A MATHEMATICAL MODEL OF THE VOCABULARY-TEXT RELATION Juhan Tuldava

Tartu, Estonia, USSR

A new method for calculating vocabulary size as a function of text length is discussed. The vocabulary growth is treated as a probabilistic process governed by the principle of "the restriction of variety" of lexics. Proceeding from the basic model of the vocabulary-text relation а formula with good descriptive power is constructed. The statistical fit and the possibilities of extrapolation beyond the limits of observable data are illustrated on the material of several languages belonging to different typological groups.

1. There are a great number of attempts to construct an appropriate mathematical model which would express the dependence of the size of the size of vocabulary (V) on the size of text (N). This is not only of practical importance for the resolution of a series of problems in the automatic processing of texts, but it is also connected with the theoretical explanation of some important aspects of text generation. In practice one often makes use of various empirical formulae which describe the growth of vocabulary with sufficient precision in the case of concrete texts and languages¹, though such formulae do not have any general significance. Of special interest are some "complex" models derived from theoretical considerations, e.g., by basing one's considerations on the hypothesis about the lognormal distribution of words in a text (Carroll)² or

by deducing the relation between V and N from some other important quantitative characteristics of text such as Zipf's law and Yule's distribution (Kalinin, Orlov)³. The author underlines the importance of these conceptions for the theory of quantitative linguistics on the whole, but points out their insufficiency in solving some practical linguo-statistical problems where greater exactness and reliability are needed (stylo-statistical analysis, text attribution, extrapolation beyond the limits of observable data, etc.).

2. Instead of the "complex" models a "direct" method is proposed where the relation between V and N is regarded as the primary component with its own immanent properties in the statistical organization of text. The relation between V and N has to be analyzed on the background of some essential inner factors of text genera-The dynamics of vocabulary tion. growth is considered as the result of the interaction of several linguistic and extra-linguistic factors which in an integral way are governed by the principle of "the restriction of variety" of lexics (an analogue of the principle of the decrease of entropy in self-regulating systems). The concept of the variety of lexics is defined as the relation between the size of vocabulary and the size of text in the form of V/N (type-token ratio, or coefficient of variety) or N/V (average frequency of word occurrences).

The coefficient of variety is supposed to be correlated with the probabilistic process of choosing "new" (unused) and "old" (already used in the text) words at each stage of text generation. The steady decrease of the degree of variety V/N = p is attended by the increase of its counterpart: (N - V)/N = 1 - V/N = q (p + q = 1), which can be interpreted as the "pressure of recurrency" of words in real texts (analogous to the concept of redundancy in the theory of information):

3. The formulae of the relation between V and N are constructed from the basic models: V = Np or V = N(1 - q). For this purpose the quantitative changes of V/N = p depending on the size of text are analyzed. According to the initial hypothesis the relation between V/N and N is approximated by the power function of the type: $V/N = aN^B$ (a and B are constants; B < 0), which leads to the well-known formula of G. Herdan⁴: $V = aN^b$ (where b = B + 1). A verification shows good agreement with empirical data in the initial stages

of text formation (in the limits of about 4,000 - 5,000 tokens which correspond to a short communication). Later on the rate of the diminishing of the degree of variety (V/N) gradually slows down (due to the rise of new themes in the course of text generation). Accordingly the initial formula has to be modified and this can be done by logarithmization of the variables. The first attempt gives us $\ln(V/N) = aN^B$, which leads to some variants of the Weibull distribution. This kind of distribution shows good agreement with the empirical data within the boundaries of a text of medium length, but it is not good for extrapolation. Only after balancing the initial formula by the logarithmization of both variables we obtain $\ln (V/N) = a(\ln N)^B$ and the corresponding formula for expressing the relation between V and N:

$$V = Ne^{-a(\ln N)^{D}}$$

 $V = N^{1} - a(\ln N)^{b}$ (where b = or $= B - 1)^{2}$, which turns out to be the most adequate formula for solving our problems. The constants a and В (which, of course, are not identical with those of the previously mentioned formulae) may be determined on the basis of linearization: lnln(N/V) = $= A + B \ln \ln N$, where $A = \ln a$, using the method of least squares. In principle it would be sufficient to have two empirical points for the calculation of the values of the constants but for greater reliability more points are needed.

4. The good descriptive power of the given function and the possibili-

ties of extrapolation in both directions (from the beginning up to a text of about $N = 10^7$) has been verified on the basis of experimental material taken from several languages belonging to different typological groups (Estonian, Kazakh, Latvian, Russian, Polish, Czech, Rumanian, English). The function may be applied to the analysis of individual texts as well as composite homogeneous (similar) texts and the size of vocabulary (V) may be determined by counting either word forms of lexemes. (See Tables 1 and 2.) This seems to corroborate the assumption about the existence of a universal law (presumably of phylogenetic origin) which governs the process of text formation on the quantitative level.

