
TRANSLATING INTERACTIVE COMPUTER DIALOGUES
FROM IDEOGRAPHIC TO ALPHABETIC LANGUAGES

Ian H. Witten
Man-Machine Systems Laboratory

Department of Electrical Engineering Science
University of Essex
Colchester CO4 3SQ

U.K.

Su~rv

A scheme is described which enables users
to interact with a timesharing computer in an
ideographic language such as Chinese. The host
computer runs a completely unmodified English-
based operating system° the necessary
translation being performed by a preprocessing
microcomputer which constitutes the ideographic
terminal. The two systems communicate through a
serial line, and the host sees the preprocessor
as an ordinary (English) terminal. Although the
examples are all drawn from Chinese, the scheme
could equally well serve other ideographic
languages like Japanese and Korean.

After brief consideration of the terminal's
keyboard and display, we examine the software
problems of translation for six example
subsystems ~ two interpreted programming
languages, text editor, document preparation
system, interactive database management system,
and the command level of the operating system
itself.

The investigation shows that few
limitations need be placed on the user's
actions. For example, a suitable
transliteration to alphabetics allows
ideographic filenames to be used and manipulated
quite naturally by operating system commands
(which are themselved transliterated). The same
transliteration allows ideographic text to be
entered, edited, stored, displayed, and printed
without difficulty. If text to be altered is
located and specified by context (as is common
with most modern text editors), rather than by
character offsets, the transliteration must be
designed to yield unambiguous pattern matching.
Existing document-preparation software can be
used for ideographic text, although there is a
difficulty if English and ideographics are
interspersed within the same document. The most
difficult subsystem to handle is the BASIC
language, with its baroque syntax and non-
contextual string-matching operations: however,
the paper shows how suitable action by the
preprocessor can overcome all problems of
standard BASIC except for operations which
depend explicitly on ASCII codes.

Recent advances in technology enable
considerable improvements to be made over
previous attempts to construct an ideographic
terminal. 1,2 High-quality raster-based graphics
systems provide an economical means of output.
Hard copy can be obtained with high-resolution
matrix printers 3 and laser-driven
phototypesetters. 4 Character generation
requires a fast read-only store for frequently-
occurring ideographs, backed up by a slower
store for the rest ~ this approach is
encouraged by language statistics.5, 6
Furthermore, large read-only memories will soon
become available which are suitable for storing
picturegrams of thousands of characters. For
example, at the recent International Solid-State
Circuits conference in San Francisco, NTT's
Musashino Electrical Communication Laboratory
announced a 4 Mbit read-only memory, arranged as
two duplicate halves of 2 Mbit each to reduce
the effect of single-bit errors. 7 This could
accomodate up to ~000 picturegrams, each stored
as a 16 x 16 dot matrix. The major computer
companies in the West have no product lines
which include ideographic terminals, although
IBM recently introduced a Katakana VDU. 8
However, their appearance can only be a matter
of time.

Input of ideographic text is somewhat more
difficult than output. Chinese typewriters have
a table-sized keyboard with 2400 ideographs,
supplemented by a library of extra characters
which are inserted into the machine when
required. The problems of inexperienced users
with such a large keyboard are exacerbated by
the difficulty of finding a particular
character, for ideographic languages have no
simple and universally-accepted "alphabetic
ordering". Although novel keyboards and
computer-based retrieval methods have been
designed, 9.1 they do not appear to have met any
great degree of acceptance.

However, a new scheme which employs 238
keys shows promise as a computer input device
for Chinese ideographs. I0 The method originally
covered a basic lexicon of 3260 characters, but
has recently been extended to over twice this
number without increasing the keyboard size. It
is based on an analysis of characters into
radicals, which corresponds to the way that
Chinese children are taught to write in school.
With 346 radicals, between I and 6 keystrokes
are required for each character, the average
being 2.7. (Compare this with the average of 6

--526

alphabetic characters per English word.*) These
346 radicals are placed on the 23~ keys in such
a way that although some keys correspond to two
radicals, no ambiguity is created when actual
Chinese words are entered because of
restrictions on valid combinations of radicals.
Note incidentally that this simple technique has
been used in situations where alphabetic ~nglish
words are keyed on a 12-key touch-tone telephone
pad. 11

Taking these considerations into account,
we envisage an ideographic computer terminal
comprising a small microcomputer system with
keyboard, display, and hardware character
generator, possibly supplemented by a writeable
character store which is maintained by the
processor from a floppy disk holding the
remaining, rarer, characters.

