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Model theoretic semantics of database 
systems is studied. As Rechard Montague has 
done in his work, 5 we translate statements of 
DDL and DML into intensional logic and the 
latter is interpreted with reference to a 
suitable model. Major advantages of its 
approach include (i) it leads itself to the 
design of database systems which can handle 
historical data, (ii) it provides with a formal 
description of database semantics. 

1. INTRODUCTION 
There have been developed several 

knowledge-base systems which utilize 
mathematical logic, however they can Great facts 
or rules at the current world only. ~~ 

In the medical fields or the area of 
artificial intelligence there are many 
applications in which the database systems with 
historical data handling capability are 
required. For example, in a query to a medical 
database tHas a sterum treatment been applied to 
John?' historical data is essential. 

One of the reasons why existing database 
systems provide poor support for such historical 
information is probably because very few 
theoretical study has been done yet. 

Intensional logic (IL) which Rechard 
Montague developed to describe semantics of 
natural language formally seems to be useful to 
the theory of such database. The first 
application of modal logic to the logic of 
database was done by Lipski, though he treated 
incompleteness of database only. 

In the Montague's approach, concepts of 
intension and extension are used. 5'6 The same 
concepts can be applied in the theory of 
database. Correspondence between IL and 
semantics of database is shown in Fig.l. 

[Intensional Logic] : 
possible worlds 
extension 
intension 
meaning postulates : 

[Database] 
states of database 
data at some state 
historical data 
integrity constraints 

Figol Correspondence between Intensionals 
Logic and Database system 

The extension of a constant predicate P in 
IL which corresponds to a relation in database 
corresponds to the contents in the current 
database state. 

The main purpose of this paper is to 
describe in a implementation-independent way 
aspects of those database semantics, which are 

characterized by interpretation of update 
operations and queries . And we show the 
feasibility of using intensional logic for 
description of the semantics. 

The treatment of update of database is 
closely related to that of assignment in 
programming language with data type 
specification facility. 

Firstly we use Montaguets intensional logic 
and later we will introduce two-sorted type 
theory to treat queries which refer state 
indirectly. 

In section 2, we define a data model 
treated in this article. This data model is 
considered as hierachical relational model. In 
section 3, syntax of intensional logic is 
defined and its semantics is stated in section 
4. In section 5, 6, syntax of query statements 
and their Montague semantics are given. In 
section 7, 8, data manipulation statements are 
introduced and their semantics is also defined. 
In section 9, semantics of two kinds of null 
value is stated as meaning postulates. In 
section i0, we introduce two-sorted type theory 
and give semantics of statements referring 
states. Section II is a concluding section. 

2. DATA MODEL 
In this section we define a data model 

which corresponds to relational model exploiting 
hierarchical structure of relations, that is, 
each component of relation may be also a 
relation or set of relations recursively. In 
the Relational Model which Codd 7 introduced, 
3rd-normal form or 4th-normal form is exploited 
to avoid the update anomalies, though we regard 
it as an implementational matter. Hierachical 
structure of relation is quite natural for 
representing information in the real world. 

As a part of a data definition language 
(DDL), schema declaration is formally defined as 
follows. This DDL describes hierachical schema 
of database, name of each relation and attribute 
names or selector names of a relation. When we 
consider schema of relation, we do not concern 
the name of relation. 

Let S O be the set of all elementary data 
types e.g. integer, real or string of characters 
and so on, and F be the set of selector names. 
Schemas of database are constructed from S O 
recursively as strings on C t = S O u {[,],',:} 
F. 

Def. The set S of schemes is the smallest 
set S 2 satisfying (i),(2). 
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(i) SimS0US 2, 

(2) t I ..... tneS I, s I ..... SnEF (si~s j for imj) 

=> [sl:t I .... ,Sn:tn]ES2 (l~n). 

Schema declaration in our DDL is of the 
form 

Relation name = t 
• where t E S. 

Now we can define the hierarchical 
relational database (HRDB) as follows. 

Def. The set HD of HRDB is defined as 

HD= U D t . 
t~S 

For t E S, D t is the set of database whose 

schema is t defined recursively with the 
following rules (I), (2). 

