
INTEGRATED INFORMATION MANIPULATION SYSTEMS (I M S) - -

A COGNITIVE VIEW

Gerhard Fischer
Man-Machine Communication Research Group

Institut fuer Informatik
Universitaet Stuttgart
Stuttgart, W-Germany

Abstract

The personal computer of the future will offer
its owner an information manipulatio, 9~stem
(IMS). It will be a totally integrated system
being able to manipulate arbitrary information
structures, eg programs, prose, graphical
objects and sound.

An IMS will be an important step towards
achieving the goal that we can do all our work
on-line -- placing in computer store all of our
specifications, plans, designs, programs,
docummentation, reports, memos, bibliography and
reference notes and doing all of our scratch
work, planning, designing, debugging and most of
our intercommunication via the consoles.

We outline the basic principles underlying the
design of an INS. We discuss the cognitive
dimensions (specifically for text processing and
programming systems) which should serve as the
design criteria for systems whose goal is to
reduce the cognitive burden and augment the
capabilities of a human user.

Keywords

man-machine communication, problem solving,
routine cognitive Skill, text processing,
programming, display-oriented interfaces,
uniformity, integrated systems

!. Information manipulation systems (IM5)

I.i Function and structure of an IMS

The rapidly increasi,ng sophistication and
cheap availability of computers make it
likely that interactive man-machine systems
will increasingly be exploited to deal with
complex problems in many domains. IMSs
should be prototypes for systems in which

the computer and the human cooperate to
solve problems and achieve tasks more
quickly and more rapidly than either could
do working alone.

The effective utilization of such combined
man-machine systems will require that the
information-processing capabilities of the
human component be as well understood and
designed as those of the computer.

The b a s i c h a r d w a r e to s u p p o r t an IMS
c o n s i s t s o f a p e r s o n a l computer d e d i c a t e d
to a s i n g l e use r w h i c h w i l l have a h igh
r e s o l u t i o n , a l l p o i n t s addressab te d i s p l a y
and a mouse as a p o i n t i n g d e v i c e .
i n d i v i d u a l machines w i l l be connected in a
ne twork and they w i l l possess c o m p u t a t i o n a l
power c o m p a r a b l e to t h a t of todays l a r g e s t
t i m e s h a r i n g - m a c h i n e s . The LISP Mach ine
(WEINREB & MOON, 1979) and the SMALLTALK
Machine (as a f i r s t s tep toward the idea o f
a "DYNABOOK"; KAY 1977) are f i r s t examples
o f the t e c h n o l o g y we have in mind.

The structure of an IMS is illustrated in
diagram I.

Diagram I: The structure of an IMS

text processing]programming
I to provide

tOto preparefill outd°cumentS~forms |[.c°mputati°nal facilities

{ 'info1~aation manipulation system 1

/ "-...
database manipulation graphics
to access prestored to compose text
information with pictures

--570--

Systems of this sort will be used for many

applications: as office automation systems,
as personai information systems (LAUBSCI4,
FISCHER and BOECKER 1979), as research
tools e tc .

We are convinced that real problems

require an IMS and not only a programming
language or a text processing system, like
the following examples demonstrate:

1) tO write a paper for a conference, we need
- graphics (to include diagrams and pictures)
- database (to retrieve the references)
- programming (to sort the references, to
include teat runs, etc)

2) to support the development and modification of
programs, we need an interactive program
development system (FISCHER and LAUBSCH, 1980),
including all the helpful features of the
INTERLISP system (TEITELMAN 1978) like "Do what I
mean (DWIM)", Programmer's assistant, UNDO and
History facilities

This paper extends the work and the ideas
expressed in FISCHER (1980

1.2 Uniformity

One of the obstacles computer systems
present to the user is the diversity of
differen~ languages and conventions which a
user has to knew tO get a certain task
done. To write an ordinary program in a
conventional system the user has to know a
large number of different languages,
sublanguages and conventions, eg"

* the programming language itself (with
conventions for specifying the control flow,
external and internal data description etc)
* the operating system (job control language,
linkage editor and loader)
* the debugging system (diagnostic system,
symbolic assembler etc)
* the tex t processing system (e d i t o r and
formatter)

The need for an integrated system is
obvious to anybody who has tried to
struggle through all the idiosyncracies of
the different systems mentioned above.

