
DATABASE SYSTEM BASED ON INTENSIONAL LOGIC

Naoki Yonezaki, Hajime Enomoto

DEPARTMENT OF COMPUTER SCIENCE
TOKYO INSTITUTE OF TECHNOLOGY
2-12-1, OOKAYAMA, MEGURO-KU

TOKYO 152, JAPAN

Model theoretic semantics of database
systems is studied. As Rechard Montague has
done in his work, 5 we translate statements of
DDL and DML into intensional logic and the
latter is interpreted with reference to a
suitable model. Major advantages of its
approach include (i) it leads itself to the
design of database systems which can handle
historical data, (ii) it provides with a formal
description of database semantics.

1. INTRODUCTION
There have been developed several

knowledge-base systems which utilize
mathematical logic, however they can Great facts
or rules at the current world only. ~~

In the medical fields or the area of
artificial intelligence there are many
applications in which the database systems with
historical data handling capability are
required. For example, in a query to a medical
database tHas a sterum treatment been applied to
John?' historical data is essential.

One of the reasons why existing database
systems provide poor support for such historical
information is probably because very few
theoretical study has been done yet.

Intensional logic (IL) which Rechard
Montague developed to describe semantics of
natural language formally seems to be useful to
the theory of such database. The first
application of modal logic to the logic of
database was done by Lipski, though he treated
incompleteness of database only.

In the Montague's approach, concepts of
intension and extension are used. 5'6 The same
concepts can be applied in the theory of
database. Correspondence between IL and
semantics of database is shown in Fig.l.

[Intensional Logic] :
possible worlds
extension
intension
meaning postulates :

[Database]
states of database
data at some state
historical data
integrity constraints

Figol Correspondence between Intensionals
Logic and Database system

The extension of a constant predicate P in
IL which corresponds to a relation in database
corresponds to the contents in the current
database state.

The main purpose of this paper is to
describe in a implementation-independent way
aspects of those database semantics, which are

characterized by interpretation of update
operations and queries . And we show the
feasibility of using intensional logic for
description of the semantics.

The treatment of update of database is
closely related to that of assignment in
programming language with data type
specification facility.

Firstly we use Montaguets intensional logic
and later we will introduce two-sorted type
theory to treat queries which refer state
indirectly.

In section 2, we define a data model
treated in this article. This data model is
considered as hierachical relational model. In
section 3, syntax of intensional logic is
defined and its semantics is stated in section
4. In section 5, 6, syntax of query statements
and their Montague semantics are given. In
section 7, 8, data manipulation statements are
introduced and their semantics is also defined.
In section 9, semantics of two kinds of null
value is stated as meaning postulates. In
section i0, we introduce two-sorted type theory
and give semantics of statements referring
states. Section II is a concluding section.

2. DATA MODEL
In this section we define a data model

which corresponds to relational model exploiting
hierarchical structure of relations, that is,
each component of relation may be also a
relation or set of relations recursively. In
the Relational Model which Codd 7 introduced,
3rd-normal form or 4th-normal form is exploited
to avoid the update anomalies, though we regard
it as an implementational matter. Hierachical
structure of relation is quite natural for
representing information in the real world.

As a part of a data definition language
(DDL), schema declaration is formally defined as
follows. This DDL describes hierachical schema
of database, name of each relation and attribute
names or selector names of a relation. When we
consider schema of relation, we do not concern
the name of relation.

Let S O be the set of all elementary data
types e.g. integer, real or string of characters
and so on, and F be the set of selector names.
Schemas of database are constructed from S O
recursively as strings on C t = S O u {[,],',:}
F.

Def. The set S of schemes is the smallest
set S 2 satisfying (i),(2).

220

(i) SimS0US 2,

(2) t I tneS I, s I SnEF (si~s j for imj)

=> [sl:t I ,Sn:tn]ES2 (l~n).

Schema declaration in our DDL is of the
form

Relation name = t
• where t E S.

Now we can define the hierarchical
relational database (HRDB) as follows.

Def. The set HD of HRDB is defined as

HD= U D t .
t~S

For t E S, D t is the set of database whose

schema is t defined recursively with the
following rules (I), (2).

(i) tES 0 => Dt=E~, where E~ is the set of data
-- 5 L

havlng elementary type t,

(2) tES and t=[Sl:t I Sn:t n] =>

Dt=2Dt~ ×Dt~ ×...×DL'
L n

, where Dt~DtiU{NULL1,NIJLL2}.

An e x a m p I e o f a d a t a b a s e i s s h o w n a s
f o l l o w s .

Example i
Now, we consider an employee relation

comprising of tuples which have hierarchical
structure. Each such tuple consists of employee
number, name, education relation, age, a set of
skills and children relation.