Given such a microcomputer-based
ideographic terminal, it is clearly possible to
write a specialized operating system and
application software for it on a general-purpose
timesharing system. However, the effort
required is enormous, and the approach denies
rapid access to new computer developments in the
West. This paper explores an alternative,
namely, the use of the terminal as a front-end
processor for accessing English computer
systems. Such a scheme is not without its
disadvantages, for much data-processing depends
upon an alphabetic structure of language.
However, we presuppose no modification whatever
of the host computer software and examine the
extent to which the scheme can be made to work,
and what facilities must be forfeit.

Semiotics of interactive computer systems

When users speaking other alphabetic
languages, like French or German, interact with
English-based computer systems, relatively few
problems arise. Much interactive dialogue
involves ~ text, which is not interpreted
or constrained by the system at all. For
example, files can be edited or used for data-
base retrieval, and comments can be included in
programming languages, irrespective of the
particular language used m providing it is
alphabetic. String decomposition by character
position, as is common in older text editors,
creates no problem. Syntactic constraints are
placed by the system on certain signs, which we
call neutral. Examples are file names and other
identifiers. However, there is no reason to

~Of course, the information in a single
keystroke is much higher in the Chinese
case. Using a naive zero-order
approximation which does not take into
account character or radical frequencies,
the entropy of a keystroke is 6.4 bits,
while for English with a 27-key board it is
only 4.8 bits. Multiplying these by the
mean lengths we obtain surprisingly similar
figures of 23 bits/ideographs for Chinese
and 28 bits/word for English.

believe that this causes any more difficulty in
other alphabetic language~ than it does in
English. Symbols for constructs which have
semantic import in the system, like keywords in
programming languages and operating system
commands, constitute active signs which must
agree exactly with the representation stored
internally in the computer system. Often,
foreign users are content to write keywords in
English, because of its predominance in the
computer world B international computer
language standards usually use English, most
programming-language primers are written in
English, and so on. However, altering the
keyword representations stored in the computer
system is not a difficult task, at least in
theory: they will appear as character strings
in the source code and editing and recompiling
it is all that is necessary. Hence the issue of
language-translation preprocessors which is
tackled in this paper does not arise for
alphabetic-language users.

With ideographs, the situation is not so
simple. Certainly an ideographic computer
terminal could interface to a standard serial
line, emitting ASCII code sequences which
represent ideographs and accepting them to
generate an ideograph on the screen. Then the
operating system tables which store keywords
internally could be adjusted to hold the ASCII
sequences which represent the particular
ideographs used as keywords. Although this
copes correctly with active signs, difficulties
would still arise with passive and neutral ones.
For example, string editing based on character
positions would fail, unless the user was keenly
aware of the internal representation of
ideographs. It would be difficult to accomodate
the syntactic constraints for neutral signs.
BASIC identifiers, for example, must contain at
most two characters, the first being a letter
and the second, if any, a digit. Resolution of
these problems requires a more radical
modification of the system software than simply
altering tables. Another, simpler, alternative
is to leave the system unchanged and to try to
incorporate the necessary intelligence in a
preprocessor.

The kind of signs that must be dealt with,
then, are as follows.

e • •

These constitute text that is not interpreted by
the system. Certain special characters, which
are interpreted at device driver level ~ like
interrupt signals, rubouts, and line-erase
characters ~ must not appear by accident in the
passive text. The possibility of editing by
character offset must be noted.

These symbols must conform to syntactic
constraints imposed by the system. Examples are

filenames
identifiers in programming languages.

Most systems insist that neutral symbols contain
only ~ n ~ characters (and not control

--527

characters), and in many cases only alphabetics
and numerals are allowed (ie not "/", "I",
etc.). Certain characters sometimes have
special meaning in certain contexts. For
example, many operating systems allow wild-card
specification in filenames, either of a single
character (often indicated by "?") or a string
of characters (by "*"). Programming languages
usually prohibit identifiers beginning with a
digit, and some (eg BASIC) restrict their length
to two characters.

