AUTOMATIC TRANSLATION WITH ATITRIBUTE GRAMMARS

Werner Dilger
University of Kaiserslautern
Computer Science Department

D-6750 Kaiserslautern
Federal Republic of Germany

Summary

Starting from an ATN-grammar and translation
rules assigning expressions of a predicate cal-
culus language to the symbols of the grammar one
can produce an attribute grammar for the trans-
lation of natural language sentences (here Ger-
man) into expressions of the predicate calculus
language. The paper illustrates that this can be
done in a straightforward way and outlines fur-
ther improvements of the resulting attribute
grammar.

Introduction

An important component of the natural language
information system PLIDIS, developped by my col-
leagues and myself at the Institut fuer deutsche
Sprache in Mannheim (cf. [BW 78], [XL 79]), is
the translation algorithm, which transduces na-
tural language sentences into expressions of an
augmented first order predicate calculus, called
KS (cf. [pz 78],[2i 77]). Special features of KS
going beyond ordinary predicate calculus are
many-sorted domain of objects, A-abstraction,
and complex term-building facilities. The examp-
les contained in this paper will illustrate
these features., Input for the translation algo-
rithm are the parsed sentence and a set of
translation rules (in the following: TR-rules)
(cf. [wu 79]), which are defined for labels of
the parse tree nodes, mainly for the labels of
the terminal nodes, i. e. for the words of the
input sentence. Working bottom up the parse tree
the translation algorithm assigns a translation
to each of the nodes of the tree by interpreting
the TR-rules defined for the labels of the
nodes. If a translation has been successfully
assigned to the root of the tree, which is la-
belled by 'S, this translation is the translation
of the whole sentence,

The advantage of the translation algorithm, the
most important part of which is the interpreta-
tion of the TR-rules, 1is its rather simple
structure, which facilitated implementation. But
it also has several disadvantages. First of all
the algorithm is not very efficient since it
runs separately from parsing, 1. e. it does not
start before parsing has finished. The TR-rules
must take care of the structure of the parse
tree, that means, during their interpretation we
must check which steps were made in parsing some
relevant part of the tree., Next, the TR-rule for
the label of a node must be completely evalua-
ted, though it depends on the position of the
node in the tree, which parts of the rule apply
to the node or whether the rule applies as a
whole, Finally it is difficult to detect circu-

larities in the translation process on the basis
of the TR-rules.

To avoid these disadvantages we can use attri-
bute grammars for the translation. The content
of the TR-rules must then be represented by
attributes and semantic functions. But for this
purpose we need a context free grammar as a ba-
sis of the parsing. 1In PLIDIS, however, we have
no such grammar, parsing is done by means of an
ATN-grammar (cf. [Wo 70], [Wo 73], [Ba 78], [KL
79]), adapted for German. Though the networks of
the ATN-grammar are not context free produc-
tionsg, we can produce such productions out of
them. At first glance, by doing so, the context-
sensitivity of the networks - which is their
main advantage - is lost. But we can regain it
by providing the productions with appropriate
attributes and semantic functions. If we take a
simpler version of the ATN-grammar, namely the
RTN-grammar ("recursive transition networks")
(cf. [Wo 70]), then an ATN-grammar is nothing
else but an attributed RTN-grammar; so we could
read the letters "ATN" as "attributed transition
networks" instead of "augmented transition net-
works". In the remainder of the paper we omit
the attributes needed to express context condi-
tions, we only deal with those needed for trans-
lation.

To summarize, we have to show how to obtain con-
text free productions from the networks and
attributes and semantic functions from the TR~
rules. We will demonstrate by examples that the
method is straightforward, and we will outline
how the resulting attribute grammar can be im-
proved.

ATN-grammars and TR-rules

We want to parse the following questions asking
for facts of the PLIDIS mini-world, i. e. the
control of water pollution:

Enthielt eine Probe im Jahr 1979 in Stutt-
gart Arsen?