Corresponding schema declaration is as
follows.

EMPi=[$E:int, NAME:string,
EDUCATION:[SCHOOL:string, DEG:string, YR:int],
SKILL:[SNAME:string],
KIDS:[KNAME:string, AGE:int, SEX:string],
SAL:int]

Fig.2 is an instance of database with this
schema at some state or world.

EMPI
EDUCATION SKILL

SE NAME SCHOOL DEG YR SNAME

i CARY J

2 JONES

3 SMITH

A NULL2 58 SA
B i B 64 SE

SM

C A 72
D C 74 NULL1
A NULL2 80

C ! A 50 SB
SD
SE

KIDS
KNAME AGE SEX'SAL

JACK 8 M i
JILL 5 F 15K
JOHN i0 M

NULLI !14K

MARY 17 F
20K

Fig.2 Instance of the Employee Relation

The value 'NULL1' means nothing, however in
some state there may be some values. The value
'NULL2' means absolutely no value exists in any
state. The order of selector in each tuple is
insignificant and order of raw is also
insignificant. This hierarchical schema can be
visualized by tree graph. Fig.2 is a two-
dimensional representation of hierarchical data
which reflects the images of data instances.

EMPi
i $E INAME I sAL I

I
I l

EDUCATION SKILL

Fig.3 A tree graph of hierarchical data

Note that the data declaration in our DDL
and this graph show the data structure only
while the graph provides a convenient means to
visualize the instances.

!
KIDS

KNAME AGEJ SEX ~

3. SYNTAX OF INTENSIONAL LOGIC
Intensional logic used in the Montaguets

approach is based on the theory of types. In
this section we describe the extended version of
IL according to Gallin. 8 The set of all
possible types is recursively defined as
follows •

Def. Let e, t, s be any three objects. The
set of types of IL is the smallest set T
satisfying (1)~(3).

(I) e, t ¢ T,
(2) a, b ~ T => <a, b> E T,
(3) a E T => <s, a> E T.

Objects of type e correspond to entities.
Type of IL corresponds schema of our DDL or DML.
Our schema supports n-ary relations, and it is
considered as n-ary function whose range is
truth values. For any function of two (or more)
arguments there exists an equivalent one which
takes one argument at a time, 9 i.e. (Di×D2 × ...

×D n) -> Dn+ 1 corresponds to (D 1 -> (D 2 -> (...->

(D n -> Dn+l)))) ...). In this way we can make

the types in IL correspond to schemas of our
DDL. Dtype which is a subset of type T in IL is
now introduced as follows.

Def. Dtype is the smallest set of T A
satisfying (1)~(4).

(i) e E T B,

(2) a E T A => <s, a> ~ T B,

(3) a E T B => <a, t> e T A,

(4) be T B, a e T A => <b, a> ~ T A.

Constants of type <s,a> (a E Dtype)
correspond to relations with schema
corresponding to type a. Such translation will
be defined formally in section 6. Intuitively
speaking, constants of type <s,<e,t>>

--221

corresponds to relations with schema [s: int],
[s: real] or Is: string], i.e. single flat
domain relation. Constants of type
<s,<<s,a>,t>> correspond to relations with
schema [s: [...]] i.e. hierarchical relations of
single domain whose value is not flat but a
relation with schema corresponding to type
a. By rule (4), we can define the type of IL
corresponding to n-ary relation schemas.

Example 2
The type of constant in IL

corresponds to relation in Example 1 is
which

<s,<e,<e,<<s,<e,<e,<e,t>>>>,<<s,<e,t>>
,<<s,<e,<e,<e,t>>>>,<e,t>>>>>>>.

We take CON a (VAR a) to be the set of constants

(variables) of type a. Now, we define the set
Tm a of terms of IL of type a as follows.

Def.
(i) CON a c Tm a,

(2) VAR a c Tma,

(3) A, B E Tm e => A+B, A-B, A,B, A÷B ~ Tm e,

(4) A e Tm<a,b >, B £ Tm a => A[B] ~ Tm b,

(5) A ¢ Tm b, x E VAR a => ~.x(A) ~ Tm<a,b >,

(6) A, B E Tm a => (A-B) E Tm t,

(7) A E Tm a => hA E Tm<s,a >,

(8) A e Tm<s,a > => VA ETm a'

(9) A, B E Tm a, P E Tm t => (P + A, B) e Tm a,

(i0) A ¢ Tm a, c E CON<s,b >, B e Tm b =>

{B/Vc}A £ Tm a,

(Ii) A e Tm t => PA e Tm t, FA e Tm t.

