
COLING 82, J. Horeck) (¢d,)
North-Holland Publishing Company
© Academia, 1982

A Parser Which Learns the Application Order
of Rewriting Rules

Makoto Nagao, Jun-ichi Nakamura

Department of Electrical Engineering
Kyoto University

Sakyo, Kyoto
Japan

0. Introduction

The efficiency of syntactic analy-
sis by using a set of rewriting rules
is greatly influenced by the order or
the arrangement of the rules for the
application. There are some trials
which subdivide the set of rules into
subsets and specify the sequence of
rule applications, thus avoiding the
useless rule applicagions [i]. But the
subdivision of the rule set and the
specification of the sequence of rule
applications are not so easy for the
establishment of the most efficient a-
nalysis system.

We have developed a rewriting rule
system which can manipulate arbitrary
list of trees. The control mechanism of
this system can adjust the weight of
the rewriting rules, and can analyze
the most plausible sentential structure
f t, thus realizing the fast syntac-
t analysis. The system learns (so to
s[) the weight of importance of the
reutiting rules during the analysis of~
input sentences.

I. Objectives of the Parser

We designed a new syntactic analy-
sis system (a parser) with the follow-
ing objectives.

(i) The function of rewriting rules
must be powerful enough to handle a
list of trees and to express trans-
formational rules,

(2) All the possible sentential struc-
tures must be obtained for an input
sentence in the sequence that the
most plausible one is analyzed
first.

(3) The analysis must be efficient e-
nough for practical applications.

(4) The syntactic parser must have a
learning mechanism as to the ap-
plication sequences of rewriting

rules to obtain the efficiency of
analysis.

2. Method of Analysis

The input data for this parser is
assumed as a word sequence which is the
output of a morphological analysis. The
output from this parser is a tree
structure. The analysis is controlled
by the best-first graph-searching
technique about the rule applications.

2.1. Description of Rewriting Rules

The rewriting rules transform a
list of trees into a list of trees. An
example of the rewriting rule in this
parser is shown in Fig. 1. It shows
that if there is a symbol sequence com-
posed of a tree not-V(erb), a tree
N(oun) P(hrase), a tree
C(ase-particle), and a tree
not-A(dverbial)-P(article) in this
order, this is transformed into a tree
NP-C.

NP-C Y

/~ ~--- X NP C Y
NP C (not V) (not AP)

NP: Noun Phrase C:Case-particle
V: Verb AP: Adverbial-

Particle

Fig. 1 An example of the rewriting
rule

The right side of rewriting rules
is a matching pattern which is to be
found in the given input symbol string.
Table 1 shows the function symbols to
describe the matching patterns. By
using these function symbols, it is
possible to specify the repetition of
pattern elements, to assign data to a
variable, and so on. Tt is also

253

254 M. NAGAO and .L NAKAMURA

possible to check the input d a t a b y
using user-defined functions. These
functions enable us to describe complex
syntactic functions, semantic rela-
tions, and many heuristic checks.

From
?

(%F fn a l . . . an

(%# at xl . , . xn

Table I Function symbols of the
matching patterns

I Function
Match an arbitrary tree•
Hatch any number of
arbitrary trees.

an) Evaluate function= fn
whose arguments are a
Corresponding tree, al,
•.., and an. When the
Value is not NIL, matching
s u c c e e d .

x n) Match a n y number o4 lists
of matching patterns xl
• .. xn. Trees are assigned
to variable at.

(%A xl ... x n) Matching succeeds if all
xl, ..., x n are matched to
a tree.

(%O xl ... xn] Matching succeeds if one

(%N x)

of xl, .•., xn is matched
to a tree.
Matching succeeds if x is
not matched to a tree.

Table 2 Function symbols of the
creation patterns

Form Function
at If at is a variable, then

its value, otherwise at
itsel~o

(* F fn x l . . x n) The v a l u e Of the f u n c t i o n :
fn whose arguments are xl,
• - - t x n .

(*S at x) The value of a generation
Of x assigned to the
variable a t °

The left side of rewriting rules
is a creation pattern of new syntactic

structures. Table 2 shows the function
symbols for structure creation. U s e r -
defined functions can also be used to
check certain relations in this crea-
tion pattern. We can generate an
arbitrary tree structure by this re-
writing rule system.