These symbols must agree exactly with
internally-stored keywords. Hence they must be
translated by the preprocessor, if operating-
system modifications are forsworn.

One serious difficulty arises when text is
entered in one mode and subsequently used in
another. This happens, for example, when a
command file is entered using the editor (as
passive text) and is subsequently interpreted by
another subsystem which normally accepts input
from the keyboard. The keyboard input typically
contains a mixture of active, neutral, and
passive text (say keywords, filenames, and
comments), and whenever a subsystem is being
entered the preprocessor must obviously ensure
that these elements are converted appropriately.
However, when a previously-entered text file is
used for input, the conversion cannot be done by
the preprocessor because

m when the file was entered originally, the
preprocessor could not know that it was
destined for use by the particular subsystem
as a command file,

and

m when the subsystem reads the command file,
its contents do not pass through the
preprocessor and so there is no opportunity
for conversion.

For a more concrete example, consider
interacting with the BASIC language subsystem
via an ideographic preprocessor. BASIC keywords
are typed as ideographs, and converted by the
preprocessor to English ~ PRINT, IF, GOTO,
etc.. Furthermore, BASIC identifiers are also
typed as ideographs, and must be converted to
BASIC variable names ~ A0, AI, A2, etc. --but
let us ignore this at present. The preprocessor
must maintain tables to effect the conversion.
Now if the BASIC program is SAVEd, what should
the resulting computer file look like? If it is
to be reLOADed by the BASIC subsystem, the
keywords in the program should be in English
form, so that they are recognized by BASIC on
reloading. If, however, it is destined to be
printed on a lineprinter by a standard system
utility, it should have been SAVEd as text, with
keywords represented as the passive encoding of
the ideographs which were typed originally.

For the preprocessor to work transparently,
it must invoke mode-conversion programs
automatically whenever the user issues certain
commands (like SAVE a BASIC program). The
virtue of our semiotic classification into
passive, neutral, and active signs is that it
allows us to see clearly the need for this.

For an ideographic terminal to interact
with English computer systems, all ideographs
must be converted to English pseudonyms. It is
possible to identify several desirable
properties that the translation should have.

The requirements for passive text are:

I. An ideograph's English pseudonym should be
as short as possible, for the sake of
storage economy on the host computer.

2. The translation should be fixed-length, so
that every ideograph is represented by the
same number of ASCII characters.

Requirement 2 will assist in string
decomposition by character offset, for then only
a fixed scale factor is needed to translate from
an ideographic offset to the equivalent one on
the host computer. It also simplifies the
problem of document preparation, for a fixed-
length representation means that existing
software for line splitting and Justification
will work on ideographic text. However, it
rules out the rather attractive proposition of
directly encoding the radicals forming a
character.

3. Given two strings of ideographs, it should
be possible to tell from the translations if
one is a substring of the other without
false matches being caused by incorrect
alignment.

This allows matching by context, as used in most
editor programs.

4. True English should never masquerade as
translated ideographs.

It will often be necessary to mix English and
ideographic text. For example, programmers may
wish to use some English variable names, for
mathematical symbols like x, y, sin, and cos are
used in their Western form in most Chinese
mathematics. Clearly, requirement 4 can never
be fully satisfied, for any sequence of ASCII
characters can be entered directly if desired.
However, we wish to minimize the likelihood that
the kind of text normally entered will
masquerade as translated ideographs. It would
seem sensible to include a little-used control
character to flag each translated ideograph, but
we will see below that this introduces
difficulties. •

528

For neutral text, requirement I has even
more force, for filenames and identifiers are
usually heavily restricted in length. Clearly,
in the case of BASIC identifiers no universal
ideographic encoding will suffice, for only 26 +
26wi0 = 286 different combinations are allowed,
and this is far less than the number of
ideographs. Leaving aside this special case,
which must be treated as an exception by the
preprocessor, neutral text presents another
requirement:

5. Translations of ideographic strings should
not violate any restrictions that the host
computer places on filenames, and should
conform with the syntax of variable names in
as many programming languages as possible.

additional advantage of satisfying the syntax of
variable names for most computer languages
(except BASIC, and upper-case-only languages).

Requirement (6) indicates that the code
should be based on the address of the
picturegram for the ideograph in the
preprocessor, so that although translation from
the ideograph keystrokes to the pseudonym may be
slow (Uecause a table of radicals, which may
reside on backing store, must be consulted),
reconstruction of an ideograph from its
translation requires access to the character
generator only.