The additional construct (i0) is introduced
by Janssen. I0 Following Henkin, II we define
sentential connectives, quantifiers and modal
operators as follows.
Def.

(I) T = [kxtxt-~.xtxt].

(2) F = [~,xtxt-AxtT],

(3) ~ = Xxt[F'xt],

(4) A = AxtkYt[If<t,t>[fx.y].~f<t,t>[fT]] ,

(5) ÷ = kxtkYt[[xAy]'x],

(6) V = ~xtAYt[,-.x+y],

(7) YxaA = [AxaA'AxaT],

(8) ~XaA = ~¥xa~A,

(9) [Aa~B a] = [AAa'ABa],

(I0) []A = [A~T].

(ii) OA = ~[]~A.

We write [AAB] instead of [[hA]B] where A
and B are formulas, similarly for the other
binary connectives.

4. SEMANTICS OF IL
The terms of intensional logic are

interpreted in an intensional model. Such a
model is a system M = (Ma, <, m)a£T, where M a is

a frame based on non-empty sets D and I, and <
is a linear ordering on S. To simplify
following arguments, we make no distinction
among 'int', 'real' and 'string', and they are
represented by D.

Def. Frame is defined as the indexed family
(Ma)aE T of sets, where

(i) Me=D u {NULL1, NULL2},

(2) Mt=2={0,1},

(3) M<a,b>=MbMa={FIF:Ma->Mb},

(4) M<s,a>=MaI={FIF:I->Ma } U {NULL1, NULL2}.

Function m must be such that if c is a a
constant of type a, then m(Ca)eM<s,a >.

Tile assignment g is a function from
variable to value such that if x e VAR a then
g(x a) e M a. If x a is a variable of type a, and

x e M a then g(x/X) denotes the value assignment
exactly like g except that it assigns the value
X to the variable x.

Now we define the interpretation of a term
A a in a model M with respect to the state s and
the assignment g. It is denoted by VM,s,g(Aa)

and defined inductively as follows. (We dropped
the subscript 'Mr.)

Def.

(i) Vs,g(Xa)=g(Xa), XaEVARa,

(2) Vs,g(Ca)=m(Ca)(S), CaeCON a,

(3) Vs,g(Ae+Be)=Vs,g(Ae)+Vs,g(Be) and similar

for the other arithmetical operations,

(4) Vs,g(A<a,b >[Ba])=Vs, g(A<a,b>)[Vs,g(Ba)],

(5) Vs,g(XXaAb)=the function f with domain M a,

such that whenever XeM a then f(x)=Vs,g,(Ab),

where g'=g(x/X). By using meta-operator [,

we express the above as [X[Vs,g,(Ab)] ,

(6) Vs,g(Aa-Ba)=l if Vs,g(Aa)=Vs,g(Ba), and 0

otherwise,

(7) Vs,g(AAa)=[j[Vj,g(Aa)] ,

(8) Vs,g(VA<s,a>)=Vs,~~(A<s,a>)(s),

(9) Vs,g((Pt+A a, Ba))=Vs,g(Aa) if Vs,g(Pt)=l,

and Vs,g(B a) otherwise,

(10) Vs,g({Bb/VC<s,b>}Aa)=Vt,g(Aa), where

t=<c+V s,g(B b) >s,

(II) Vs,g(PAt)=I if there is some s' in S such

that s'<s and Vs,,g(A)=1, 0 otherwise,

(12) Vs,g(FAt)=l if there is some s' in S such

that s<s' and Vs, g(A)=l, 0 otherwise.

2 2 2

In the rule (10) t denotes the state in
which all constants have values exactly like in
s except that the value of Vc is the value of
the expression B b in the state s.

We must clarify the notion of state in our
model to define the meaning of database. State
is understood to present the internal situation
of a database. A state is altered by update
operations. A new state s I preceeds an old
state s 2, i.e. (s2<sl). Clearly a state sEl
determines the value of all relations. The
effect of update operation is that it modifies
the value of single relation, and in order to
model this update operation, it should be
assumed that the resulting state always exists
and is unique.

So we restrict our model for IL which
satisfies the following postulates.

I) Update postulate
For every t I ~ I, every c ¢ CON<s,a > (a E

Dtype) and every i e M a, there exists a unlque
t 2 E S such that

I Vs,g(C)(t I) = i,

Vs,g(C')(t I) = Vs,g(C')(t2),
for all constants c' m c.

2) Uniqueness postulate
For every t i, t 2 e I (t I ~ t$), there

exists c ~ CON<s,a > (a e Dtype) such t~at

Vs,g(C)(t I) ~ Vs,g(C)(t2),

that is, the result of update operation should
be distinct from all of the other states.

