rd and 4th analyses to the
CPU-time of the last analysis. The re-
sult is shown in Table 3.

rules. The result of the experiment is
in Table 4.
Table 4 Effect of SP-scores and
SP-rules
the same SP not the same SP
number o
sentences 42 111
max., 26.06% 108.63%
average 19.23% 67.36%
min, 1.03% 9.46%

(The values are the ratio of thd

analysis time with SP-scores and SP
rules to the analysis time without
them.)

Table 3 Effect of basic scores

2nd/1st 3rd/lst 4th/lst

max. | 99.37% 102,10% 108,78%
averaged 94.62% 96,758 96.47%
min, | 87.69% 87.88% 89.49%

(The values are the ratio of the
ICPU-time per word.)

Table 3 tells us that the basic scores
of rewriting rules are not 3¢ useful
for the improvement of the efficiency
of analysis. The learned order of re-
writing rules does not have a signifi-
cant tendency. The reason is that the
" structure of natural languages is re-
cursive and the relative order of rules
are more important to the analysis than
the over-all ordering, so that the ba-
sic scores cannot express the relative
order.

4.2. Experiment 2 - The Bffect of
SP-scores and SP-rules

The learning of the SP-scores and
SP-rules are done by analyzing the set
of sample sentences once (26 scntences
selected among 153 gentences randemly).
Then the analysis of the set of sample
sentences (153 sentonces) is done with
and without using SP-scoresz ond S@-

About 200 sentential patterns are
extracted from the 20 sample Sentences
for learning. SP-rules are very useful
for the sentences which have the same
sentential patterns, because the re-
writing rules and their application
sequence in the analysis of the senten-
tial pattern can be obtained from SP-
rules which are defined from the past
analysis, and no more trial search is
necessary. 27.58 of sample Ssentences
have the same sentential patterns as
the sentences for learning. This means
that some documents like a computer
manual contain very similar sentences.
Sentential patterns and SP-rules are
useful for the analysis of such docu~-
ments.,

5, Conclugion

The experiments to examine the
effect of learning are performed. The
regults of the experiment showz that
SP-rules are very useful. This weans
zhat this pacser can learn the style of
the sentences and can increase the ef-
ficieney of analysis when the senten-
tial structures of the texts in the
particular £leld are restricted,

This parser is implemented by LISP
on FACOM M=200 in Computer Center of
Kyoto University.

References

[1] Boitet, C., Automatic Prodvction of
CF and CS-analyzors using A Genmeral
Tree-Transducon, niversite
sclentifique ex medicala de
Grenoble, 1%79.

[Z] Okutsu, K., Seicel Wippenso Bunpo-
ron, Talsh lan-shoten, 1974.