NP-Ct NP.-CJ NP-Ck VF

. F - c i ~ --~c s P - c i NF-CJ NF-Ck VE

NP-C~ NP-Ck VP NP-C: Noun Phrase
+ Case-partlcle

NP-Ct MP-C~ ~ } VP: Verb Phrase
S: Sentence

NP-Ck VP

Fig. 2 A n example of generating
three left sides from a right side

As shown in Fig. 2, we can specify
arbitrary numbers of structures in the
left side for the same right side in a
rewriting rule.

Each rewriting rule has a weight
{basic score) and a function
(fittedness function). The basic score
is a static weighting measure which ~e-
flects the importance of a rule co~-
pared to the other ruleG of the same
category. The basic score is adjusted
by a learning process which will be ex-
plained in section 3. The 'fittedness
function gives a dynamic weighting
measure which expresses the fittedness
of the rule application to a sentential
structure. The function is a user-
defined one which can use the data in
both the right side and the left sides
of the rewriting rules.

The basic score and the fittedness

function are used for the sequence con-
trol of rule applications in the best-
first graph-searching, which is the es-
sential strategy to get the most
plausible structural analysis first.

2.2. Flow of Analysis

Fig. 3 shows a n intermediate
structure in the cOurse of a sentence

analysis.

(NP-C

D a t i s e t

vP TENSE)
I
V

Sh te sur U
(specify)

Fig. 3 The structure of a sentence

during the analysis {LOT)

This structure is represented by a
list of trees. We call this structure
as a LOT {List of Trees). An analysis
step is an application of a rewriting
rule to a LOT as shown in Fig. 4. which
changes the content of the LOT.

(~ c

{ NP C

I
N

(NF-C

NF C

I
N

v TENSE)
NP <--- N

V TENSE)
~N~-C <--- NF C

V TENSE }

Fig. 4 Progress of an analysis

PARSER LEARNING ORDER OF REWRITING RULES 255

To obtain the result of an analy-
sis one by one in the order of
plausibility, we use the best-first
graph-searchlng technique. If we regard
a LOT as a node in a search graph, the
new LOT created by the application of a
rewriting rule to an old LOT is a sis-
tee node. When several rules are ap-
plicable to a LOT or the rule has
several left sides, the same number of
sister nodes are created from one moth-
er node. The progress of analysis can
be represented by an expansion tree (in
general, by a graph) as shown in Fig.
5.

I

(A ZI /%) LOT - node
/ ~ ~- ... Application of

(A /k) (Zi A) rewriting rule
/ ~ \ ... / "%'~... = expans£on

(~)

F i g . 5 Search tree

This tree can be regarded as a
search tree. We expand the node which
has the highest evaluation value (the
score assigned to the LOT} first. The
expansion is the application of a re-
writing rule to a LOT. The evaluation
value is obtained by the summation of
the following four values:
(1) the evaluation value of the mother

node.
(2 the basic score which is attached

to the applied rule.
(3) he value obtained from the

t ittedness function which ~ is
attached to the applied rule.

(4) the score of the sentential pattern
(SP. which will be explained in
section 2.5), if it matches to the
LOT.

Analysis is executed by principle
of the best-first gr aph-sear'ching
technique as follows=
(i) Find the LOT which has the highest

evaluation value.
(2) Apply rewriting rules to the se-

lected LOT.
(3) If a rule is applicable, create new

nodes (LOTs).
(4) Assign the new evaluation values to

the new LOTs by the above method.
(The initial LOT value is the
summation of the scores attached to
words .)

(5) Go to (1).

2.3. Application of Rewriting Rules.

The detail of the rule application
sequence to a LOT which is selected by
the best-first graph-searching
technique is the following order=
(1) From left elements of the LOT.
{2) FrOm the rule which has the longest

right side.
(3) From the rule whose basic score is

the largest.