Therefore, we can identify a state with
contents of database. The database is
translated into constant in IL. So the set I of
states is defined by

-N- T
I = aeDtype c~CON<s,a>Ma

5. QUERY STATEMENTS
Now we introduce a syntax of queries in our

data manipulation language (DML). The set Q of
queries is defined as QiuQ2 recursively.

Def.

(i) O, I c Qi'

(2) d E descriptor => d E QI'

(3) ql' q2 ~ Qi => -ql' (ql+q2)' (ql°q2)'
(ql÷q2), always ql' past q1' future q2 ~ QI'

(4) f ~ Q2' q ~ Q1 =>

q when f, q whenever f c QI'

(5) T, F ~ Q2'

(6) ql' q2 E Q1 => ql=q2 e Q2'

(7) fl' f2 E Q2 =>'If1' (flVf2)' (flAf2)'

(fl=>f2), always f, past f, future f,

f2 when fl' f2 whenever fl E Q2"

Qi is the set of queries for which an
answer is a set of objects. For a query in Q2
an answer is yes or no.

Every descriptor is of the form <R, s I,
s 2, A>, where R is a relation name, s], s 2 are
sequences of selectors, and A is the ~ubset of

D t which is accessed by s 2.
<R, s I, a 2, A> is used to denote the set of

~ element of tuples in the relation R whose s 2
ement is in A. In the above rule (3) all

descriptors in (ql+q2), (qloq2) or (q1÷q2) must
have the same selector sequence s I as their
second component.

We assume certain auxiliary language for
describing A which is a subset of the domain D t.

Example 3
Let us consider a query, tWas every

employee who has a child named Jack educated at
school B or C?' on the database given in the
previous example. We have a expression

<EMP, NAME, KIDS.KNAME, {Jack}> o
-<EMP, NAME, EDUCATION.SCHOOL, {B, C}>=0.

Let us consider another example as follows.
'Get all names of employees who always earn

more than I0000 or less than 500. I The
corresponding expression is

always(<EMP, NAME, SAL, {xlx>10000}> +
<EMP, NAME, SAL, {xTx<500}>).

6. SEMANTICS OF QUERIES
We have already defined a model theoretic

meaning of IL. Thus the remaining part of
Montague semantics is defining a translation
which gives for each syntactic structure of the
language some meaningful expression of IL. For
a part of statement E, its translation into IL
is denoted E t. Relation name R is translated
into a constant R' of IL whose type is
determined by its schema declared at DDL. More
precisely this type is determined with next
rules. If there is a statement VRname: t' in a
data definition part, then type of the constant
Rname' is G(t), where G is a function
satisfying,

Def. G: S -~ Dtype

(i) t = [Sl:t I, s2:t 2 Sn:t n] =>

G(t)=F(t)=<s,<F(t I) ,<F(t 2) <F(t n) ,t>>...>,

(2) tE S O => F(t) = e.

Each descriptor <R, s I, s 2, A> is
translated according to the schema of R and
sequences of selectors s I and 82. Let s o denote

the common maximal prefix of s I, s 2 and Is0i'~=n,

Is I [=n+k, Is 21=n+q, i.e. s I, s 2 are represented

as Sl=S01.s02...S0n.Sll.Sl2...Slk, s2=s01.s02

... S0n. S21.s22...S2q.

t For string s, Isl denotes length of s.

223

[<R, s I, s 2, A>]'=

~iSlk (~iSon([R(s01"'S0n)]'[R'][is0 n]

^~. • (3il...~im iSll31S21

(VlS0n' [il]...[iSll.]"'[is 21]'"[im])

A [R(Sl2""Slk)]'(iSll)(islk)

^ ~iS2q([R(s22...S2q)]'('is21)(is 2)

^VA'[is])))~

, where the sequence 3ii...3i m 2~oes~ not
contain ~iSll or ~'is2 I. The number m and

positions of [i], [i] in the sequence of
Sll s21

[il]...[i m] are determined self evidently by the
DDL statement about R. If n=0 then the first
component [R(So1...S0n)]'[R'][i] of the above
conjunctive form is replaced by R'-i. If k=0
or q=0 then an appropriate but obvious
modification is also needed. It is possible to
construct this IL expression systematically
according to a micro syntax of a descriptor,
however it is somewhat tedious so we do not
concern it. When a is a type of sub-schema
corresponding to the selector s9], A' is a
predicate of type <a, t> in which Aqi) has the
value i when an object corresponding to i is an
element of A.

Each i s is a bounded variable whose type is
the one determined by G and sub-schema
corresponding to a selector s used in a relation
R.

Translation of R(Sl...Sn) is defined as
follows.