Translatin~ interactive languages

This requirement is rather stringent, because
for most systems it rules out all characters
except letters and digits. Furthermore, the
fact that most languages prohibit identifiers
which begin with a digit means that we cannot
use the standard 4-digit telecode,* as employed,
for example, in some standard character
indices. 12 However, we will present a simple
coding scheme which can reDresent 27.000
ideographs as three-character strings, with the
characters chosen from the digits and upper- and
lower-case alphabetics. This allows two
ideographs to serve as a 6-character filename,
provided that the host distinguishes upper- and
lower-case characters.

Another requirement is

6. Although the translation from ideographs to
English may be slow (because ideographic
text is entered slowly on the keyboard), its
inverse should be fast so that the host's
output can be displayed on the terminal
quickly.

Requirement 3 implies the use of a
delimiter to ensure correct alignment of
ideograph boundaries when English translations
are matched. This is difficult to accomodate
within a three-character translation, since with
one reserved for the delimiter insufficient
combinations of alphabetics and digits exist.
To solve this, more than one character is
employed as a delimiter. With N possible
characters out of which n are reserved for
delimiters, n(N-n) 2 different triples exist.
Examination of this function, where N has value
62 (26+26+10), shows that the obvious choice of
a single delimiter gives a paltry 3,700
combinations compared with the maximum of 35,300
when n = N/3. We choose an easily-recognizable
encoding with a digit in one fixed position and
alphabetics filling the other two. This gives
27,000 combinations. To minimize the likelihood
of mistaking genuine English for ideographic
translations, the digit occupies the central
position, flanked by alphabetics. This has the

*A brief account of the fascinating history
of telecodes is given in reference 2.

As a prelude to our examination of the
translation process for BASIC, the most
commonly-used interactive language, let us
consider a simpler, although somewhat more
esoteric, interpreted language m LISp.13

k~
The fundamental entity in LISP is an atQ~. and
is represented by a string of up to 30 letters
and digits. The indivisibility of atoms, the
generous maximum character length, and the
starkness of the LISP syntax make translating an
ideographic version an easy proposition. All
names in LISP are atoms, including functions and
the built-in functions which comprise the LISP
system itself. Atoms are combined into lists
using a handful of special characters like
parentheses, full stops, and quotation marks.
These special characters are all commonly used
in Chinese text, and so there is no need to
translate them.

An ideographic LISP preprocessor must
translate each ideograph into a unique sequence
of English characters as described above.
Translations of the system-defined atoms, of
which there are somewhat over 100, need to be
stored in a table in the preprocessor with their
English equivalents, so that they are converted
into the correct character strings,

With the encoding developed in the previous
section, 30-1etter atoms permit up to 10
ideographs to be concatenated to make a name,
and this should be quite sufficient to allow
mnemonic identifiers to be used. The only
problems with the scheme are the atom
decomposition functions EXPLODE and IMPLODE,
which do not appear in "pure" LISP but are often
provided in specific implementations to break an
atom into its constituent characters and reform
it. They must be handled by writing special
ideographic EXPLODE and IMPLODE functions, which
take into account the structure of the codes and
use the primitive EXPLODE and IMPLODE to
decompose an atom into 3-character pieces.
Digits and operator symbols will need to have
their single-character representation, and the
new atomic decomposition functions should
distinguish genuine ideograph translations from
ordinary text, using 3-character decomposition

--529--

for the first and single characters for the
second.

BASIC
The baroque syntax of the BASIC language gives
rise to many more problems than with LISP.
There are four syntactic categories in BASIC
that may be presented as ideographs: keywords,
identifiers, character strings, and comments
(REMarks). 14 Other elements of the language,
namely numbers, arithmetic operators, and
special punctuation symbols such as commas and
quotation marks, are used in the Chinese
language in the same way as in English,
Furthermore, the Chinese use ordinary Western
mathematical language, so we do not envisage
translating the names of mathematical library
functions like sin and cos.

Keywords are stored in a Chinese-English
translation table in the preprocessing computer.
Single ideographs are used for keywords, and
although this imposes a degree of unnaturalness
on the Chinese representation, the resulting
economy of keystrokes in entering programs was
judged to outweigh any artificiality. In fact,
multi-ideograph keywords could be accepted
equally well if so desired.