(i) tES 0 => Dt=E~, where E~ is the set of data 
-- 5 L 

havlng elementary type t, 

(2) tES and t=[Sl:t I ..... Sn:t n] => 

Dt=2Dt~ ×Dt~ ×...×DL' 
L n 

, where Dt~DtiU{NULL1,NIJLL2}. 

An e x a m p I e  o f  a d a t a b a s e  i s  s h o w n  a s  
f o l l o w s .  

Example i 
Now, we consider an employee relation 

comprising of tuples which have hierarchical 
structure. Each such tuple consists of employee 
number, name, education relation, age, a set of 
skills and children relation. 

Corresponding schema declaration is as 
follows. 

EMPi=[$E:int, NAME:string, 
EDUCATION:[SCHOOL:string, DEG:string, YR:int], 
SKILL:[SNAME:string], 
KIDS:[KNAME:string, AGE:int, SEX:string], 
SAL:int] 

Fig.2 is an instance of database with this 
schema at some state or world. 

EMPI 
EDUCATION SKILL 

SE NAME SCHOOL DEG YR SNAME 

i CARY J 

2 JONES 

3 SMITH 

A NULL2 58 SA 
B i B 64 SE 

SM 

C A 72 
D C 74 NULL1 
A NULL2 80 

C ! A 50 SB 
SD 
SE 

KIDS 
KNAME AGE SEX'SAL 

JACK 8 M i 
JILL 5 F 15K 
JOHN i0 M 

NULLI !14K 

MARY 17 F 
20K 

Fig.2 Instance of the Employee Relation 

The value 'NULL1' means nothing, however in 
some state there may be some values. The value 
'NULL2' means absolutely no value exists in any 
state. The order of selector in each tuple is 
insignificant and order of raw is also 
insignificant. This hierarchical schema can be 
visualized by tree graph. Fig.2 is a two- 
dimensional representation of hierarchical data 
which reflects the images of data instances. 

EMPi 
i $E INAME I sAL I 

I 
I l 

EDUCATION SKILL 

Fig.3 A tree graph of hierarchical data 

Note that the data declaration in our DDL 
and this graph show the data structure only 
while the graph provides a convenient means to 
visualize the instances. 

! 
KIDS 

KNAME AGEJ SEX ~ 

3. SYNTAX OF INTENSIONAL LOGIC 
Intensional logic used in the Montaguets 

approach is based on the theory of types. In 
this section we describe the extended version of 
IL according to Gallin. 8 The set of all 
possible types is recursively defined as 
follows • 

Def. Let e, t, s be any three objects. The 
set of types of IL is the smallest set T 
satisfying (1)~(3). 

(I) e, t ¢ T, 
(2) a, b ~ T => <a, b> E T, 
(3) a E T => <s, a> E T. 

Objects of type e correspond to entities. 
Type of IL corresponds schema of our DDL or DML. 
Our schema supports n-ary relations, and it is 
considered as n-ary function whose range is 
truth values. For any function of two (or more) 
arguments there exists an equivalent one which 
takes one argument at a time, 9 i.e. (Di×D2 × ... 

×D n) -> Dn+ 1 corresponds to (D 1 -> (D 2 -> (...-> 

(D n -> Dn+l)))) ...). In this way we can make 

the types in IL correspond to schemas of our 
DDL. Dtype which is a subset of type T in IL is 
now introduced as follows. 

Def. Dtype is the smallest set of T A 
satisfying (1)~(4). 

(i) e E T B, 

(2) a E T A => <s, a> ~ T B, 

(3) a E T B => <a, t> e T A, 

(4) be T B, a e T A => <b, a> ~ T A. 

Constants of type <s,a> (a E Dtype) 
correspond to relations with schema 
corresponding to type a. Such translation will 
be defined formally in section 6. Intuitively 
speaking, constants of type <s,<e,t>> 
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corresponds to relations with schema [s: int], 
[s: real] or Is: string], i.e. single flat 
domain relation. Constants of type 
<s,<<s,a>,t>> correspond to relations with 
schema [s: [...]] i.e. hierarchical relations of 
single domain whose value is not flat but a 
relation with schema corresponding to type 
a. By rule (4), we can define the type of IL 
corresponding to n-ary relation schemas. 