Did a sample in 1979 in Stuttgart contain
arsenic?

Welche Betriebe in Stuttgart hat Zimpel im
Jahr 1979 gepruft?

Which plants in Stuttgart Zimpel has in-
spected in 19797

Welche Betriebe hat Zimpel im Jahr 1979 in
Stuttgart geprift?

wWhich plants zZimpel has inspected in 1979
in Stuttgart?

—397—

Welche Betriebe der Firma Lauxmann in
Stuttgart hat Zimpel gepruft?

wWhich plants of the firm Lauxmann in
Stuttgart Zimpel has inspected?

Welcher Probenehmer hat bei der Firma Laux-
mann im Jahr 1979 Proben gezogen?

Which sampler has taken a sample from the
firm Lauxmann in 19792

We will give a small section of the ATN-grammar
used within PLIDIS, reduced to an RTN~grammar,
which allows the parsing of these questions. The
networks and word classes of fig. 1 are needed
for this purpose.

NG PNG NG PNG

AUXH = fhab}
have

DET = {der, die, das, ein, eine}
the, a

N = {Probe, Probenehmer, Jahr, Betrieb, Firma, Arsen}
sample, sampler, year, plant, firm, arsenic

NPR = {Stungurt, Zimpel, Lauxmann}
PRAEP = {in, bei}

in, at

VERB = {enthalt, priif, zieh}
contain, inspect, take

WDET = {welch}
which !

Figure 1

We obtain by means of this grammar for the
question

Welche Betriebe in Stuttgart hat Zimpel im
Jahr 1979 geprUft?

Which plants in Stuttgart Zimpel has in-
spected in 1979?

the parse tree of fig. 2.

We will now give TR-rules for the labels of some
of the nodes occurring in fig. 2, using small

VERB
inspected

HL gepriift

79
79

NG
DATIIMS -
Jahr

year

PNG

PRAEP {DET
)
das
the

in
n

TNPR
Zimpel
Zimpel i

Figure 2

VERB TNG

PNG
Stuttgart
Stuttgart

in
in

NG
Betriebe
plants

WDET

welche

VK
Y

inspect which

¢
pruf

diagrams which represent sections of possible
parse trees. The triangles in these diagrams de-
note arbitrary (perhaps empty) subtrees. Because
the TR-rules are defined for single symbols of
the grammar regardless of their occurrences in
parse trees, all possible natural language oc-
currences of the symbols must be described and
dealt with in the TR-rules. Therefore in the
following TR-rules not all conditions will be
immediately clear. But that doegsn't matter since
we are not interested in the details of the TR-
rules, rather we will show below how the TR~
rules can be transformed into expressions con-
taining attributes and semantic functions.

398

Betrieb (plant):

if and sort(translat(Y)) =
INDUSTRIE

Betrieb

then if and sort(translat

(PNG)) = ORT

then translat (Betrieb) = [LAMBDA X.BETR
[BETRIEB translat(Y) translat (PNG)
X.BETR]]
else translat(Betrieb) = [LAMBDA X.BETR
[BETRIEB translat(Y) X.ORT X.BETR]]
else iﬁ and sort(translat
(PNG)) = ORT
N PNG
Betrieb

then translat(Betrieb) = [LAMBDA X.BETR
[BETRIEB X.INDUSTRIE translat (PNG)

X.BETR]]

else translat(Betrieb) = [LAMBDA X.BETR

[BETRIEB X.INDUSTRIE X.ORT X.BETR]]

in:

if NG and NG and
PRAEP Y
) Y € {N,NPR} and sort(translat
n (¥)) = ORT

then translat(in) = [LAMBDA X.ORT

[IN translat(Y) X,ORT]

else if NG and 7I§SNG
PRAEP

in sort{translat(Y)) £ INT
then translat(in) = [LAMBDA X,INT[INTEMP
translat (¥) X.INT]]

else if and

NG

sort(translat (NG)) SINT

in
then translat{in) = [LAMBDA X.INT
[INTEMP translat(NG) X.INT]]
else translat(in) = w