Table 1 The empirical size (V) and the teoretical size (V') of vocabulary plotted against the length of the text (N). The formula:

$$V' = Ne^{-a(\ln N)^B}$$

a) Latvian	newspapers	(lexemes) ⁶	
N	v	V	
50000	7065	7025	
100000 200000	9834 13389	9 919 13510	
3 0 0000	1 6103	15912	
106		24000	
107	-	37000	
(a = 0.003736, B = 2.6304)			

b) Czech texts of technical sciences (word forms)⁷

N	v	. V'	
25000	4829	4827	
7 500 0	9603	9626	
125000	13056	13050	
175000	15858	15853	
10 ⁶		40000	
107	-	114000	
(a = 0.01123, B = 2.1539)			

c)	Kazakh	newspapers	(word forms) ⁸
	N	v	V
	25 00 0 50000	9088 15047	9161 14875
	100000 150 0 00	23895 29785	23523 30378
	10 ⁶		87000
	107	-	230000
(a = 0.001372, B = 2.8488)			

d) Polish belles-lettres (word forms)⁹

N	v	v"
12172 29787 48255	3434 6146 8026	3458 6044 7998
64510	9250	9398
10 ⁶	-	330 00
107		60000
(a = 0.00)	364, B = 2.	6081)

e)	English	texts on	electronics
-,	(word f	orms) ¹⁰	

N	V	٧,	
50000 100000 150000	5399 7853 9361 10582	5437 7728 9371 10682	
200000	10502		
10 ⁶	-	20000	
107	•••	3 8000	
(a = 0.009152, B = 2.3057)			

f) Rumanian texts on electronics (word forms)¹¹

• • • • •	-	
N	v	v'
50000	6785	6841
100000	10281	10070
150000	12477	12479
2 0 0000	14292	14454
106	-	30000
107	-	68000
(a = 0.00)	8148, B = 2	2.3086)

g) Russian texts on electronics (word forms)¹²

.

N	v	v
50000 100000 150000 200000	9464 14062 17263 21468	9388 14168 17803 20818
106	-	45000
107		94000
(a = 0.004)	+284, B = 2.5	5058)

Tab	le	2
-----	----	---

Prediction on the basis of two empirical points (marked with an asterisk)

a) English: (word for	me)			issian: A. Spades"	S. Pushkin (lexemes) ¹⁹	's "Queen 5
N	V	v		N	v	v
10051 101566	3009 [¥] 13706 [≆]	3009 13709		1000 2000	462 [#] 787 [#]	462 787
	Predi	.ction:		2000		
10	-	9 78			Predic	tion:
100 1000 2000 50721 253538 1014232	- 700-1000 8749 23655 50406	78 534 917 8905 23447 49280		3000 4000 5000 6000 6861	1067 1348 1541 1752 1928	1068 1321 1556 1776 1957
107	-	140000	(the	whole boo	ok)	
(a = 0.00	7879, B = 2.	2652)	(a	= 0.01699	9, B = 1.974	7)
b) Estonian "Truth a	: A. H. Tam nd Justice"	nsaare's nov I (lexeme	vel s) ¹⁴			
N	v	ν.				
10000 20000	2114 [#] 3124 [#]	2114 3124				
	Pred	iction:				
114124 (the whole (a = 0.00	7348 book) 6714, B = 2	7207 •4521)				

References

1. Kuraszkiewicz, W., Statystyczne badanie słownictwa polskich tekstów XVI wieku. In: Z Polskich Studiów Slawistycznych. Warszawa 1958.

Guiraud, P., Problèmes et méthodes de la statistique linguistique. Dordrecht 1959.

Somers, H. H., Analyse mathématique de langage. Louvain 1959.

Miller, W., Wortschatzumfang und Textlänge. In: Muttersprache, 81. Jg., Nr. 4. Mannheim-Zürich 1971.

Nešitoj V. V., Dlina teksta i ob'em slovarja. In: Metody izučenija leksiki. Minsk 1975.

2. Carroll, J. B., On Sampling From a Lognormal Model of Frequency Distribution. In: Computational Analysis of Present-Day American English. Providence, R. I., 1967.

3. Kalinin, V. M., Nekotorye statističeskie zakony matematičeskoj lingvistiki. In: Problemy kibernetiki, ll, 1964.

Orlov, Yu. K., Obobšćennyj zakon Zipfa-Mandelbrota i častotnye struktury informacionnykh edinic različnykh urovnej. In: Vyčislitelnaja lingvistika. Moscow 1976.

4. Herdan, G., Quantitative Linguistics. London 1964.

5. Tuldava, J., Quantitative Relations between the Size of Text and the Size of Vocabulary. In: Journal of Linguistic Calculus. SMIL Quarterly 1977:4.

6. Latviešu valodas biežuma vārdnīca. II:1. Ed. T. Jakubaite. Riga 1969. 7. Bečka, J. V., La structure lexicale des textes téchniques en tchèque. In: Philologica Pragensia, 1972, vol. 15, No. 1.

8. Akhabayev, A., Statističeskij analiz leksiko-morfologičeskoj struktury jazyka kazakhskoj publicistiki. Alma-Ata 1971.

9. Sambor, J., Analiza stosunku "typetoken", czyli objętości (W) i długości tekstu (N). In: Prace filologiczne. Tom XX. Warszawa 1970.

10. Alekseev, P. M., Leksičeskaja i morfologičeskaja statistika anglijskogo pod'jazyka elektroniki. In: Statistika reči. Leningrad 1968.

11. Ežan, L. J., Opyt statističeskogo opisanija naučno-tekhničeskogo stilja rumynskogo jazyka. Leningrad 1966.

12. Kalinina, E. A., Častotnyj slovar' russkogo pod'jazyka elektroniki. In: Statistika reči. Leningrad 1968.

13. Kučera H., and Francis, W. N.
(ed.), Computational Analysis of Present-Day American English. Providence, R. I. 1967.

14. Villup, A., A. H. Tammsaare romaani "Tõde ja Õigus" I köite autori- ja tegelaskõne sagedussõnastik. In: Acta et Commentationes Universitatis Tartuensis. Vol. 446. Tartu 1978.

15. Orlov, Yu. K., Model' častotnoj struktury leksiki. In: Issledovanija v oblasti vyčislitel'noj lingvistiki i lingvostatistiki. Moscow 1978.