An IMS offers uniformity in several
dimensions to cope with this problem:

Linguistic uniformity: All tools (eg the programming
system and superimposed modules as well as mere
specific creations of the user) are made from the
same material and thus part of the same conceptual
world. This has the sociological benefit that the
system's implementor and users share the same
culture. Each module in the system can be regarded as
a "glass-box", ie it can be inspected by the user and
the system can be explored all to the edges. This
gives the user an amount of control aver his
environment which is not reachable in other systems.

Uniformity of i n t e r a c t i o n : This is based on a good
interface, which provides a uniform structure for
finding, viewing and invoking the different
components of the system. The crucial aspect for this
interface is the use of the display screen, which
allows for many tasks the real-time, direct
manipulation of iconic information structures which
are displayed on the screen. Each change is instantly
reflected in the document's image, which reduces the
cognitive burden for the user. The screen should be
regarded as an extension of the limited capacity of
our short term memory (is it provides a similar
support like pencil and paper does for the
multiplication of two large numbers).

2. Expe r i ences with existinq systems

The author has had opportunities to work
intensively with several advanced systems
during the last few years. These systems
form the background for the ideas expressed
in this paper; they are the currently
existing systems (known to the author)
which come closest to our idea of an
information manipulation system.

2.1EMACS and MACLISP

EMACS (STALLMAN 1979) i s a r e a l - t i m e
d i s p l a y o r i e n t e d e d i t o r , w h i c h can be
e x t e n d e d by the use r . Th is a l l o w s users to
make e x t e n s i o n s t h a t f i e the e d i t o r b e t t e r
t o t h e i r own d i v e r s e a p p l i c a t i o n s , to
e x p e r i m e n t w i t h a l t e r n a t i v e command
Languages and to share e x t e n s i o n s which ace
g e n e r a l l y u s e f u l . I t runs on l a r g e
t i m e s h a r i n g machines (eg PDP-IO) and l a r g e
p e r s o n a l c o m p u t e r s (eg LISP mach ine ;
WEINREB and MOON, 1979). It contains
speciaI subsystems ("modes"; see Diagram 2)
to take advantage of the structures which
occur in the systems to be edited. EMACS is
a single key-stroke system, which puts a

heavy demand on our recall memory. For
these reasons, it is specifically suited
for the expert user.

- -571 -

Diagram 2: Extensibility and Uniformity in E~S
(extensibitity means that arbitrary modes can be
implemented and uniformity implies that the user does
not need to learn a seperate editor for each system)

I EMACS I

I mode "prosel'l I mode "mail" I I mode I'LISP"I

* contains commands for
words, sentences and
paragraphs;

* fill and justify commands
* transforms regions from

upper tolower case

* contains commands
for s-expressions

* operations for
automatic indenting
("pret ty p r in t ing")

EMACS is well interfaced with the MACLISP
programming system. EMACS and MACLISP are
kept in the machine as parallel jobs which
is a necessary requirement to switch back
and forth with a few keystrokes. This is
quite different from the editing philosophy
of the INTERLISP system (TEITELMAN 1978)
where the editor is an integral part of the
INTERLISP system itself. The advantages and
disadvantages of these two approaches
("source-file" versus "residential"
systems) are thoroughly discussed in
SANDEWALL (1978).

Powerful personal computer systems (like
the LISP machine) contribute to the
extensibility and modifiability of an

information manipulation system because
they make the entire software system
interaetively extensible by writing it in a
higher level language (eg LISP) and
allowing the user to redefine the functions
composing the innards of the system (ie
they provide the linquistic uniformity
which we have mentioned in 1.2).

t h e y only requires t he recoqnition of
commands (ie no recall). These environments
provide prototypes for man-machine
interfaces which are heavily based on
graphics. The problem of not having enough
space on the screen is solved by allowing
the windows to overlap. The resulting
configuration considerably increases the
user's effective work space and it
contributes to the illusion that the user
is viewing a desk top containing a number
of sheets of paper which he can manipulate
in various ways.