Stuttgart:
translat (Stuttgart) = STUTTGART

N:
if and z' € {NG,PNG} and
Z NG
N Y
Z
((z € {Monat,Jahr} and cat(translat(Y)) = KONST
and sort(translat(Y¥)) = INT)
or(Y€ {N,NPR} and " cat (translat(Y)) = TERM and
cat(translat(z)) = LTERM and
sort (translat (Y)) = sort(translat(z))))

then translat(N) = w

The else-part here is assumed to be substituted
by the general rule prescribing that whenever a
TR~-rule does not apply, the translation of the
node will be the translation of one of its
daughter nodes, e.g. here we could write:

else translat(N) = translat(2z)

From the TR-rule for PNG we will only give some

part:
PNG:
if PNG and cat(translat(N)) #
KONST
PRAEP N
then if PNG and Y€ {DET,QDET,WDET,NEG~
DET,ZAHL}
y and cat(translat(Y)) = QUANT
then if cat(translat(PRAEP)} = LTERM

then translat (PNG) =
[translat (YY) translat (PRAEP)]
e]se translat (PNG) =
[translat(Y) translat(N)]
else if cat (translat (PRAEP)) = LTERM
then translat (PNG) =
[[QuaNT EIN] translat (PRAEP)]
else translat (PNG) =
[[QUANT ®IN] translat (N)]

As with the rule for N the else~part is omitted
here too.

Applying these TR-rules to the section of the
parse tree of fig., 2 represented in fig. 3, we
get as translation of thig section:

[LAMBDA X.BETR

[BETRIER X.INDUSTRIE
[IAMBDA X.ORT[IN STUTTGART X.ORT]]
X.BETR])

—399—

NPR

.

Betriebe in Stuttgart
plants in Stuttgart
Figure 3

Transformation of the networks into context free

productions

The first step is to produce sets of productions
by means of the inscriptions of the nodes and
edges, the right hand sides of which consist of
at most two symbols.

S + VERB S/VK | s/vk

S/VK + NG S/VK | PNG S/VK
S/AA ~» NG S/BA | PNG S/AA
S/VERB + ? 5/8

s/s » &

AUXH S/aa | ? s/s
HSVK S/VERB

PNG - PRAEP NG

NG » DET NG/DET | WDET NG/DET | NG/DET |
DATUMSZAHL NG/NG

NG/DET + N NG/NG | NPR NG/NG

NG/NG + ¢ .

HSVK - VERB HSVK/VK | HSVK/VK
HSVK/VK + €

In the next step the sets of productions are
combined for each network to a single production
the right hand side of which consists of a regu-
lar expression. The set for PNG is duplicated,
omitting PRAEP, to get a separate production for
NG.

S + (VERB|e) (NG|PNG) ¥ (AUXH (NG |PNG) “HSVK 2 | 2)
PNG - PRAEP ((DET|WDET| &) (N|NPR) | DATUMSZAHL)
NG -+ (DET|WDET|e) (N|NPR) | DATUMSZAHL

HSVK —~ VERB|e

Now these productions are transformed step by
step into "disjunctive normal form", where se-
quencing (represented by iuxtaposition) corres~
ponds to the logical "and", corresponds to the
logical "oxr".

* * * * * %
S + (VERB|g) (NG PNG) (AUXH(NG PNG) HSVK ? | ?)

* * * * % %
§ » (VERB|e) (NG,PNG) AUXH(NG PNG) HSVK ? |
(VERB|g) (NG PNG") " ?

S + VERB (NG¥PNG*) ¥AUXH (NG¥PNG¥) ¥HSVK ?
(NG#PNG¥) ¥ AUXH (NG¥PNG¥) ¥HSVK ? |
VERB (NG¥PNG¥*) %7 |
(NG¥PNG¥) %?