(A B
{I} (X ~ Z }
(2) (X' Y')
(3) (x-)
(4) (x Y z)
{5) (X' Y')
(6) (X")
(7) (X' Y')
(8) (X")
(9) (x -)

C D) <---LOT

a p p l i c a t i o n
o r d e r o f
r e w r i t i n g

rules

Fig. 6 An example of the application
order of rewriting rules

Fig. 6 shows a simple example of
the rule application when rewriting
rules have (x Y Z), (X Y), and (X")
as their right side, and (X"), and the
selected LOT is {A B C D). First (A B
C) is matched with (X Y Z). If the
matching is not successful, (A B) is
matched with {X w yW). Tf the matching
is not successful, {A) is matched with
(X"). If the matching is not successful
again, {B C D) is matched with (X Y Z),
and so on.

To speed up the rule applications,
matching patterns which are right sides
of rewriting rules are reconstructed in
a tree structure such as shown in Fig.
7.

original reconstructed
rewriting rules rewriting rules
rl (A B C) A->B ->C

r2 (A B D)--> I ~ D
r3 (A E)
r4 (F G) F ->G

Fig. 7 Reconstruction of rewriting
rules

In Fig. 7, if the first element of the
LOT does not match with A, we do not
need to test the rules rl - r3. So the
rule r4 alone is tested for the ap-
plication. By this reconstruction, the

number of rules which are to be applied
to a LOT is decreased qrately.

256 M. NAGAO and J. NAKAMURA

2.4. Pruning Rule

This parser is essentially a
bottom-up parser, and there are cases
that unnecessary expansions are ex-
ecuted. To minimize such unnecessery
expansions, we introduced a mechanism
of pruning such unnecessary nodes by
certain pruning ~ules. For example, in
the analysis of Japanese svntenc~
there must be ~ome verb phrase= (%~) to
the right of a noun phrase (ME}, so %~e
use the pruning rule shown in Fig. 8.
It ~,atches with LOT, if LOT consists of
sc~e trees, a tree N, NP or NP-C~ and
trees which are not V, V-DA or VP in
this order.

(# (%0 (? N #) (? NP #) (? N~-C ~))
(%# NIL (%N (%0 (? V #)

(? V-DA #)
(? ~ #)))))

(There must be V, ~.DA or VP in ~h~
~igh~: of N, NP or NP-Co)

?igo 8 An example of the pruning ru!e

The p~un!ng rules are described by
matching patterns just the same as the
right side of re~rit!ng rules° They are
matched with the whole LOT at the time
that a LOT is created. If a pruning
rule matches with the LOT, the node is
pruned.

2.5. Sententlal Pattern

sententlal pattern (SP} expresses
the global structure of a sentence.
Fig. 9 shows examples of SPo

(I) (S-OBJi NP V-DA TENSE) : -i
(2) (NP-Ck S-OBJj NP V-DA TENSE) : +1

(a) Sentential patterns

(i) (S-OBJi MP V-DA TENSE)

NP-Ck NP-Cm VEI TENSE
(2) (NP-Ck S-OB ._Jj NP V-DA TENSE)

NP-Cm VPI TENSE

(b) Corresponding LOTs

(NE-Ck T~P-Cm VPI TENSE V.-DA "TENSE)

(c) Original LOT

Fig. 9 Examples of Sententlal PatternE
(sp)

The top two lines are the LOTs
which are intermediate structures from
an input sentence:

(NP-Ck NP-Cm VPI T~SE NP V-DA TENSE)
JSEUPDTE-pEogram Ha Source-
program-llbrary Wo Shuselsuru(modify)
Dataset-utillty Dears(Is).
(JSEUPDTE program is a Dataset
utility which modifies source program
libraries.)

Each element of sentential pattern is a
grm~matlcal category name, not a tree
structure. The elements of a sentential
pattern are compared with the sequence
of grammatical category names in a
node. SP (1) ~p~esents that NP-Ck
(JSEUPDTE-progr~,I-H~) is related to VP1
(the first embedded verb, Shuselsuru
(mcdify)}. SP (2) represents that NP-Ck
Is related to V-DA (main verb DA (is))o

The ~a,:,~er assigns ~P-sco~s and
SP-rule to a sentential Fattern. SP-
score is a number such as shown in Fig.
~. ~his $~presses the plausibility of
the styl~s of sentences° in this exmn-
p).C: SP (i) is assigned the numerical
v£~ue: -I~ and SP (2) is essggned the
value: +!~ as the SP-sco~:eo These t~o
vaiue~ mean that~ when th~ main verb is
V-~A, th~ first NP-C ha£ tendency to
be related to the main verb rather than
to the first embedded verb. This SP-
score is added to the evaluation value
explained in section 2.2. Therefore~ a-
nalysis (1) takes precedence over anal-,
sis (2) in hhis case.