[R(Sl...Sn)]'=~i~is(3il...~im(Vi[il]...[im]

A[R(s2...Sn)]'(i)(is)))

[R(Sn)]'=~i~is(3il...~im(Vi[il]...[is]...[im]))

, where, each bounded variable il,..0,i_ has the
same type determined by G and su~-schema
corresponding each selector which appears in the
same level of relation R as the selector s n
appears. Moreover the sequence 3ii,..., 3i n
does not contain ~i_.

According to the syntax of Q, translation
into IL expression is defined as follows.

Def.
(1) [O]'=A~xEF][x],

(2) [l]'=^~x[T][x],

(3) [-q]'=AXx(~(V[q]'[x])),

(4) [ql+q2]'=Axx(vEql]'[x]vV[q2]'[x]),

(5) [qloq2]'=A~x(V[ql]'[x]AV[q2]'[x]),

(6) [q1*q2]'=A~x(~V[ql]'[x]vV[q2]'[x]),

(7) [always q]'=A~x(~V[q]'[x]),

(8) [past q]'=A%x(eV[q]'[x]),

(9) [future q]'=A~x(FV[q]'[x]),

(I0) [q when f]', [q whenever f]':

these will be defined in section I0,

(11) [T]'=AT, [F]'=AF,

(12) [ql=q2]'=A(V[ql]'mV[q2]'),

(13) [~f],=A(V[f],),

(14) [flVf2]'=A(V[fl]'vV[f2]'),

(15) [flAf2]'=A(V[fl]'AV[f2]'),

(16) [fl=>f2]'=^(~V[fl]'VV[f2]'),

(17) [always f],=~v[f],,

(18) [past f],=pV[f],

(19) [future f]'=FV[f] ',

(20) [f2 when fl]', [f2 whenever fl]':

these will also be defined in section i0.

In case of [0]'. [I]', type of x is
determined by the context of its usage in a
query.

7. DATA MANIPULATION STATEMENTS
Insertion, deletion and update of tuples in

database are now considered. We concern the
case where we can manipulate either one tuple at
a time or a set of tuples with a single command.

Syntax of update statements is defined as
follows. Update statements are built up from
certain descriptor and operation. More exactly,
the set M of data manipulation statements is
defined with the following four cases:

I~ (se t oriented update)
d: descriptor, <f,d> ~ M
, where f means arbitrary operation on
the object in the answer of d,

(2) (individual insertion)
(2-i) <R, t> E M

, where, R is a relation name and t is a
tuple which is intended to be inserted
into R,

(2-2) d: descriptor, <d, t> £ M,
(3) (individual deletion)

(3-1) ~<R, t> e M,
(3-2) d:descriptor, ~<d, t> £ M,

(4) (set oriented deletion)
~<R, S, A> ~ M
, where, R is a relation name, s 2 is a
sequence of selectors and A is the subset
of D t which is accessed by s 2.

A set oriented update statement (i) changes
all elements in a relation R that are elements
of answer for query q by values which is a
result of operation f on them. An individual
insertion (2-1) means insertion of a tuple t
into a relation R as usual, and an individual
insertion (2-2) means insertion of a tuple t
into the all relations which are elements of
answer for query d. We can define the meaning
of individual deletions (3-1), (3-2) in the same
manner as in the case of insertion by changing
the word 'insert w by 'delete v. Set oriented
deletion statement (4) deletes all tuples whose
values accessed by B 2 are in A from relation R.

~224

8. SEMANTICS OF DATA MANIPULATION
In the Montague semantics, a data

manipulation statement is translated into
forward predicate transformer, which is a
function from a state predicate to a state
predicate whose type is <s, t>, and which has
the format of an intension of an assertion. So
the predicate transformer has a type <<s, t>,
<s, t>> and has the format kP(~), where
P~VAR<o +> and ~ is a term of type <s, t>. For
set orlented update statement, we define the
translation into IL as follows. In this
definition symbol ,+t is used to designate the
• . , + ,

inverse of the translatlon, i.e. [[E]] =E for a
term E of IL.

[<f,d>]'=[R:=[~i l...~is01 ..,~im(~J s01(VR'[il]

... [Js01] ... [im] A [%R(s02...S0n)]'

[j s01] [is01]))]+]',
[%R(s02...S0n)]'=lj~i(i-A(~il...),is02...~i m

(~ j s02(vJ[i I]...[j s02]"'[i m]

^ [%R(s03...S0n)]' [Js02][is02])))),

[%R(S0n)]'= ljNi(i" A(%i l...Xis0...~im(~-js0n(

vj[il]...[Js0n]...[im] A iS0 n" A(%ii...