PNG - PRAEP (DET| WDET|e) (N|NPR)
PRAEP DATUMSZAHL

PNG + PRAEP DET N | PRAEP WDET N | PRAEP N |
PRAEP DET NPR | PRAEP WDET NPR
PRAEP NPR | PRAEP DATUMSZAHL

NG+~ DET N | WDET N | N | DET NPR | WDET NPR |
NPR | DATUMSZAHL

Finally those parts provided with * are removed
introducing new symbols and productions.

S -+ VERB NG/PNG AUXH NG/PNG HSVK ?
NG/PNG AUXH NG/PNG HSVK ?
VERB NG/PNG ? | NG/PNG ?

NG/PNG -+ NG NG/PNG | PNG NG/PNG | NG | PNG | €

If we form sets of productions out of the word
classes, we get altogether:

S - VERB NG/PNG AUXH NG/PNG HSVK ? |
NG/PNG AUXH NG/PNG HSVK ? |
VERB NG/PNG ? | NG/PNG ?

NG/PNG -+ NG NG/PNG | PNG NG/PNG | NG | PNG | &

PNG + PRAEP DET N | PRAEP WDET N | PRAEP N |
PRAEP DET NPR | PRAEP WDET NPR |
PRAEP NPR | PRAEP DATUMSZAHL

NG > DET N | WDET N | N | DET NPR | WDET NPR |
NPR | DATUMSZAHL

HSVK - VERB | €
AUXH - hab
DET + der | die | das | ein | eine

N -+ Probe Probenehmer l Jahr] Betrieb
Firma Arsen

NPR » Stuttgart [Zimpel] Lauxmann

PRAEP - in | bei

VERB - enthalt | pruf | zieh

WDET -+ welch

The parsing of our guestion example by means of
these productions yields the parse tree of fig.

4, The section of this tree corresponding to
that of fig. 3 is represented in fig. 5.

Providing the productions with attributes

We will now give a list of attributes and se-
mantic functions for the productions and augment
the productions by them such that the evaluation
of the semantic functions yields the translation
of the sentence. We will do this only for those
productions needed for the section of fig. 5.

—400—

welche Betriebe

which plants.

| DATUMSZAHL

in Stuttgart in das Jahr
in Stuttgart in the year

79
Figure 4

NG/PNG

J.

Betriebe
plants

NPR

in Stuttgart
in Stuttgart
Figure 5

Attributes

name class domain

tval |synthe- | n-tuple of KS-expressions (trans-
sized lations), in general n = 1

ttree|synthe~ | sets of triples, consisting of
sized the position of a symbol in the
parse tree, the symbol itself,
and the value of the symbol

‘tree in- same as with +ttree
herited
ypos in- finite sequences of positive in-

herited | tegers, separated by dots

Semantic functions

name |[mnemo- |argument use
technic
cat cate= transla~|yields the KS-syntactic
gory tion t category of t
sort |sort transla~|yields the sort of t
tion t

symb |symbol |position|yields from Jtree the
P symbol of the node with
position p

nth n-th position|yields the last integer
(=last) |p of p
element

valuejvalue position|yields from }tree the
p value of the node with
position p

del delete |position|replaces in ‘tree the
P value of the node with
position p by w

tval is the most important attribute, for it
contains the translation of a node. The other
attributes are auxiliary attributes. +‘Jtree con-
tains in each node a relevant section of the
parse tree with all necessary informations about
the nodes of that section, namely their labels
and their values. Already Knuth ([Xn 68]) has
given a technique for representing the attribute
values of all other nodes at each node of the
tree. We adopt this technique here in a slightly
modified way since it offers an elegant way to
rewrite the conditions of the TR-rules as ex-
pressions containing semantic functions and
attributes for appropriate productions. We will
illustrate how this technique works, using the
structure of fig. 5. The only information we are
interested in for this example are the labels of
the nodes. Let
Xo -> X1 X2"'Xn (n 2 0O)

be a production, where the X, (i = 1,...,n) are
terminal or nonterminal symbols. If n=0, XO is
terminal. Then:

—401—

_ | ¥pos(X)i, if X # 8

vpos(X,) = { i, ° if xg = s
_ | Ytree(x), if X # 8

+tree(Xi) ‘{¢tree(xz), if XZ = 5

{tvpos x) ,x)}
n

U £:{+tree(xi), if X #8

Pree(X)
o

n
ttree(X,), if X =8

A i e}

i=1

We can easily obtain the +‘pos-value for each
node of fig. 5 beginning with the NG/PNG-node
which is dominated by the S-node and for which
we assume: Ypos(NG/PNG) = k. The ‘pos-values are
given in fig. 6. Using these values, we obtain
e.g.

ttree (PNG) = {(ke2+1,PNG), (k+2+1+1,PRAEP),
(ke2s1ele1,in), (k=2+1+2,NPR),
(k#2+1%2+1,Stuttgart)}

The Ytree-value for NG/PNG (and thus for all
other nodes) is

Ytree (NG/PNG) = {(k,NG/PNG), (k*1,NG), (k*1+1,N),
. (kelelel,Betriebe), (k*2,NG/PNG),
(ke2+1,PNG), (ke2+1+1,PRAEP),
(ke2¢i+1e1,in), (k*2+1+2,NPR),
(ke2+1+2¢1,Stuttgart)}

In order to obtain the values of attributes de-
fined for the productions it is often necessary
to determine a new position starting from a
given one. For this purpose some of the integers
at the end of the position must be omitted or
others must be appended. If the last integer of
the position belonging to symbol X shall be
omitted we write

LN
Ipos=k-11

PRAEP
lpos=k-2:11

oBetriebe

dpos=k-1-11 lpos=k-21-2

in
Ipos=k-2-1-11

Stuttgart
Ipos=k2:1-21

Figure 6

Ypos (X) -1

If the last two integers shall be omitted, we
it
write Ypos (X)-2
etc. If an integer, say k, shall be appended j
times, we write .
Ypos (X) <k’

Now we are ready to give the productions needed
for the structure of fig. 5, provided with
attributes and semantic functions.

N - Betrieb

if_symb(¢pos(N)—1)E{NG,PNG} A
symb ((Ypos (N) ~2) #2¢1)=NG A
((symb (¥pos (N) *1)E{Monat,Jahr) } A
33>0: cat(value((¥pos(N)~2)+2e¢1+5))=KONST A
sort (value ((+pos (N)=2) «2e1¢3))=INT) v
(33>0: symb((+pos (N)-2)e2+1+3)E{N,NPR} A
cat (value ((ypos(N)~2) e2s1+7j))=TERM A
cat (value (ypos (N) »1)) =LTERM A
sort (value (Ypos (N) ¢1))=
sort (value ((Ypos (N)~2) +2+1+3))))
then tval(N) = w
else if sort(value((ypos(N)-1)e+2¢1))=INDUSTRIE
then if 3j>0: symb((¥pos(N)-1)s+2J+1)=PnG
sort(value ((+pos (N)-1)2]e1))
=0ORT
then 4val(N) = [LAMBDA X.BETR[BETRIEB
value((%pos(N)—l)-Zjl)
value ((Vypos (N)-1)+2d1)
X.BETR]]
del ((¥pos(N)-1)e2.1)
del ((Ypos (N)-1) «2]«1)
else tval (N) = [LAMBDA X.BETR[BETRIEB
value ((ypos (N)-1)21)
X.ORT X.BETR]]
del ((¥pos(N)=1)e2+1) .
else if 33>0: symb((¥pos(N)-1)2]+1)=PNG
sort (value ((Ypos (N)-1) +2J3e1))
=ORT
then +tval (N) = [LAMBDA X.BETR[BETRIEB
X.INDUSTRIE .
value ((ypos (N)-1)+2Je1)
X.BETR]]
del ((vpos (N)-1) «2Je1)
else tval(N) = [LAMBDA X,BETR{BETRIEB
X.INDUSTRIE X.ORT
X.BETR])
ttree(N) = {(ypos(N),N,+val (N)),
(vpos (Betrieb) ,Betrieb,uw)}
Ypos (Betrieb) = {Ypos(N)-1

