
AN EXPERIMENTAL APPLICATIVE PROGRAMMING LANGUAGE
FOR LINGUISTICS AND STRING PROCESSING

P.A.C. Bailes and L.H. Reeker
DeparTment of Computer Science, University of Queensland,

St. Lucia, Queensland, Auslralia 4067

Summar~ been retained, and in fact,

The Post-X language is designed to
provide facilities for pattern-directed
processing of strings, sequences and trees in
an integrated applicative format.

improved. In an
applicative framework, the pattern match
must return a value that can be acted upon
by other functions. The pattern itself has
been generalized to a much more powerful
data object, called the FORM.

Post-X is an experimental language
designed for string processing, and for the
other types of operations that one often
undertakes in computational linguistics and
language data processing.

In the design of Post-X, the following
four goals have been foremost:

(I) To modernize the Markov algorithm based
pattern matching paradigm, as embodied in
such languages as COMIT 13 and SNOBOL 8 ;

(2) To provide a language useful in
computational linguistics and language data
processing, in particular, but hopefully with
wider applicability;

(3) To provide a vehicle for the study of
applicative programming, as advocated by
Backus , among others;

(4) To provide a vehicle to study the applic-
ation of natural language devices in
programming languages, as advocated by Hsu 9
and Reekerl~

A FORM consists of a series of
alternative PATTERNS and related ACTIONS.
Each pattern is very much like a pattern in
SNOBOL4 (with some slight variations). FORMS
may be passed parameters (by value), which
are then used in the pattern or action portion.

A PATTERN determines the structure of the
string to which it is matched. The pattern
contains a sequence of concatenated elements,
which are themselves PATTERNS, PRIMITIVE
PATTERNS (utilizing most of the SNOBOL4
primitives) or STRINGS. The value returned by
the pattern is either FALSE (if it fails to
match) or a "parse tree" designating the
structure of the string that corresponds to
portions of the pattern. As an example, suppose
that a pattern is P:=p1^P2^...^pn"
It may be matched to a string S=SoSl...s n by
the use of the operator '~in", and if each of
the Pi match a successive letter s j, one can
conceptualize the "tree" returned as

s O s I • .. s n Sn+ I

The "X" in "Post-X" stands for
"experimental", and is a warning that features
of the language and its implementation may
change from one day to the next. The eventual
goal is to produce a language designed for
wide use, to be called "Post" (after the
logician Emil Post). In this paper, we shall
present some of the language's facilities for
string and tree processing. A more detailed
statement of th~ rationale behind the language
can be found in , and more~details of the
language are to be found in- .

Pattern Matching

The basic idea of using pattern matching
to direct a computation is found in the normal
algorithms of Markov, and was embodied in the
early string processing language COMIT. The
series of SNOBOL languages developed at Bell
Laboratories, culminating in SNOBOL4,
improved a number of awkward features of
COMIT and added some features of their own.
Among these latter was the idea of patterns
as data objects.

Post-X incorporates patterns into an
applicative framework, which will be illus-
tFated below. In doing so, the powerful
pattern matching features of SNOBOL4 have

where s O represents the unmatched portion to
the left of the matched portion and Sn+. the
portion to the right of the matched portion.

The numbers I n and the characters
< and > in the example are SELECTORS, used
in the ACTION portion to refer to the
appropriate substring. The tree returned is
denoted by $$, and ! is used for selection,
but $$! can be condensed to $ in this
context, so the expression $ < returns s O in
the example above, while $ 2 returns s 2. The
selectors give the effect of the short
persistence variables that were found in COMIT,
where they were denoted by numerals. These
variables had the advantage of having their
scope limited to a single line of the program,
thus minimizing the number of variables
defined at any one time. In Post-X, the
selectors are local to a particular FORM.

Each of the s may be a subtree, rather
than a string. In the example above, if Pl

^P ^ .^Pin, then in were defined as P11be12the subtree
place of s I would

Sll s12 Sln

- - 5 2 0 - -

where is the portion matched by P11 etc.
Then s11Sllwould be referenced by $ I . I.