Diagram 3: The DLISP display facilities

(from Teitelman 1977)

the display shows the following features:
- several menues (which are context dependent and
therefore can be kept small in size; they allow the
recognition of commends and do not require a recall)
- windows to receive and send messages
- "WORK AREA" window which allows additional
communication with the system

selected text is indicated by reversing the color
of the screen
- the virtual size of the screen is increased because
the windows can overlap

2.2 SMALLTALK and DLISP

SMALLTALK (KAY 1977) and DLISP (TEITELMAN
1977) a re sys tems a t X e r o x P a l o A l t o
R e s e a r c h C e n t e r , w h i c h r e l y h e a v i l y on a
h i g h r e s o l u t i o n b i t map d i s p l a y , a mouse as
a p o i n t i n g d e v i c e and e x c e l l e n t s o f t w a r e ,
which supports multiple windows with
associated menues and multiple fonts (see
Diagram 5 for an example); through their
iconic representations and their menues

A b i l i t i e s l i k e s u s p e n d i n g an o p e r a t i o n ,
p e r f o r m i n g o t h e r o p e r a t i o n s (eg to answer
q u i c k l y to an u r g e n t r e q u e s t r e c e i v e d
t h r o u g h the m a i l s y s t e m) and t h e n r e t u r n
w i t h o u t l o s s of c o n t e x t have t u rned out to
be e s s e n t i a l f o r many p r o b l e m s o l v i n g
activities. The technique of using

--572--

different windows for different tasks does
make this switching of contexts easy and

painless.

These systems combine the best features of
display and hardcopy terminals. A standard
complaint with conventional display
terminals is that material that the user

wants to refer to repeatedly (eg the text

of a function, the trace of a program
execution) is displaced by subsequent,
incidental interactions with the system. In
a situation like this when using a hard
copy terminal the user tears off the part

he is interested in. The equivalent action
in a window system is to freeze the

relevant portion of the interaction in a
seperate window (eg like the "WORK AREA"
window in Diagram 3) whose content will not
be affected by the following interactions
(see TEITELMAN, 1977).

The graphical orientation of these systems
has inspired research (eg SMITH 1977 and

BORNING [979) to create programming systems
where more and more symbolic descriptions
can be replaced by iconic descriptions.

These efforts have the gnat to integrate
some of the features whichhave made
display-oriented editing systems so
successful into programming environments.
Teletype-oriented editors require sequences
of commands like "4DOWN 12LEFT 4DELETE" to
delete four characters somewhere in a
buffer. In a display-oriented environment

we see the content of the buffer on the
screen and can move with the cursor
(supported by continuous visual feedback)

to the object to be manipulated. An example
of symbolic versus iconic programming is

given in Diagram 4. The operation to be
performed is to change the value of the
third element of an array. In the symbolic
ca.se we have to "tell" the computer that we

want to assign a new value to the third
element of an array, whereas in an iconic

programming environment the array would be
displayed on the sereen and changed

directly.

D i a g r a m 4:
Programming

Symbolic versus Iconic

symbolic pcogramming:

print x<3>
Mathematics

x<5> <-- "History
print x<5>
History

iconic programmi.g ("you get what you see"; emphasis
is on doinq rather than tellinn_q):

28

Teacher

Mathematics

Male

Grade 12

29

Teacher

History

Male

Grade 12

2.2 TINTE and LOGO

TINTE (RATHKE i979), also a a real-time
display oriented editor, has limited set
of user-definable keys. It runs on a small
personal computer and through its
incrementaI design it can be used by users

of all levels of expertise. Incremental
design is one of the most essential
features of a complex system, because the

novice user of any reasonably powerful
computer system is more confused than

assisted by a full display of the
information and options available to him.

(Note:This paper was written with the help of TINTE).

The interface between TINTE and the
programming system LOGO (BOECKER 1977) is
not as smooth as in the systems described
above. The main reason for this is the
limited memory space available in small
computers which does not allow to load the
two systems as parallel jobs.

Our research during the last few years has
not only been concerned with the technology

of providing interactive computer service,
but also with changes in conceptualizing,
visualizing and o r g a n i z i n g work and.
research with these systems and in

procedures • and methods for working
individually and cooperatively (FISCHER
1979; FISCHER, BROWN and BURTON, 1978;
FISCHER and LAUBSCH, 1980).

--573--

3. Theoretical considerations for the
des iqn o f an IMS

If a civil engineer has to design a bridge,
he acquires a detailed knowledge of the
country side in which the bridge will be
built and he will use the laws of physics
to come up with a plan.