The first part of the expression needed to de-
termine the value of 4val (N) comes from the TR~
rule for N, the second part from the TR-rule for
Betrieb (plant).

For the symbol NG there ig a TR-rule too. We
omit it here, because it does not apply to our
example. Therefore we deal with the production
NG - N in such a way, as if there were no TR-
rule for NG.

—402—

NG - N

if value(¥pos(N)) = w

then tval (NG) = w

else tval (NG) = +tval (N)

ttree (NG) = {(¢pos (NG),NG,+tval (NG))} U +tree(N)
Ytree(N) = Vtree(NG)

ypos (N) = Jpos (NG) ¢1

PRAEP -+ in

if symb (ypos (PRAEP)~-1) = PNG
then if 3j#nth(ypos (PRAEF)):
symb { (¥pos (PRAEP)~1) +j) E{N,NPR} A
sort (value ((ypos (PRAEP)~-1) ¢j)) =ORT
then 4val (PRAEP) = [LAMBDA X.ORT[IN
value ((Ypos (PRAEP)-1) ¢3)
X.ORT])
del ({¥pos (PRAEP)-1) «7)
else if 3Ij#nth (Vpos (PRAEP)) :
sort (value ((¥pos (PRAEP)~1) +3))
£ INT
then 4val (PRAEP) = [LAMBDA X.INT
[INTEMP
value ((ypos (PRAEP)-1) «3)
X.INT]]
del ((¥pos (PRAEP) -1) »3)
else if 3j>0: symb (({pos (PRAEP) -2)
e2Je1) = NG
sort (value ((ypos (PRAEP)
~2)+2Js1)) £ INT
then 4val (PRAEP) = [LAMBDA X.,INT
[INTEMP value ((ypos (PRAEP)
-2)+23¢1) x.INT]]
del ({¥pos (PRAEP) -2) «27J 1)
else +tval (PRAEP) = w
else tval (PRAEP) =
+tree (PRAEP) = {(Vpos (PRAEP),PRAEP, tval (PRAEP)),
(¥pos (in) ,in,w) }
ypos (in) = {pos (PRAEP) «1

NPR = Stuttgart

4val (NPR) = STUTTGART

+tree (NPR) = {(¥pos(NPR),NPR,tval (NPR)),
(¥pos (Stuttgart),Stuttgart,w)}

Ypos (Stuttgart) = ¥pos(NPR) 1

PNG ~ PRAEP NPR

if 33>0: symb(Y¥pos(PNG)*j) = N
cat (value (¥pos (PNG) «j)) # KONST
then if 3i>0: symb (Ypos (PNG) «i)E{DET, QDET, WDET,
NEGDET, ZAHL}
cat (value (ypos (PNG) +i)) = QUANT
then if cat(4val (PRAEP)) = LTERM
then 4tval (PNG) = [value(%pos(PNG)-i)
4val (PRAEP) |
del (¥pos (PNG) «1i)
del (¥pos (PRAEP))
else tval (PNG) = [value (Y¥pos (PNG) i)
value (¥pos (PNG) »3)]
del (¥pos (PNG) i)
del (Ypos (PNG) *3)
else EE cat (tval (PRAEP)) = LTERM
then 4val (PNG) = [EIN +4val (PRAEP)]
del (¥pos (PRAEP))

else 4val (PNG) = [EIN value (Ypos (PNG)
*i)]
del (ypos (PNG) «3)
else i£_¢val(PRAEP) = W
then tval (PNG) = 4val (NPR)
else 4val (PNG) = 4val (PRAEP)
ttree (PNG) = {(¥pos(PNG) ,PNG,+val (PNG)) }
U ttree (PRAEP) U 4tree(NPR)
Ytree (PRAEP) = ‘tree (PNG)
{tree (NPR) = Jtree (PNG)
{pos (PRAEP) = {pos (PNG) 1
{pos (NPR) = Ypos (PNG) 2