Composition of functions is often necess-
ary. For the composition of F and G, we write
F:G. For example

head:sort

where "head" gives the first element of a
sequence and "sort" sorts a sequence of strings
into alphabetical order, defines a function
which operates on a sequence of strings and
gives the first in alphabetical order.

Certain natural variations in the syntax
are permitted. For example

expression Iop expression 2

is defined to be the same as

(op):[expression I, expression2].

The existence of a conditional function

cond [a,b,c]

producing "b v' or "c" depending on "a" is
vital; Post-X allows for a multi-way branch of
the form

if
condition I then expression I

elif
c o n d i t i o n 2 then e x p r e s s i o n 2

elif

else expression
fi n

the form

do sequence of names
expression

od

is an expression whose value is the function
which may be applied to a sequence of
epxressions, the value of each of which is
given in the expression (in the d_o_o ... o d)
by the corresponding name (i.e. call-by-value).
The value of the application is the value of
the expression (with "substituted" parameters).
User-defined functions are named by declarations,
examples of which are given later, and defined
In •

We have already discussed the bas,ic
pattern matching operation and the definition
of the FORMS used in that operation. As may
be apparent from that discussion, context

free parsing creates no difficulties.

Thus we may define

E:=E^"+"^T I T

T:=T^"*"^F I F

F:=,,(,,^E^,,),, I ,,x,,

Then the pattern match

E = " x + x * x "

will return the tree

(E)

(E) + ~ T

(E) + (T)

(T) (T) * (~)

(F) (F) x

X X

The default action is to produce an unlabelled
tree "compressed" by the elimination of single
offspring nodes. The example above is given by
the tree (pictorially).

X

X ~ X

or the sequence

[["x","+",E"x","x","x"7],"+","x"]

If a labelled phrase marker is desired, then
appropriate actions need to be attached. For
instance, if a parenthesized representation
of the tree above with node labels added is
desired, the forms would be"

E :=E^,,+,,^ T {,,E[,,^$ i^,,, +, ,,̂ $3^,,],, }
1 T {"E["^$ I^"]"};

T: =T^,,.,, ̂F {,,T[,,^$ i^,,, *, ,, ̂$3^,,],, }
I F {"T["^$1 ̂ "]"};

F:=,, (,, ̂E^,) ,, {,,F[(,,^$2^,,)],,}
I " x " { " F E M] " } ;

In the example above, the application of E
would return

"E[E[E[T[F[x]]],+,T[T[F[x]], *, FEx]]],+,T[x]]"

--521--

Translation to a prefix representation of
the arithmetic expression could, incidentally,
be accomplished by a slight change in the
actions:

E:=E^"+"^T {"+"^$I ^$3}
r T;

T:=T^"*"^F {"*"^$I ^$3}
I F;

F:=" (" ̂ E^") '' {$2}
"x";

This time, E="x+x*x" would yield

++X*XXX.

Context sensitive - and even more complex
- parsing can be effected by building programs
into the actions to give the effect of
augmented transition networks.

It should also be noted that the actions
need not merely pass back a single value.
Several values may be associated with a node,
as in attribute grammars I0. For example

E'.--E^"+ ''^T{
value := $1.value + $3.value;
code := $1.code^$3.code ̂ " add"

}
I T;

T: =T ̂''*'' ̂Fa
v a l u e := $ 1 . v a l u e + $ 3 . v a l u e ;
code := $ 1 . c o d e ^ $ 3 . c o d e ^" t i m e s "

}
I F;

F:=,,("^E ,,),,
{value := $2.value;
code := $2.code

}
I span ("0'~.."9 '')

{value := $I;
code := " "^$I};

(As In SNOBOL4, a numerical string in a
numerical context is treated as a number.)

Reference to the attributes of a node
may be made in several ways. For example, in
the last grammar given, (E = "1+2*3").value
would have the value 7, as would value
(E="I+2"3") or (E="1+2*3")~"value"; and
(E+"1+2*3").code would be evaluated as
"I 2 3 times add".