)~iSll...lis2 I...%im(3 j Sl 1 (Vj SOn[il]...

[Js11]"" [is21]'"[i m] ^ ([$R(s22...S2q)]'

[is2 I] ÷ [*R(Sl2...Slk)]'[js][i s],
• 1.1 11

Zs11"JSll)))))))),
[$R(s22...S2q)]'=li(~il...~is22...~im(Vi[i I]

""['Zs22]"'[im] ^ [$R(s23"'S2q)]'[is22]))'

[SR(s2q)]'= ~i(~ il...] i2q...~ im(Vi[il]...

[is2]...[i m] ^VA'[i s])),
• 2q

[*R(Sl2...Slk)] '=xjTki~i'A(),il... ~zSl2... Aim

(~ Jsl 2 (vj[il]...[j Sl 2]...[im] ^
][•)))) ,

[*R(s13""Slk)]' [Jsl 2 zSl2]

[*R(Slk)] '= Aj Ni(i" ̂ (ki I ...~iSlk..,%im(~ j Slk(Vj

[il]'"[Jslk]'''[im] ^ iSlk= f'(3Slk')))))"

For individual insertion or deletion their
translations are as follows.

[<R,t>]'=[R:=[lil...lim(il=tl A ... A im=t m -+

T, R'[il]...[im])]+] ',

[~<R,t>]'=[R:=[Xil...~im(il=t I ^ ... ̂ im=t m -+

F, R'[il]...[im])]+] '

• where we assumed t=<t I, t 2, ... ,. t~>.. If
n=0, k=0 or q=0 then appropriate modlflcatlons
are needed as in the case of query statements.
For insertion operation <d,t> and deletion
operations ~<d,t>; ~<R,S,A>, we can define their
corresponding IL expressions in the same manner
as shown in the case of set oriented update.

By using an intensional version of Floyd's
semantics of assignment 12

[A:=B]'=IP^~z[{z/VA'}VpAVA'-{z/VA']B'],

and semantics of composition
[A;B]'= %P[B'(A'(P))],

we complete the definition of the semantics of
the update statements,

Now, we consider the following simple
example for comprehension of the above
definition.

Example 4
Suppose relation EMP2 is declared at data

definition part as

EMP2=[KIDS:[NAME:string, AGE:in,I, SAL:int],

and that before the update,

<*2,<EMP2, SAL, KIDS.NAME, {Jack}>>

holds that A([<EMP2, SAL, KIDS.NAME• {Jack}>]'
-AXx(x-20')).

We denote this precondition by PC. The
translation of the update statement is

[<*2, <EMP2, SAL, KIDS.NAME, {Jack}>>]'

= [EMP2:=[XiKXis(~js(VEMP2'(iK)(Js)

A(~iN~iA(ViK(iN)(iA)^iA'Jack ')

is-Js*2 , is=Js)))]+]'
=%pA~z({z/vEMP2'}vpAvEMP2'-{z/vEMP2 ' }

(%iK~is(~js(VE~2'(iK)(Js)

A(~iN~iA(ViK(iN)(iA)AiA'Jack ')

is-Js*2, is=is))))).

PC=A(A~is(~iK(VEMP2'(iK)(is)A

~iN~iA(ViK(iN)(iA)AiN'Jack')))

-^~x(x-20')).

Then after the update,

A~z(A~is(~iK(z(iK)(is)A~iN~iA(ViK(iN)(iA)

^iN-Jack')))-A%x(x-20'))

^VEMP2''(%iK~is(~Js(Z(iK)(Js)

^(~iN~iA(ViK(iN)(iA)AiA'Jack ')

÷ is-Js*2, is'Js))))) •
From this we derive that,

^%is(~iK(VEMP2'(iK)(is)A~iN~iA(ViK(iN)(iA)

AiN-Jack')))-A~x(x-40').

Example 5
As another example, we consider the

relation as follows.

EMP3=[NAME: string, MGR: string].

For this relation we perform an update such as
the manager of manager of John is Smith, i.e.

<=Smith,<EMP3,MGR,NAME,<EMP3,MGR,NAME,{John}>>>.

The translation of this update statement is
[<=Smith, <EMP3, MGR, NAME,

<EMP3, MGR, NAME, {John}>>>]'

--225

=[EMP3 : =[~ iN%iM(~ jM (VEMP3, (iN) (jM)

A(V[<EMP3, MGR, NAME, {John}>]'(iN)

+ JM-Smith,, JMmiM)))]+] '

=[EMP3 :=[%iNAiM(~JM (vEMP3 ' (iN) (jM)

A(VA~iM2(~iN2(VEMP3'(iN2)(iM2)

^iN2-John')) (i N)

-+ JM-Smith,, JM-iM)))]+] '

=~P^~z({ z/VEMP3' }VpAVEMP3'-

(~iN%iM(~OM (z(i N) (jM)

^ (~ iN2 (z (iN2) (i N) ̂ iN2-John ')

-+ JM-Smith', JM'iN))))).