Unfortunately things are not quite as

easy with respect to the design of an IMS.
Changing hardware is the smallest problem;
the major obstacle is that there is no
c o g n i t i v e t h e o r y o f s u f f i c i e n t p r e d i c t i v e
power (fulfilling the same function as the
laws of physics for the bridge) which would
be specific enough to provide a complete
set of design criteria for an IMS. NEWELL
and SIMON (1976) argue convincingly why
research like the design of an IHS has to
be carried out as "empirical inquiry"

Despite the lack of a complete cognitive
theory, work in Cognitive Science has
accumulated a substantial body of knowledge
which is important for integrated IMSs. The
scope of this paper does not allow us to
give a detailed description of our
theoretical framework; therefore we mention
only the most important aspects:

i) research in AI and cognitive psychology has
shown that knowledge is at the basis of all
problem solving; the active research in the
development of knowledge representation languages
(like KRL and FRL) is based on this insight

2) psychological research and empirical evidence
supports the hypothesis that "thinking always
begins with suggestive but imperfect plans and
images; these are progressively replaced by
better, but usually still imperfect plans". This
hypothesis indicates the evolutionary character of
complex systems, it implies that linear
approximation is an important methodology and that
debugging processes have to be understood
thoroughly

5) problem solving theories about planning (which
operates in a simplified abstraction space),
analogy (which forms the basis for recognition
methods), debugging (see previous point) and
multiple representations (see 3.2) are not any
more only directed towards the understanding of
abstract and well-structured problems but
investigate ill-structured problems in
semantically rich domains (SIMON 1978)

4) knowledge about human information processig
capabilities (eg about the limited capacity of our
short term memory) shows that for complex systems
there exists a need to prefold information for the
user so that more pieces of the whole picture can
be maintained in the user's immediate attention at
once

5) SIMON (1969) has provided an insightful
analysis of the structure of ce~le× systems (by
showing their hierarchical structure, their
property of being "nearly decomposable" etc)

3.1 Generative Processes

One purpose of an IMS is to support the
creative aspects of the writing and
programming process. Writing and
programming often means to make a rough
draft and refine it over a considerable
period of time (in ether words: it subsumes
all the processes required to go from the
first idea to the final product; see FLOWER
and HAYES, 1979). It includes the
expectation of an "unacceptable first
draft" which will develop through
successive changes into a presentable form.
An important general characteristic of
computers is that they allow us to build
quickly low-cost modifiable models which we
can analyze and experiment with. We
believe, contrary to the formal,
verification oriented group in the
Structured Programming community, that this
view is as adequate for programming as it
is for writing.

Text processing and programming are
examples of generative processes which are
best understood as problem solving.
Inadequate technologies (eg a typewriter, a

batch system) force the writer or
programmer to limit himself to a small set
of strategies. For example he has to
proceed in a serial fashion, whereby the
form of the written word imposes
restrictions on the generation of language
and ideas. On the other hand it is well
known that knowledge is not simply additive
which implies that a new insight or idea
may require a major restructuring of what
has been done before.

C r e a t i v e w r i t i n g and p r o g r a m m i n g i s an
i l l - s t r u c t u r e d p r o b l e m (SIMON 1 9 7 8) . In
these problem solving situations the
problem solver has to contribute actively
to the exact specification of the problem
and he has to define criteria what will be
accepted as a solution.

- - 5 7 4 - -

).2 Multiple Perspectives

The computer as an active medium offers
more posibilities than paper for a person
who wants to write, understand or read a
report or a program. For complex

descriptions it is often a big advantage to
be able to generate multiple perspectives
which facilitate or highlight certain

aspects of a system. Multiple perspectives
are able to resolve the basic conflict that

symbols, which are ordered in one fixed
order (eg on a printed page), serve as
pointers to concepts which form a highly

interrelated network. This implies that 9_2o
sinqle linear order is adequate. The value
of multiple perspectives can be illustrated

in a nice way using ~ as an example:
there may be many different maps for the
same territory using large and small
scales, showing the percipitation, the
population density, the economical
structure and any other relevant criteria.