If it were considered desirable
immediately to evaluate the expression
(returning 7 as the value of the match in
the example above) we can write this in the
action portion:

E:=E^"+"^T {$I + $3}
IT;

T:=T^"*"^F {$I * $3}
rF;

F:='('^E^') f {$2}
r span (0..9) {$I};

Certain predefined patterns and pattern-returning
functions are available, being closely modelled
on those of SNOBOL4 e.g. 3

any string
arb
break string
span string
arbno string

etc...

I.

Two Examples

Random Generation of Sentences

Given a context-free grammar as a
sequence of rules in BNF notation (i.e. left
and right hand sides separated by "::=",
nonterminals surrounded by angle brackets),
we wish to randomly generate sentences from
the grammar. We shall assume for simplicity
that a pseudo-random number generator RANDOM
is available which generates a number in an
appropriate range each time that it is called.
We assume also that the grammar is a string
of productions, separated by ";" and is called
GRAM.

The program will utilize a form LHS_FIND
to find a production with a particular left
hand side and return its right hand side.

LHS FIND LHS := LHS^"::="^BREAK";"^";"{$3};

The alternatives on the right hand side
are then converted to a sequence by the
pattern ALT_LIST:

ALT_LIST := BREAK "I ''̂ 'ir'' {[$1]^(ALT_ LIST <$)>}
I REM {[$I]};

The particular alternative on the right
hand side is chosen by the procedure

SELECT RHS LIST := LIST ! ((RANDOM MOD
SIZE(LIST))+I);

The replacement in the evolving sentential
form is accomplished by

REPLACE GRAM := "<"^BREAK">"^"> ''
{$<^((REPLACE GRAM)<

SELECT RHS
(ALT LTST<
(LHS--FIND $2 <GRAM)))

%>}
INULL{$$};

- -522--

This form finds an occurrence of a nonterminal
(it will find the leftmost as it is applied
below). It uses this nonterminal as a
parameter to LHS_FIND, which is applied to
the grammar GRAM to return the right hand
alternatives. Then SELECT RHS selects an
alternative, which is plac~d in the context
of the nonterminal matched by the pattern
portion of the form. Finally, REPLACE is
matched (recursively) to the result. If
the first alternative fails, it means that
there is no nonterminal. In that case, the
second alternative will be matched, and will
return the entire string, which will be a
string in the language generated by GRAM.

The entire program will be invoked as

RAND STRING GRAM := (REPLACE GRAM) <"<S>".

This assumes that the root symbol is <S>.

It should be noted that the parentheses
can be reduced by using the transformation
available in Post-X into postfix notation,
with the postfix composition operator ".".
Using this, one version of REPLACEGRAM
would be:

REPLACE GRAM := "<"^BREAK">"^"> ''
{$<^GRAM.

(<(LHS FIND $2).
(<)ALT LIST.
SELECT RHS.
(<)REPLACE GRAM

^$>}
INULL{$$};

The freedom that this alternative notation
provides is one of the refreshing aspects
of Post-X. (The particular transformation
applied here to REPLACE_GRAM is, incidentally,
analogous to extraposition in English.)

2. A KWIC Index of Titles

It is assumed that the input consists
of a sequence of titles. It is desired to
provide a primitive alphabetized KWIC index.
An input of ["An analysis of the English
present perfect" "The role of the word in
phonological development"] will produce
["<An> analysis ..." "An <analysis> ..."
"... in phonological <development>" ... etc.]

The top-level program to do this is

(I) KWIC :=
(2) UNION ALPHA [(<)[PARTITION]].
(3) ALPHA [(in) TAGFRONT]].
(4) SORT.
(5) ALPHA [(<)[REMOVETAG]];

Line (2) applies the form PARTITION
to each string in the sequence. PARTITION
will "tag" each word in each string, by
producing a copy of the string with angle
brackets around the word, creating
[" An <analysis>...", "An <analysis> ..."
"An analysis <of> ..." ... etc.] A sequence
is produced for each string in the original
sequence, and these are merged to form a single
sequence by the UNION function.