(NP-C ~ C VP TENSE) : SP
((rule-i 2)

' rule--2 1) : SP-rule
(rule-3 i)
(ru!e-4 !))

Fig. i0 An exmaple of SP-rule

~!'Igo i0 shows an example of SP-
ruleo The sentential pattern whose SP-
score is positive has at least one
correct analysls. And a sequence of
rule appllcatlon~ to the sententlal
structure is guaranteed. S~-rules rep-
resent this sequence. However, it is
not evident whether the sententlal
pattern whose SP-score is negative has
correct analyses, because it has at
least one incorrect analysis. So we do
not attach any SP-rule to it.

SP-rule in Fig. I0 shows that we
can get a correct analysis, if we apply
rule-i - rule-4 to t h e LOT. Fig. 11
shows this process of rule applica-
tions. The sequential rule application
of these four rules Is equivalent to a

PARSER LEARNING ORDER OF REWRITING RULES 257

rewriting rule shown in Fig. 12. But
the rewriting rules Of the form shown
in Fig. 10 are much better because the
semantic check functions can be easily
introduced to the simpler rules such as
those in Fig. i0 rather than to such
complex rules as those in Fig. 12.

NP-C NP C VP TENSE)
I NP-C <--- NP C (rule-I)

NP-C NP-C VP TENSE }
| S-NUCL <--- NP-C NP-C VP (rule-2

S-NUCL TENSE)
| S-OBJ <--- S-NUCL TENSE (rule-3 }

S-OBJ)
.... S <--- S-OBJ (rule-4)

S }

Pig. 11 An example of the SP-rule
application

S

i
S-OBJ

<- NP-C NP C VP TENSE
S-NUCL TENSE

~ NI~.C VP

A
NP C

Fig. 12 An example of the equivalent
rewriting rule

Each LOT is compared to sentential
patterns from the first element of the
LOT. The LOT is regarded as matched if
the first part of the LOT matches a The parser changes the scores of
sentential pattern, rewriting rules and SP-scores in the

following way~
3. Supervised Learning of Basic Scores, (i) Increase the scores of the rewrit-

SP-scores and SP-rules ing rules and SP-scores on the path
I from the root node to the success-

To increase the efficiency of the ful node, and those on the pathes
analysis, the parser controls basic which flow into the successful
scores attached to rewriting rules, pathes.
SP-scores and SP-rules. It is not easy (2) Decrease the scores of the rewrit-
for rule writers to assign scores to ing rules and SP-scores on the
rewriting rules and to sentential first arcs of the pathes which flow
patterns, and also to write SP-rules out the successful pathes.
for a sentential pattern. We tried to SP-rules are gathered for each
adjust these scores and to get SP-rules sentential pattern on the successful
by the supervised learning in which the pathes by using the information in the
user teaches the correctness of an a- search graph.
nalysis to the parser.

Fig. 13 shows an example of a 4. Result of Seme Experiments
search graph when a sentence is ana-
lyzed. Each node of the search graph The sample sentences to be and-

corresponds to a LOT. Each arc lyzed are taken fro~ a computer manual
corresponds to a rule application. We in Japanese. About 150 sentences are
can regard the LOTs on the path from used for the experiments. Conjunction
the root node to the successful node as structures of noun phrases are
useful structures, and the rewriting eliminated from these sentences. Among

rules on the path as useful rules for
the future analysis of similar senten-
tial structure. On the other hand, oth-
er LOTs and rewriting rules in the
search graph are regarded as useless to
the future us~e; But ~e nodes and
arcs [i] in Fig. 13 are not the direct
reason of the failure. The direct cause
for the failure comes from the nodes
and ~cs [ii] in Pig. 13.

act e ~ d ~ s 1 / / ii/
. - '~-- : / . /~

failed ~ t ~d~ s ~ failed

~ z ~iting Rule
SP: Sententlal Pattern

Fig. 13 Relation ~t~en the state
of the expa~ion and

failure or success of the analysis

258 M. NAGAO and J. NAKAM~ltA

150 sentences, 20 sentences are used
for the supervised learning. These are
selected ran&:mly. The rewrfting rules
a r e c r e a t e d f r o m t h e g r a l m a r p r o p o s e d
by Okutsu [2]. The number of rewriting
rules is 54. The re~rlting rules in
this experiment do not have the seman-
tic check functions for s~pllclty.
They are prepared to get the syntactic
structures for a sentence.