Identifiers in BASIC comprise an alphabetic
letter which may be followed by a decimal digit.
In Chinese, identifiers must comprise a single
ideograph. Whenever an ideographic identifier
is entered in a BASIC program, it is checked
against the translation table. If it does not
appear, it is added to the table with a
2-character translation. Thus the first
ideograph which is not a keyword will translate
to "AO". the second to "AI", and so on.
Numerals, operators, and punctuation pass
through the processor without translation. So
also do English letters: this makes the filter
transparent to English BASIC.

If English and ideographics are mixed in a
BASIC program, confusion may occur. The user
cannot tell what English pseudonyms have been
assigned to his ideographs, and so cannot
guarantee to avoid variable name clashes. The
ambiguity could be removed by translating
English identifiers to a name selected by the
preprocessor, in the same way that ideographic
ones are. An easier possibility is simply to
forbid mixed-language programming.

Some English letters appear in Chinese
programs m we have already mentioned
mathematical functions. It is important to
ensure that no parts of legal English strings
can masquerade as translated identifiers; this
is indeed the case for the 2-character
identifiers AO, AI Z9.

Character strings are the most difficult
items to translate, because BASIC contains
string-processing functions such as LEN()
(length of a string), LEFTS(), RIGHTS(), MID$()
(substrings), and INSTRS() (searches one string
for the first occurrence of another). It is not

feasible to encode a sequence of ideographs as a
single unit, for this would prevent
decomposition. Instead we translate the
ideographs individually into fixed-length
English strings. The 3-character encoding
outlined above is quite suitable, and has the
advantage that the English representation is as
short as possible. This is important because
otherwise string overflows will occur often
within the BASIC interpreter.

The BASIC string-processing operations
specify offsets in a string as character counts.
Since strings now contain a fixed number of
English characters per ideograph, all of these
figures must be adjusted to account for the new
unit of measurement. Thus, since ideographs are
converted into three English characters each,
~LEN (the ideograph for LEN) is translated into
(I/3)*LEN, @LEFTS(..., <expression>) into
LEFTS(.... 3~(<expression>)), and so on ~.
Identifying <expression>s when translating
LEFTS, RIGHTS, and MID$ is the closest the
preprocessor gets to the syntax of the BASIC
language.

Note that this scheme will not work if
English and ideographics are mixed within
strings. In a simple system, one might choose
to outlaw this. However, since symbols such as
punctuation and digits count as English, this
requirement may be too stringent. The only
alternative, if strin~ decomposition is to work
properly, is to pad each English character that
appears within a string to the length of the
ideograph translations. If the pad character is
chosen as a control character which would not
otherwise appear in strings, it will be easy to
remove when translating character strings
received from the host on output; however, since
one use of strings in BASIC is as filenames, and
the host operating system will probably not
welcome control characters in these, it is
better to pad with a printing character instead.

String operations which involve ASCII
character codes, for example CHR$() which
returns the character corresponding to a given
ASCII code, and CHANGE() which transfers a
string to an array of ASCII codes, are not
implemented. The most sensible interpretation
would be to return the 4-digit telecode
mentioned earlier. This would involve
communicating with the ideographic preprocessor,
and so would need a non-standard implementation
of BASIC on the host.

As for program comments, any ideograph in a
BASIC REM statement is converted to an English
pseudonym using the same translation as for
strings. There is no need to pad English
characters, but it may be best to do so for the
sake of uniformity.

*The "@" prefix indicates that an ideograph
is typed; thus "@LEN" should be read as the
ideograph whose meaning is LEN.

- 5 3 0

Lastly, it shOuld not be forgotten that
error messages originating from the host
computer will have to be translated before being
presented on the terminal. Some BASIC
implementations simply return an error number,
like "?16", which does not need altering. (Note
that our aim is not to ~l~g~ the programming
language, but to preserve it ~ warts and all
wherever possible.) If error messages are used,
they should appear in full in the translation
table ~ a word-for-word translation would
probably be too confusing in most cases.
Fortunately, BASIC implementations do not
include user-defined variable names or parts of
program statements in error messages.