Line (3) adds an occurrence of the "tagged"
word to the beginning of each string. Line (4)
sorts the sequence obtained (SORT is a built-in
function), and Line (5) removes the word added
to the beginning of the string in line (3).

The forms PARTITION, TAGFRONT, and
REMOVE are defined as follows:

PARTITION :=
SPAN(,A,..,Z,) ̂ , ,

{E'<'^$I^'>'^$2^$>] ̂ ,
ALPHA:CAT[S1] (PARTITION<S>)}

ISPAN('A'..'Z') {'<'^$1^'> '}

The SPAN matches the first word, and the action
part of the form places that word ($I) between
angle brackets. The PARTITION<$ portion of the
action returns a sequence of PARTITIONS of
the rest of the string, and the first word is
concatenated onto the beginning of each of
these. When only one word remains, the second
alternative is used.

TAG FRONT:=
'<'^BREAK'>'

{$2 ̂, ,^@$$}

The @$$ is the whole string (the "flattening"
of tree $$ to a string), the $2 is the portion
in angle brackets. A copy of this is moved to
the beginning of the string.

REMOVE TAG:=
~PAN('A'..'Z') ' '

{$>}

This merely removes the string added at the
beginning of the sentence by removing the
first word.

Tree Processin 9 in Post-X

Tree processing facilities are pattern-
directed and similar to string processing
facilities. As pointed out earlier, labelled
trees may be represented as strings containing
brackets. The pattern BAL, carried over from
SNOBOL4, is used to match a full, well-formed
subtree, but is extended to allow a
specification of the value of that tree. Some
tree functions are added for use in forms.
The function FUSE fuses a sequence of subtrees
together at their top node, leaving the label
unchanged. In a tree form, as illustrated

--523--

below, the use of a text string refers to a
subtree with that label, but the function LABEL
will return the label itself. The function
RELABEL (tree, name) changes the label on a
subtree to that named.

Post-X tree processing facilities are
currently undergoing a careful study, and may be
changed, but their present capabilities can
be illustrated by the specification of forms for
two linguistic transformations in English,
EQUI NP DELETION and THERE INSERTION:

EQUI NP DELETION:=TREE("NP"^BAL^"S"^BAL("NP ''̂
BAL)

{If $I=$4~I then
$I^$2^$3^$412}

THERE INSERTION:=TREE("S"^BAL("NP"^BAL^"V ''̂
BAL^ARB)

{$1^FUSE("there"^$2~3 ̂
$2!2^$2~4))

These can be compared to a "conventional"
formulation :

EQUI NP DELETION: X NP y [NP Y] Z
S S

Structural Index I, 2, 3, 4, 5, 6

Structural Change I, 2, 3, 0, 5, 6

where 2=4

THERE INSERTION: X [NP V 4] Z
2 S

Structural Index I, 2, 3, 4, 5

Structural Change I, THERE+3, 2, 4, 5

Illustrating the application of these,

THERE INSERTION in [S[NP[Det[A]N[boy]]
VP[V[is]PP[Prep[in]
NP[Det[the]
N[garden]]]]]

[S[there V[is]NP[Det[A]N[boy]]
PP[Prep[in]NP[Det[the]

N[garden]]]]]].

Tree forms are not as natural as they might
be, and changes can be expected, with the major
goal being to make their use as closely
analogous to that of strings as possible.

Sequences

Post-X has a number of facilities that
apply generally to sequences of items. These
have been illustrated in the examples by, for
instance, the operator ALPHA, which applies
a function to each element of a sequence, and
UNION, which takes a sequence of sequences and
creates a single sequence.

Less obvious, perhaps, is the fact that
strings and unlabelled trees are themselves

sequences; in fact, sequences form the
unifying notion within Post-X data structures.
There remains work to be done to determine how
effectively one can generalize pattern directed
processing to sequences without adding too much
complexity to the language.