Assume that before the update holds that
^(([<EMP3, MGR, NAME, {John}>]'-^Xx(x-John'))

A([<EMP3, MGR, NAME, {Smith}>]'-
A~x(x-Jack'))).

Then we obtain that afterwards
^~z(z(John') (John')^z(Smith') (Jack')

^VEMP3 "(% iN%iM (~jM (z(i N) (jM)

A(~iN2(z(iN2) (iN)AiN2mJohn ')

÷ JM-Smith', JM-iM))))).

This implies
VEMP3 ' (John ') (Smith ') ̂ VEMP3 ' (Smith ') (Jack ').

9. SEMANTICS OF NULL VALUES
We can define various kinds of null values,

indeed ANSI/SPARC interim report 13 cites 14
possible manifestations of null. However, the
two important kinds of null value have the
meanings 'value at present unknown' and
'property inapplicable'.

Formal treatment of the first kind of null
value has been resolved by the ideas of null
substitution principle and non-truth

functionality princip i e. 4'14
In this article we study the second kind of

null value more precisely. We introduced two
null values NULL1, NULL2 of the second kind of
null values. NULL1 is intended to mean that
nothing exists at current state but there may be
some states in which the value exists. NULL2 is
intended to mean that there exists absolutely no
value in any state.

Those semantics are formally defined by
auxiliary update postulates.

(i) Update postulate for NULL1
For every tlEl and every A ~ Tm<s,a >

(a=<al,<...<an,t>>...> e Dtype),

if Vs,g(A) (tl) (fal)... (fak)... (fan)=l

and f ak=NULL1

,then Vs'g(A)(tl)(fal)'''(hak)'''(fan)=0

hak E MaC{NULL1] for all

and there exists t2¢I such that

V s,g(A) (t2) (fal)...(rak). . . (fan)=l

for rake Ma~{NULLI , NULL2}.

!2) Update postulate for NULL2
For every t1£I and every A ~ Tm<s,a >

(a=<al,<...<an,t>>...> E Dtype),

if Vs,g(A)(tl)(fal)...(fak)...(fan)=l

and f ak=NULL2

, then for every t 2 e I

and every h c M -{NULL2}
a k a k

Vs,g(A) (t2) (fal) ... (hak) ... (fan)=0 •

i0. SEMANTICS OF STATE REFERENCE
To define the semantics of queries with

'when' or 'whenever', it is necessary to
consider the case that s is a type. We define
such a logic called Two-Sorted Type Theory, and
denote it by Ty 2.

Def. The set T' of types of Ty 2 is the
smallest set such that
(i) e, t, s E T',
(2) a, b e T' => <a,b> E T'.
Note that T c T' (T: the set of types of IL).

Def____~ The sets Tm~ of terms of Ty 2 of type a are
defined with the following rules recursively.

(I) CON s c Tm~,

(2) VAR a c Tm~,

(3) A, B E Tm~ => A+B, A-B, A'B, A÷B e Tm~,

T ' ' => A[B] E m b, (4) A E TmSa,b>, B e Tm a

(5) A E Tm~ => %XaA £ ' Tm<a,b>,

(6) A, B ~ Tm~ => (A-B) ¢ Tm~,

(7) A, B e Tmta, P E Tm~ => (P ÷ A,B) ~ Tm~,

(8) A e Tm~, c E CON<s,b>, x e VARs, B E Tm~

=> {B/c[x]}A ~ Tm~,

(9) A ~ Tm~ => PA e Tm~, FA e Tm~.

To define the semantics of Ty 2 the model
M'=(M a, < , m)ae T, is introduced, where M a is a
frame based on non-empty sets D, I, and < is a
linear ordering on I.

We define the frame as the indexed family
(Ma)aE T, of sets, where

Def.
(I) M e = D U {NULL1, NULL2},

(2) M t = 2 = {0, 1},

(3) M s = I,

(4) M<a,b > = MbMa ={FIF: M a -> Mb} (for a~s),

(5) M<s,a > = MaI = {FIF: I -> Ms}U{NULLi,NULL2}.

For each constant Cs, m(Ca) E M a, and for
each variable x a, g(Xa) c M a. Interpretation of
term A a which is denoted VM,g(Aa) is defined in

such a way that the following conditions hold.
(We dropped the subscript 'M'.)