Implementations. With the above
considerations in mind, we sketch the working of
both a simple preprocessor and a more
sophisticated one. The first maintains a single
translation table, which is initialized to hold
the keywords of BASIC. Every ideograph input is
translated via this table, which is augmented if
the ideograph is absent with the next unused
member of the sequence AO, AI, ..., A9, BO, ...
as its English translation. Anything received
from the host computer is inverse-translated
using the table. Digits, operators, and
punctuation pass transparently through the
preprocessing filter in both directions.
English characters do too, unless they appear as
translations of ideographs in the table, in
which case they are transformed back to
ideographs on output. The only syntactic
checking of the BASIC program by the
preprocessor is in detecting, bracketting, and
halving expressions which form the second
argument of a LEFTS(), MID$()0 or RIGHTS()
function, and the expressions can be detected
easily by stacking parentheses.

This simple system will work correctly for
all-Chinese BASIC, providing punctuation is
avoided in strings which are decomposed. The
maximum number of different ideographs which can
be used in any one interactive session is 260.
It will work for all-English BASIC and Chinese
BASIC with English identifiers and strings,
provided the string decomposition functions are
typed in English. It will work for mixed
English and Chinese if English is avoided in
decomposable strings, unless name clashes occur.
These can be avoided by using single-letter
variables and ensuring that numbers are not
adjacent with letters in strings.

The more sophisticated preprocessor uses
BASIC syntax to distinguish strings and comments
from identifiers. A table is maintained for
identifiers as described above. English
identifiers are translated, as well as Chinese
ones, to avoid name clashes in mixed programs.
Ideographs in strings and comments are
translated to a fixed-length character
representation, like the one developed above,
which cannot clash with keywords, identifiers,
or numbers. English characters, punctuation,
and digits, occurring in strings, are padded to
the same length. Note that an ideograph may

occur both in a string or comment and as an
identifier. This causes no special difficulty.

What inadequacies still appear in this
second preprocessor? Juxtaposition of
characters on output cannot masquerade as
ideograph translations because characters in
strings are always padded. (The padding is, of
course, removed before final output.) If the
user types English, punctuation, or Chinese as
input to his program it will all be translated
before going to the BASIC program on the host.
There is only one difficulty. If numbers are
typed as input, there is no way that the
preprocessor can tell whether they are destined
for string input:

INPUT AS,
when they must be padded so that they can
participate sensibly in string comparisons; or
for numeric input:

INPUT A,
when padding would cause a BASIC error. Thus we
must rule that ~ must never be read into
~ . Punctuation and operators that
accompany numbers ("+", "-", "E", ",") must be
recognized through context analysis by the
preprocessor, and padded only in non-numeric
contexts. To remove this restriction would
require interpolating a hidden subroutine call
whenever a number is read, to transfer it into a
character string, process it to remove padding,
and return the numeric result. If this were
done at BASIC level by the preprocessor problems
would occur when listing the program, and highly
confusing error messages may appear.

Text ~nooessin~ and database

The handling of unstructured text is rather
easier than programming languages for the
preprocessor, because of the uniformity of data
representation and the syntactic simplicity of
editor commands. Ideographs are translated into
the universal byte representation described
earlier.

T e x t ~
The variety of text editors is so great that it
is difficult to say anything about ideographic
conversion which is generally applicable. A
simple editor is discussed in some detail in
reference 15. It poses very few problems for
ideographic conversion. The preprocessor must
distinguish several different kinds of
information. Editor commands are translated
from Chinese according to a pre-defined table.
It is possible to determine whether typed input
is a command or not by mimicing the editor and
entering text mode on the appropriate commands;
but a more robust alternative is to examine the
prompt sent by the host system and decide on
that basis whether a command or text is
expected. Another kind of input is the numbers
which follow certain commands. Where these
refer to line numbers, they pass directly
through the preprocessor. If intra-line editing
is by character offset, such offsets must be
adjusted to allow for the three-character per

--531--

ideograph representation of passive text, but
unfortunately this precludes editing of mixed
English and Chinese files. Character strings
specified in contextual search and change
commands are treated as text, the ideograph
delimiters ensuring unambiguous matching.
Another information type used in text editing is
the filename, but this causes no special
problems because the coding scheme for
ideographs does not use English characters that
are unacceptable in filenames.