The LISP programmer will tend to identify
sequences with lists, in the sense of that
language. There are differences, however. The
facilities in LISP are oriented toward lists
as right-branching binary trees, and though
one can build LISP functions to overcome this,
the programmer generally must manage the lists
with their links in mind. In Post-X, the
programmer is encouraged to deal with the
sequence directly, as one becomes accustomed
to dealing with strings directly in a string
processing language.

Discussion

The SNOBOL4 language has had few competit-
ors over the years as a general string-process-
ing language. Its development and distribution
were undertaken by Bell Laboratories, and thus
it has been widely available for more than a
decade. Yet SNOBOL4 has never been as widely
used for large applications, including those
in computational linguistics, as one might
expect, and in the light of a decade's

experience, it is possible to identify
various difficulties that account for this.

The basic string processing operation of
SNOBOL4, pattern matching, is not the source
of these difficulties. In fact, SNOBOL4
pattern matching provides a high-level-data-
directed facility that should be a standard
for other languages. The major problems were
in the fact that the pattern-matching was
never sufficiently eeneralized, leading to a
II lit linguistic schism , that the syntactic
conventions of SNOBOL4 led to difficulties
and poor structuring 5 , and that the
necessity of constantly assigning values to
string variables was clumsy and tended to
obscure the semantics of all but the simplest
programs

Recently, various attempts have been
made to remedy the problems mentioned above.
But to give up pattern matching, as in
Icon 7 or to resort to a less rich vocabulary
of patterns, as in Poplar11(despite which,
the latter language has a good deal of merit),
is to "discard the baby with the bathwater".
Post-X is the result of attempts to extend
pattern matching and to improve it, at the
same time providing a more natural, flexible
and comprehensible linguistic vehicle.

- -524--

References

I. Backus, John [78], Can programming be
liberated from the Van Neumann style?.
A functional style and its algebra of
programs, CACM voi.21, no.8, August, 1978,
613-641.

2. Bailes, P.A.C., and Reeker, L.H.[80], Post-
X: An Experiment in Language Design for
String Processing, Australian Computer
Sciehce Communications. Vol.2, no.2, March,
1980, 252-267.

3. Bailes, P.A.C., and Reeker, L.H. [80], The
Revised Post-X programming language,
Technical Report no.17, Computer Science
Department, University of Queensland.

4. Galler, B.A., and Perlis, A.J. [70],
A View of Programming Languages, Addison-
Wesley, Reading, Massachusetts.

5. Gimpel, J.F. [76], Algorithms in SNOBOL4,
John Wiley, New York.

6. Griswold, R.E. [79], the ICON Programming
Language, Proceedings,ACM National
Conference 1979, 8-13.

7. Griswold, R.E., and Hanson, D.R.[80], An
Alternative to the Use of Patterns in
String Processing, ACM Transactions on
Programming Languages and Systems,Vol 2,
no.2, April, 1980, 153-172.

8. Griswold, R.E., Poage,J.F., and Polonsky,
I.P. [71], The SNOBOL4 Programming Language,
Prentice-Hall, Englewood'Cliffs, New
Jersey.

9. Hsu, R. [78]
Readability:
Proceedingsp
on Systems.

• Grammatical Function and
the syntax of loop constructs,
Hawaii International Conference

10. Knuth, D.E. [65], On the translation of
Languages from left to right, Information
and Control, vol.8, no.6, 607-639.

11. Morris, J.H., Schmidt, E., and Walker, P.
[80], Experience with an Applicative String
Processing Language, P rOc.Sixth ACM Symp.
on Principles of Programming Languages.

12. Reeker, L.H.[79], Natural language devices
for programming readability: embedding and
identifier load, Proceedings of the 2nd
Australian Computer Science Conferen'ce,
University of Tasmania, 160-167.

13. Yngve, V. [58], A programming language
for mechanical translation, Mechanical
Translation, vol 5, no.l, 25-41.

, - - 5 2 5 - -