In reading text ean be selected according

to the wishes or needs of the reader (to
allow "dynamic reading"; a display screen
can be regarded as a dynamic blackboard):

l) for the novice and the expert, different parts
may be left out or included

2) to get a global overview, we can generate a
table of contents at arbitrary levels of
abstraction

5) information can be reordered such that all
oecurences of a certain concept are selected
(which occur in other representations at arbitrary
places)

Similar possibilities exist
representation of programs:

for t h e

i) certain modules of the program can be listed
selectively (eg all the data accessing functions,
all declarative information, all procedures which
achieve a specific subtask); procedures can be
listed in different orders (eg alphabetically or
according to U~ calling structure)

2) the calling structure which Shows the
connectivity structure between different
procedures can be displayed at arbitrary levels of
detail; the user should be allowed to define a
"view specification"

3) symbol tables give a receding of information
according to a different criterion

).5 Problem solving versus routine skill

An IMS Should also support the routine
skill (CARD 1978) of editing a manuscript
or coding an known algorithm in the syntax
of a programming language. In this case it

helps to eliminate the boring,
time-consuming and unproductive work of
secretaries who have to spend long hours to
retype manuscripts, to make only trivial
changes to a prototype of a letter but
still have to retype it as a whole and who
become greater experts in using scissors
and glue than in anything else. A routine

cognitive skill means that the methods to
be used are well known and that the

sequence of actions which occur are of a

modest variety (therefore there is little

search to find out what to do next).

4. Implications for the process of system
desi__q_n

"Truth emerges more readily from error than from
confusion".

4.1 The necessity for empirical
investigations

[t is generally accepted that when a
program is to be written, specifications
should be designed in advance. But for real

design tasks or ill-structured problems
(see 5.i) this is more wishful thinking
than a realistic goal. The history of the
development of text editors is a good
example for this assertion (another example

would be timesharing systems; see
NEWELL/SIMON (1976) for an insightful
analysis of this topic) and provides a good
illustration of the co-evolution of
implementations and interface
specifications. As experience accumulates

in using an implementation, more of the
real needs and benefits are discovered

causing the partial interface
specifications to change. The chain of
necessary steps leading to one of the
systems described in section 2 starting
with the availibilty of the display
processors would have been simply too long
for anyone to have imagined the final
result before the first step had been taken

(for a general discussion of these issues
see FISCHER, BROWN and BUR[ON, 1978).

- - 5 7 5 - -

4.2 A design conflict

In the initial phase of using a text
processing system it is very important that
the introduction Of the computer system

changes the tasks performed as little as
possible. For computer naive user it is a

traumatic experience anyway to change the

tangebilily of a piece of paper by the
illusiveness of electronic documents and

files. It is a step that drastically alters
the appearance of their tools.

As users become more experienced and more
familiar, the systems should take advanlaqe
of the new medium. Strict adherence to
normal typing conventions in an IMS is not
always advantageous (eg good text

processing systems do not require that the
user pays attention to the end of a line,
they allow him to define abbreviations, to

experiment easily with the layout, they

take care automatically for constraints,
etc). Lack of attention to this essential
phenomena is one of the reasons that many
innovations fail.

Regarding the efficient use of an IMS as a
skill which develops over a long period of

time and which gets used repeatedly

(FISCHER, BROWN and BURTON, 1978) implies

that we have to pay attention to the

following design issues:
I) time: how long does it take to accomplish a
task?
2) errors: what kind and how many errors does a
user make and how serious are they?
5) learning: how long does it take a novice user
to learn to use the system (for a secretary, for a
trained computer scientist)?
4) functionality: what range of tasks can a user
perform with the system? How can it be made
extensible to take care for unforeseen
requirements?
5) recall: how easy is it for a user to reesll how
to use the system for a task that he has not done
for some time??

5. Empirical findinqs

Observing many people how they use IMS and
taking into account empirical data based on
interviews and questionaires, has revealed

the following:

i) the systems can reduce the psyc~logical stress
of doing something wrong (because wrong things can
be easily corrected)

2) they increase the willingness to experiment

with new and different ideas

3) the small amount of effort to change things in
a non-trivial way (eg to find a major
rearrangenment of a text or a more modular
solution to a programming problem) leads in many
cases to an improvement not only in form but also
in content

Much more empirical work is needed to
develop a detailed requirement analysis
which can serve as a guideline for the

design of the next generation of

information manipulation system.

Unfortunately the verdict of users is not
particulary reliable: as usual, users of
the respective systems tend to prefer what

they are used to.

6. Conclusions

In the 1980's there will be a massive
attempt to introduce information
manipulation systems into universities,

offices, clerical operations and the home.
The well-being of many workes as well as
the technical success of the systems
themselves will depend on how much the
design pays attention to cognitive

dimensions.