Text files are frequently used as input to
document preparation software. In this case,
the text will be interspersed with formatting
commands, which are identifiable in some way by
the formatter program. (For example, a common
convention is to place formatting commands alone
on a line beginning with a full stop.) Such
commands could be made known to the preprocessor
when entering or editing the file and translated
accordingly to their English equivalents, but
the modularity of the system is enhanced if they
are placed in the file as passive text and
converted to their active form by a special
program on the host Just prior to formatting.
This can be invoked automatically by the
preprocessor whenever the document preparation
program is run, in a manner which is transparent
to the user.

Little difficulty is foreseen in taking
advantage of many of the features of English
document preparation systems which may exist on
the host. In order that filling will work
properly, ideographic translations should be
separated by white space, and this can be done
by the above-mentioned conversion program.
Furthermore, ideograph representations should
have a fixed length. Any English which appears
in the text should not be padded, or else it
will occur in the output with ideograph spacing.
Automatic hyphenation should of course be
suppressed.

Specification of line lengths, vertical and
horizontal spacing, centering, and paragraphing
will all be effective. It may be desired to
convert numerical specifications of character
positions so that ideographs rather than
characters are measured. Sections of English
text will be formatted with a different paper
width than Chinese, for in reality each
ideograph occupies less width than its English
pseudonym: this can be corrected by the user
inserting line length commands before and after
the English text. Footnotes, superscripts, and
subscripts cause no special difficulty. As with
English text, underlining and alternative type
fonts are allowable only if the output device
and its handler permit.

The output of the document preparation
program will be a new version of the input with
modified line breaks and some space characters
inserted for padding (for example, at the
beginning of paragraphs). Conversion of this
file to paper form is a Job for a specialised

Chinese application program with knowledge of
the character representations.

~ to databas~
Like editors and document preparation systems,
database systems vary so much that
generalizations about the feasibility of
ideographic translation are impossible. An
example system 16 has been considered in some
detail, 15 and indicates that no special
difficulty should occur.

~ ~ a ~ th~ ho~ o ~ ~

The host operating system itself is treated
by the preprocessor simply as another
interactive subsystem. The keywords, with their
ideographic translations, are tabulated in the
preprocessor. Wild-card specification of
characters in filenames is easily handled by
defining a "wild-ideograph" character and
expanding it into three adjacent copies of the
host operating system's wild-card character.

A distinction must be made between commands
which enter an interactive subsystem and those
which do not. The latter class comprises
logging in and out and the file maintenance
commands, including that which invokes the
(non-interactive) document preparation system.
Because file names and text files are
represented on the host system according to the
standard translation method described earlier,
no special action need be taken by the
preprocessor for most of these commands. In the
case of the command which sends a file to the
host's printer (as opposed to the one which
lists it on the terminal) the appropriate
ideograph should translate to the name of a
special application program designed for
ideographic printing. We saw earlier that
execution of the document preparation system
should be preceded by passing the file through a
software filter which translates ideographic
formatting commands into English: this action
is performed automatically when the document-
preparation command is received by the
preprocessor.

Whenever an interactive subsystem is
entered, information appropriate to it needs to
be installed in the preprocessor. This will
certainly include a translation table for the
keywords of the subsystem, and for most
subsystems certain keywords require special
action which is specified as code executable by
the preprocessor. Since the amount of code is
not great, it can be permanently resident in the
preprocessor and accessed symbolically from
translation tables.

Translation tables for subsystems can
either be stored locally on the preprocessor's
disk, or centrally in the host. If many
ideographic terminals are attached to a
timesharing host, there are advantages in
central storage ~ especially if subsystems are
being updated or new ones added. Tables are

--532

sent from host to preprocessor by executing a
specially-written host application program with
an argument which specifies the host's filename
of the appropriate translation table. Whenever
a subsystem is left, the preprocessor reverts to
its table for operating system commands.

All the subsystems we have encountered use
the standard method for ideographic translation
throughout, except BASIC which builds a table of
identifiers dynamically. For this, the table of
identifiers must be saved on the host whenever a
program is SAVEd, and loaded into the
preprocessor whenever one is LOADed. Local
storage cannot be used in case another terminal
user wishes to run the same BASIC program. It
seems that the most generally useful way to
store BASIC programs is in the form of passive
text, with identifiers and keywords in their
ordinary ideograph encoding. This will involve
file conversion prior to each LOAD and SAVE
command. Part of the table entry for the BASIC
LOAD and SAVE keywords will invoke this
mechanism automatically, so that the user need
never be aware of the process.