NG/PNG -+ PNG
if value (ypos (PNG)) = w

then 4val (NG/PNG) =
else 4{val (NG/PNG) = 4val (PNG)
ttree (NG/PNG) = {{4pos (NG/PNG) ,NG/PNG,
+val (NG/PNG))} U ttree (PNG)
Ytree (PNG) = Jtree{NG/PNG)
Ypos (PNG) = ¢pos (NG/PNG) 1

NG/PNG, + NG NG/PNGg

if value (ypos(NG)) = w
then 4val (NG/PNG,) = 4val (NG/PNGy)
else ig_value(+pos(NG/PNG=)) =

then tval (NG/PNG4) = 4val (NG)

else tval (NG/PNG,) = (4val(NG),

tval (NG/PNG2))
‘tree (NG/PNG,) = {(4pos (NG/PNG,),NG/PNG,
tval (NG/PNG4))} U 4tree(NG)
U +ttree (NG/PNGy)

tree (NG) = Jtree(NG/PNGq)
Ytree (NG/PNG,) = Ytree (NG/PNGq)
4pos (NG) = pos (NG/PNG4) +1
+pos (NG/PNG,) = {pos (NG/PNG4) ¢2

With these productions we obtain immediately the
value of the Jtree-attribute for @ach node of
the structure of fig. 5 or 6, when we postpone
the evaluation of the 4val-attribute. The wvalue
ils

{ (k,NG/PNG, +val (NG/PNG)), (kel,NG,+val (NG)),
(kelel,N,4val (N)), (kelelsl,Betriebe,wn), (k*2,
NG/PNG, 4val (NG/PNG)), (k+2+1,PNG, tval (PNG)),
(ke2¢1s1,PRAEP, }val (PRAEP)), (ke2elelel,in,w),
(ke2e1+2,NPR,tval (NPR)), (ke2ele2e1,8tuttgartw)}

The production NPR + Stuttgart yields
tval (NPR) = STUTTGART

We can substitute this value in {tree or regard
"Aval (NPR)" as a pointer to this value. Now we
try to determine 4val (PRAEP) from the production
PRAEP -+ in. First we have

symb (ypos (PRAEP) -1) = symb(ke2elel - 1)
symb(ke2e¢1l) = PNG

i

That is, the first condition holds. Next
nth (¥pos (PRAEP)) = 1
therefore j>1. Assume j=2. Then

symb ((ks2elel - 1)e2)
symb (k*2+12) = NPR

symb ((¥pos (PRAEP) -1) +3j)

—403—

Further

sort (value ((ypos (PRAEP)-1) +2))
= gort(value(ke2ele2))
ORT

sort (STUT'TGART)

The second condition holds too,
+val (PRAEP)
Within the production PNG - PRAEP NPR the first

thus we get

[LAMBDA X.ORT[IN STUTTGART X.ORT]]

condition needed to determine +tval (PNG) does not
hold, so we get

+val (PNG) = 4val (PRAEP)
If we assume these values to be substituted in

ytree, we now have the intermediate result

{ (k,NG/PNG, +val (NG/PNG)), (k*1,NG,+val (NG)),
(kelel,N,4val(N)), (kelelel, Betricbe,w),
(k+2,NG/PNG, +val (NG/PNG)), (k*2+1,PNG,

[IAMBDA X.ORT[IN STUTTGART X.ORT]]), (ke2slel,

PRAEP, [LAMBDA X.ORT[IN STUTTGART X.ORT]]),
(ke2elelel,in,w), (ke2¢1¢2,NPR,w), (ke2e1e2e1,
Stuttgart,w) }

It is left to the raeder to compute the final

result applying the remainding productions.