One of the major research goals for the
future will be to build totally integrated
IMS allowing to make computer systems
aecessibte to many more people and to make

computer systems do many more things for

people.

Acknowleqdements

I am indebted to the members of several research
groups at Xerox Palo Alto Research Center and to many
members of the HIT AI and LOGO Lab for giving me a

chance to visit both places several limes over a
longer period of time and letting me explore and work

with their systems. H.-D. Boecker has made
substantial contributions to this paper.

--576--

References

Boecker, H.-D. (1977): "LOGO Manual",
Forschungsgruppe CUU, Projekt PROKOP, Darmstadt

Borning, A. (1979): "Thinglab -- A
Constraint-oriented Simulation Laboratory", SSL-79-3,
July 1979, Xerox Palo Alto Research Center, Calif

Card, S. E. (1978): "Studies in the Psychology of
Computer Text Editing Sytems", SSL-78-1, Xerox Pale
Alto Research Center, Calif

Engelbart, D. C. and W.K. English (1968): "A research
center for augmenting the human intellect", AFIPS
FJCC, pp 395-400

Fischer, G. (1979): "Powerful ideas in Computational
Linguistics - Implications for Problem Solving and
Education", in Proceedings of the 17th Annual Meeting
of the Association for Computational Linguistics, San
Diego, pp lll-125

Fischer, G. (1980): "Cognitive Dimensions of
Information Manipulation Systems", in P.R. Wossidlo
(ed): "Textverarbeitung und Informatik", Informatik
Fachberichte Vol 30, Springer Verlag, pp 17-31

Fiseher, G., J.S. Brown, R. Burton (1978): "Aspects
of a theory of simplification, debugging and
coaching", in Proceedings of the 2nd Conference of
the Canadian Society for Computational Studies of
Intelligence, Toronto, July 1978, pp 139-145

Fischer, G. and J. Laubsch (1980): "LISP-basierte
Programmentwicklungssysteme zur Unterstuetzung des
Problemloesungsprozesses", in Heft 3 der Notizen zum
Interaktiven Programmieren, Fachausschuss 2 der
Gesetlschaft fuer Informatik, Darmstadt, Maerz 1980

Flower, L. S. and J. R. Hayes (1979): "Problem
solving and the cognitive process of writing", in J.
Lochhead and J. Clement (eds): "Cognitive process
instruction", The Franklin Institute, Philadelphia

Kay, A. (1977): "Mioroelectronics and the personal
computer", Scientific America, September 1977, pp
231-244

Laubsch, J., G. Fischer and H.-D. Boecker (1979):
"LISP~based systems for educational applications",
BYTE, Vol. 4, No. 8, August 1979, pp 18-25

Newell, A. and H. Simon (1976): "Computer Science as
Empirical Inquiry: Symbols and Search", CACM, Vol 19,
No 3, March 1976, pp 113-126

Rathke, C. (1979): "TINTE .- e in i n t e r a k t i v e r
T e x t e d i t o r " , MMK Memo 16, I n s t i t u t fuer Informatik,
Universi taet Stut tgart

Sandewall, E. (1978): "Programming in an interactive
environment: The LISP experience", ACM Computing
Surveys, Vol lO, No l, March 1978, pp 35-71

Simon, H. (1969): "The Sciences of the Artificial",
MIT Press, Cambridge, Ma

Simon, H. (1978): "The structure of ill-stuctured
problems", in H. Simon: "Models of Discovery", D.
Reidel Pulishing Co, Boston, Ha, pp 304-325

Smith, D. (1977): "Pygmalion - A Computer Program to
Model and St imula te Creat ive Thought", Birkhaeuser
Verlag, Basel und Stut tgart

Stal lman, R. (1979): "EMACS -- the ex tens ib le ,
oustomizable, self-documenting display ed i tor " , MIT
AI Lab, Memo 519, Cambridge, Ma

Teitelman, W. (1978): "INTERLISP Reference Manual",
Xerox Palo Alto Research Center, Palo Alto, Ca

Teitelman, W. (1977): "A Display-oriented
Programmer's Assistant", in Proceedings of the 5th
International Joint Conference on Artificial
Intelligence, Cambridge, Ha, pp 905-915

Weinreb, D. and D. Moon (1979): "LISP Machine
Manual", 2nd preliminary version, January 1979, MIT
AI Lab, Cambridge, Ms

--577--