This paper has outlined design
considerations for an ideographic preprocessor
which acts as a timesharing terminal~to a host
computer, working in English. To the host, it
is just an ordinary terminal. None of the
operating system needs modifying in any way. A
smal} number of special utility programs and
translation tables must be stored by the host:
the programs perform such jobs as file
conversion and sending translation tables to the
preprocessor. They are invoked by the
preprocessor when needed, without explicit
requests being made by the user.

Six important subsystems have been
examined: the operating system itself, and two
interpreted languages, which were analysed in
some detail; a text editor, document preparation
software, and an interactive database management
system. Very few limitations need be placed on
the user's actions. The most difficult
subsystem to handle is BASIC, with its
restrictive syntax and non-contextual string-
matching operations.

The chief shortcomings of the system are
its commitment to half-duplex operation, and the
need to forego any processing of characters as
numbers. These are both inherent in the nature
of the translation process, and cannot be
overcome without modifying the host software.
It is felt that they are a small price to pay
for the convenience of an easily-implementable,
modular, ideographic terminal for accessing
English host computers.

Acknowledgement s

It is a pleasure to acknowledge the
contributions of John Brazier, Rod Cuff, Brian
Gaines, and Y.H. Ng through interesting and
stimulating conversations on the subject of the
ideographic preprocessor. This research was
supported by GWITS.

References

I. Chang, S.K., "An interactive system for
Chinese character generation and
retrieval," IEEE Trans. ~_V_~J~, Man and
Cvbernetics, SMC-], pp 257-265, May 1973.

2. Walker, G.L., Kuno, S., Smith, B.N. and
Holt, R.B., "Chinese mathematical text
analysis," IEEE Trans. En~ineerin~ ~
and ~ , EWS-11, pp 118-128, August
1968.

3. For example, the Mullard 11SSDR. Also,
Ideographics Inc., Sunnyvale, California
make a special printer intended for
ideographic output (IPX Model 1800).

4. For example. Monotype International's
Lasercomp 4000.

5. Hsieh. Hwang and Lin. "Analysis of Chinese
radicals," ~. National~-~3AIlg
University. December 1972.

6. Kwok, P.C.K. and Lai, J.P.K., "Dual-mode
transmission technique for Chinese
ideographs in a teletext system,"
~ Le~, 15, pp 268-269, May
1979.

7. Posa, J.G. and Allan, R., "ISSCC: a gallery
of gigantic memories, gigabit logic, and
single-chip systems," Electronig~, 52, pp
13~-151, February 14, 1980.

~. ~ B M ~ / ! 4 9 7 8 - ! d ~ s o l a v s t ~ t ~ o n ,
K e v b o a r ~ = ~ f e a t u r e manual, IBM,
1979.

9. Caldwell) S.H., "The Sinotype m a machine
for the composition of Chinese from a
keyboard," ~. Franklin Institute, pp
471-502, June 1959.

10. Kong, L. and Tu, J., "User manual for Loh's
Chinese keyboard," Hung On-To Research
Centre for Machine Translation, March 1979.

11. Witten, I.H. and Madams, P.H.C., "The
Telephone Enquiry Service: a man-machine
system using synthetic speech,"
International ~. M a n - M a ~ ~ . ~. pp
449-464, July 1977.

12. Dougherty, C.Y.. Lamb, S.M. and Martin,
S.E., ~ character ~ .
University of California Press, 1963.

13. McCarthy, J., Abrahams, P.W., Edwards,
D.J., Hart, T.P. and Levin, M.I~, LI~ !.~
pj~O.g~_mm.~'~ ~ . M.I.T. Press, 1962.

14. Forsyth. R., T_~]~Jk~!~]~, London:
Chapman and Hall, 1978.

15. Witten, I.H. and Ng, Y.H., "An
ideographic-language front-end processor,"
~omouter ~., in press.

16. Held, G.D., Stonebreaker, M.R. and Wong,
E., "INGRES ~ a relational data base
system," ~J~O~q. Nat~Q~l~Co~
C_~f~. 4_~4. pp 409-416, 1975.

--533--