Example 2 
The type of constant in IL 

corresponds to relation in Example 1 is 
which 

<s,<e,<e,<<s,<e,<e,<e,t>>>>,<<s,<e,t>> 
,<<s,<e,<e,<e,t>>>>,<e,t>>>>>>>. 

We take CON a (VAR a) to be the set of constants 

(variables) of type a. Now, we define the set 
Tm a of terms of IL of type a as follows. 

Def. 
(i) CON a c Tm a, 

(2) VAR a c Tma, 

(3) A, B E Tm e => A+B, A-B, A,B, A÷B ~ Tm e, 

(4) A e Tm<a,b >, B £ Tm a => A[B] ~ Tm b, 

(5) A ¢ Tm b, x E VAR a => ~.x(A) ~ Tm<a,b >, 

(6) A, B E Tm a => (A-B) E Tm t, 

(7) A E Tm a => hA E Tm<s,a >, 

(8) A e Tm<s,a > => VA ETm a' 

(9) A, B E Tm a, P E Tm t => (P + A, B) e Tm a, 

(i0) A ¢ Tm a, c E CON<s,b >, B e Tm b => 

{B/Vc}A £ Tm a, 

(Ii) A e Tm t => PA e Tm t, FA e Tm t. 

The additional construct (i0) is introduced 
by Janssen. I0 Following Henkin, II we define 
sentential connectives, quantifiers and modal 
operators as follows. 
Def. 

(I) T = [kxtxt-~.xtxt]. 

(2) F = [~,xtxt-AxtT], 

(3) ~ = Xxt[F'xt], 

(4) A = AxtkYt[If<t,t>[fx.y].~f<t,t>[fT]] , 

(5) ÷ = kxtkYt[[xAy]'x], 

(6) V = ~xtAYt[,-.x+y], 

(7) YxaA = [AxaA'AxaT], 

(8) ~XaA = ~¥xa~A, 

(9) [Aa~B a] = [AAa'ABa], 

(I0) []A = [A~T]. 

(ii) OA = ~[]~A. 

We write [AAB] instead of [[hA]B] where A 
and B are formulas, similarly for the other 
binary connectives. 

4. SEMANTICS OF IL 
The terms of intensional logic are 

interpreted in an intensional model. Such a 
model is a system M = (Ma, <, m)a£T, where M a is 

a frame based on non-empty sets D and I, and < 
is a linear ordering on S. To simplify 
following arguments, we make no distinction 
among 'int', 'real' and 'string', and they are 
represented by D. 

Def. Frame is defined as the indexed family 
(Ma)aE T of sets, where 

(i) Me=D u {NULL1, NULL2}, 

(2) Mt=2={0,1}, 

(3) M<a,b>=MbMa={FIF:Ma->Mb}, 

(4) M<s,a>=MaI={FIF:I->Ma } U {NULL1, NULL2}. 

Function m must be such that if c is a a 
constant of type a, then m(Ca)eM<s,a >. 

Tile assignment g is a function from 
variable to value such that if x e VAR a then 
g(x a) e M a. If x a is a variable of type a, and 

x e M a then g(x/X) denotes the value assignment 
exactly like g except that it assigns the value 
X to the variable x. 

Now we define the interpretation of a term 
A a in a model M with respect to the state s and 
the assignment g. It is denoted by VM,s,g(Aa) 

and defined inductively as follows. (We dropped 
the subscript 'Mr.) 

Def. 