4.1. Experiment I - Learning of Basic
Scores of Rewriting Rules.

To s e e t h e e f f i c i e n c y i m p r o v e m e n t
o f t h e a n a l y s i s f r o m t h e c o n t r i b u t i o n
o£ basic scores, SP-scOres a n d SP-rules
are not used. The initial order o f the
rewriting rules is determined by random
numbers. The initial basic scores are
set the same value I for all rules. We
adjusted basic scores 4 times, every
time after 20 sentences for learning
are analysed. We c o r p a r e d the CPU-tlmes
of the 2nd, 3rd and 4th analyses to the
CPU-tlme of the let analysis. The re-
sult i s shown in Table 3 .

Table 3 Effect o f basic scores

12nd/let 3rd/Ist 4th/Ist
max. | 9 9 . 3 7 ~ 102.10% 108.78%

a v e r a q ~ 94.62% 96,75~ 96.47%
mln.| 87.69% 87°88% 89.49%

(The values are the ratio o£ th(
2 P O - t i m e p e r word.)

Table 3 tells u s that the basic scores
of rewriting rule~ are not ~o useful
for the improvement of the efficiency
o£ analysis. The learned order o£ r e -
writing rules does not have a slgnlf~-
cant tendency. The reason Is that the
structure of natural languages is re-
cursive and the relative order of rules
are more important to the anslysls than
the over-all ordering, so that the ba-
sic scores cannot express the relative
order.

4.2. Experiment 2 - The Effec~ of
SP-sonres and SP-rules

The learning of the SP~scores and
SP-rules are done by enalys~ng the se~
of sample sentences once (20 Sentences
selected amon 9 153 sentences r~n~ly}.
Then the analysis of the set o~ 3~mpAe
sentences (153 sentences) is d~e wit/~
and without using SP-soo~e~ ~ S~-

r u l e s . The r e s u l t o f t h e e x p e r i m e n t i s
i n T a b l e 4 .

Table 4 Effect of SP-scores and
SP-rulee

oYhe same SP not the same SP
nu~Lber
sentences~ 42 111

max. | 26.06~ 108.63%
average [19.23t 67.36%

min. | 1.03% 9.46%

(The values are the ratio of th~
analysis time with SP-scoree and S~
rules to the analysis time withoul
t h e m .)

About 200 sententlal patterns are
extracted frc, n the 20 sample sentences
for learning. SP-zules are very useful
for the sentences which have the same
sententlal patterns, because the ze-
writing rules and their application
sequence in the analysis of the senten-
tlal pattern can be obtained from SP-
rules which are defined from the past
analysis, and no more trial search is
necessary. 27.5% o£ sample sentences
have the same ssntentlal patterns as
the sentences foe learning. T h i s n~ans
that s(~e documents l~ke a computer
manual contain v e r y similar se~ences.
Sententlal patterns and SP-rules a r e
useful £or the analysis o£ such docu-
ments.

5. Conclusion

The experiments to examine the
effect of lea~nlng are performed. The
results of ~he experiment shows that
SP-rules a~ very useful. Th~s ~eans
that ~hls p~Eser can learn the s~yle of
the sentences an~ can increase the ef-
£1c~ncy of &nalyels when the senten-
tlal structures o£ the texts in the
partlcular field a r e ~ e s t r i c t e d .

This parser is implemente~ ~ LZSP
on ~ACOM M-2O0 in Com~uter Cen~eE o£
Kyoto University.

Reference~

[I] Boltet, C., Aut~tlc ~rc~uct~n of
CF an~ CS-a~ly~ using. A General

s c l e n ~ I f l q u e ~u ~ I ~ d e
Gr~ ;~eb le , I%79o

[2~ Okut~u, ~. ~ Sei~el ~Ipp~o ~un~o-