Conclusion
e ——

We have illustrated how an attribute grammar can

be produced from the networks and TR-rules used
within PLIDIS, which has the same expressive
power as the underlying networks and rules. The

advantages of the ATN-grammars for the parsing
of natural language sentences are well known,
Above all they are an elegant tool to write
grammars especially suited for linguists. The-TR
~-rules have advantages similar to these. Surely
they are easier to write than the somewhat cum-
bersome expressions for determining attribute
values, particularly those for the {tval-attri-
bute. In the TR-rules, however, attempt is made
to describe and deal with all possible occurren-
ces of a symbol. With the attributed productions
this is not necessary, since for a single pro-
duction some of the cases which stem from the
possible occurrences of one or more symbols can
be omitted a priori. For example, in the pro-
duction PNG - PRAEP NPR the whole first part for
determining +4val (PNG) can be omitted, because
the first condition does not hold for this pro-
duction., In a similar way we can omit some part
in the production N = Betrieb. Further improve-
ments can be made by changing the productions
themselves, e. g. by partly eliminating those
symbols which denote word classes. Performing
all possible improvements certainly leads to an
attribute grammar which yields translations of
sentences in a rather efficient way. On the
basis of this grammar we can detect circulari-
ties which can occur in the translation process
by means of well defined algorithms (cf. [Bo
76]).

—404—

[Ba

[Dz

[kn

[kn

[zi

78]

78]

76]

78]

68]

71]

79]

70]

73]

79]

77]

theorie,

References

M., Bates, The theory and practice of
augmented transition network grammars
in: L. Bolc (ed.), Natural language
communication with computers

Springer Lecture Notes in Computer
Science, 63, 191-259, Berlin 1978

G.L. Berry-Rogghe/H. Wulz, An overview
of PLIDIS, a problem solving information
system with German as query language

in: L. Bolc (ed.), Natural language
communication with computers

Springer Lecture Notes in Computer
Science, 63, 87~132, Berlin 1978

G.V. Bochmann, Semantic evaluation from
left to right

in: CACM 19(2), 1976, 55-62

W. Dilger/G. Zifonun, The predicate cal-
culus—-language KS as query language

in: H. Gallaire/J. Minker (eds.), Logic
and data bases

Plenum Press New York,

1978, 377-408

D.E. Knuth, Semantics of context-free
languages

in: Math. Systems Th. 2,
and Math. Systems Th. 5,

1968, 127-145
1971, 95-96

D.E. Knuth, Examples of formal semantics
in: E. Engeler (ed.), Symposium on se-
mantics of algorithmic languages
Springer Lecture Notes in Mathematics,
188, 212-235, Berlin 1971

M. Kolvenbach/A. Létscher/H-D. Lutz
(eds.) Kungtliche Intelligenz und natiir-
liche Sprache

Forschungsberichte des Instituts filr
deutsche Sprache, 42,

G. Narr-Verlag Tidbingen, 1979

W.A. Woods, Transition network grammars
for natural language analysis
in: CACM 13, 1970, 591-606

W.A. Woods, An experimental parsing sy-
stem for transition network grammars
in: R. Rustin (ed.), Natural language
processing

Algorithmic Press New York, 1973, 112-
154

H. Wulz, Formalismen einer Ubersetzungs-
grammatik

Forschungsberichte des Instituts fir
deutsche Sprache, 46

G. Narr~Verlag Tibingen, 1979

G. Zifonun, Die Konstruktsprache XS
in: K. Heger/J. Petdfi (eds.), Kasus~
Klassifikation, semantische
Interpretation

Papiere zur Textlinguistik 11, Hamburg
1977