226

Def.
(i) Vg(x a) = g(Xa), x a E" VAR a,

(2) Vg(C a) = m(Ca), c a ~ CON a,

(3) ~ (7) similar to the case of IL,

(8) Vg({Bb/C<s,b>[Xs]}Aa)=Vg'(Aa),

, where g'=g(xs/X), x s ~ VARs, X c I,

such that for all constant C~s,b > except c,

Vg(ci[Xs]) = Vg,(Ci[Xs])

and Vg,(C[Xs]) = Vg(B),

(9) Vg(PA t) = 1 if there is some g' = g(xs/X)

such that g'(x s) < g(x s) and Vg,(A) = i,

0 otherwise,

(i0) Vg(FA t) = I if there is some g' = g(~s/X)

such that g(x s) < g'(x s) and Vg,(A) = I,

0 otherwise.

For each term A a of IL we can define the
translation of A a in Ty 2. Such translation is
defined with next rules, and denoted A:.

Def.
(i) [Xa]* = x a,

(2) [Ca]* = C<s,a>[Xs],
(3) [A<a,b>[Bb]]* = A*[B*],

(4) [hXaAb]* = kxA*,

(5) [Aa-Ba]* = [A*-B*],

(6) [^Aa]* = ~XsA*,

(7) [VA<s,a>]* = A*[xs].

Now we can define the semantics of query 'q
when f' as a term of Ty 2.

[q when f]'=~x~x(~x~([[f]']*[x~]A

[[q]']*[x~][x]))
, which means intuitively the set of objects
which satisfy q in each states where f has a
value I. Similarly we define the following.

[q whenever f]'=Xx~x(Vx~([[f]']*[x~]A

[[q]']*[x~][x])),
Ef 2 when fl]':Xx~Xx(~x~(EEfl]']*[x~]^

[[f2]']*[x~])),

[f2 whenever fl]'=~X~%X(VX~([[fl]']*[x~]A
[[f2]']*[x~])).

Ii. CONCLUDING REMARKS
We believe we have demonstrated feasibility

of the Montague's approach to the semantics of
hierarchical database systems with historical
data.

As for future reasearch directions, we
would like to point out the importance of (i)
finding normal forms which allows efficient

evaluation of terms, and (ii) finding a set of
axioms for equivalence transformations which
derive normal forms from given terms.

ACKNOWLEDGEMENTS

Our thanks are due to Mr. Kenichi Murata
for fruitful discussions and encouragement and
to Prof. Takuya Katayama and many other people
whose ideas we have unwittingly absorbed over
the years.

REFERENCES

i. Gallaire, H., Minker, J., (1978) 'Logic and
Databases', Plenum Press.

2. Reiter, R., (1977) 'An Approach to Deductive
Question-Answering', BBN Report No.3649,
Bolt, Beranek and Newman, Inc.

3. Wong, H.K.T., and Mylopoulos, J., (1977)
'Two Views of Data Semantics: A survey of
Data Models in Artificial Intelligence and
Database Management', INFOR, 15, 3, 344-
383.

4. Lipski, W., Jr., (1977) 'On Semantic Issues
Connected with Incomplete Databases', 3-rd
VLDB.

5. Montague, R., (1973) 'The Proper Treatment
of Quantification in Ordinary English'
Approaches to Natural Language, Reidel
Dordrecht.

6. Montague, R., (1977) 'Universal grammar',
Formal philosophy-selected paper of R.
Montague, edited by R~. Tomason, Yale Univ.
Press.

7. Codd, E.F., (1974) 'Recent investigations in
relational database systems', Information
Processing 74, North-Holland Pub. Co.,
Amsterdam, 1017-1021.

8. Gallin, D., (1975) 'Intensional and Higher-
order Modal logic', North-Holland Publishing
Company, Amsterdam.

9. Curry, H.B., and Feys, R.,(1968)
'Combinatory Logic', Vol.l, North-Holland,
Amsterdam.

i0. Yanssen, T.M.V., (1977) 'The expressive
power of intensional logic in the semantics
of programming language', Lecture Notes in
Comp. Sci. 53. Springer-Verlag, Berlin.

II. Henkin, L., (1963) 'A theory of propositonal
types', Fund. Math., 52.

12. Floyd, R. W., (1967) 'Assingning meanings to
programs', Proc. Amer. Math. Soc. Symposia
in Applied Mathematics, Vol. 19.

13. ANSI/X3/SPARC Study Group on Data Base
Management Systems, (1975) 'Interim Report',
ANSI.

14. Yannis Vassiliou, (1979) 'Null Values in
Data Base Management: A Denotational
Semantics Approach', Internal Conference on
Management of Data, ACM-SIGMOD, 162-169.

--227--