(i) Vs,g(Xa)=g(Xa), XaEVARa, 

(2) Vs,g(Ca)=m(Ca)(S), CaeCON a, 

(3) Vs,g(Ae+Be)=Vs,g(Ae)+Vs,g(Be) and similar 

for the other arithmetical operations, 

(4) Vs,g(A<a,b >[ Ba])=Vs, g(A<a,b>)[Vs,g(Ba)], 

(5) Vs,g(XXaAb)=the function f with domain M a, 

such that whenever XeM a then f(x)=Vs,g,(Ab), 

where g'=g(x/X). By using meta-operator [, 

we express the above as [ X[Vs,g,(Ab)] , 

(6) Vs,g(Aa-Ba)=l if Vs,g(Aa)=Vs,g(Ba), and 0 

otherwise, 

(7) Vs,g(AAa)=[ j[Vj,g(Aa)] , 

(8) Vs,g(VA<s,a>)=Vs,~~(A<s,a>)(s), 

(9) Vs,g((Pt+A a, Ba))=Vs,g(Aa) if Vs,g(Pt)=l, 

and Vs,g(B a) otherwise, 

(10) Vs,g({Bb/VC<s,b>}Aa)=Vt,g(Aa ), where 

t=<c+V s,g(B b) >s, 

(II) Vs,g(PAt)=I if there is some s' in S such 

that s'<s and Vs,,g(A)=1, 0 otherwise, 

(12) Vs,g(FAt)=l if there is some s' in S such 

that s<s' and Vs, g(A)=l, 0 otherwise. 
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In the rule (10) t denotes the state in 
which all constants have values exactly like in 
s except that the value of Vc is the value of 
the expression B b in the state s. 

We must clarify the notion of state in our 
model to define the meaning of database. State 
is understood to present the internal situation 
of a database. A state is altered by update 
operations. A new state s I preceeds an old 
state s 2, i.e. (s2<sl). Clearly a state sEl 
determines the value of all relations. The 
effect of update operation is that it modifies 
the value of single relation, and in order to 
model this update operation, it should be 
assumed that the resulting state always exists 
and is unique. 

So we restrict our model for IL which 
satisfies the following postulates. 

I) Update postulate 
For every t I ~ I, every c ¢ CON<s,a > (a E 

Dtype) and every i e M a, there exists a unlque 
t 2 E S such that 

I Vs,g(C)(t I) = i, 

Vs,g(C')(t I) = Vs,g(C')(t2), 
for all constants c' m c. 

2) Uniqueness postulate 
For every t i, t 2 e I (t I ~ t$), there 

exists c ~ CON<s,a > (a e Dtype) such t~at 

Vs,g(C)(t I) ~ Vs,g(C)(t2), 

that is, the result of update operation should 
be distinct from all of the other states. 

Therefore, we can identify a state with 
contents of database. The database is 
translated into constant in IL. So the set I of 
states is defined by 

-N- T 
I = aeDtype c~CON<s,a>Ma 

5. QUERY STATEMENTS 
Now we introduce a syntax of queries in our 

data manipulation language (DML). The set Q of 
queries is defined as QiuQ2 recursively. 

Def. 

(i) O, I c Qi' 

(2) d E descriptor => d E QI' 

(3) ql' q2 ~ Qi => -ql' (ql+q2)' (ql°q2)' 
(ql÷q2), always ql' past q1' future q2 ~ QI' 

(4) f ~ Q2' q ~ Q1 => 

q when f, q whenever f c QI' 

(5) T, F ~ Q2' 

(6) ql' q2 E Q1 => ql=q2 e Q2' 

(7) fl' f2 E Q2 =>'If1' (flVf2)' (flAf2)' 

(fl=>f2), always f, past f, future f, 

f2 when fl' f2 whenever fl E Q2" 

Qi is the set of queries for which an 
answer is a set of objects. For a query in Q2 
an answer is yes or no. 

Every descriptor is of the form <R, s I, 
s 2, A>, where R is a relation name, s], s 2 are 
sequences of selectors, and A is the ~ubset of 

D t which is accessed by s 2. 
<R, s I, a 2, A> is used to denote the set of 

~ element of tuples in the relation R whose s 2 
ement is in A. In the above rule (3) all 

descriptors in (ql+q2), (qloq2) or (q1÷q2) must 
have the same selector sequence s I as their 
second component. 

We assume certain auxiliary language for 
describing A which is a subset of the domain D t. 

Example 3 
Let us consider a query, tWas every 

employee who has a child named Jack educated at 
school B or C?' on the database given in the 
previous example. We have a expression 

<EMP, NAME, KIDS.KNAME, {Jack}> o 
-<EMP, NAME, EDUCATION.SCHOOL, {B, C}>=0. 

Let us consider another example as follows. 
'Get all names of employees who always earn 

more than I0000 or less than 500. I The 
corresponding expression is 

always(<EMP, NAME, SAL, {xlx>10000}> + 
<EMP, NAME, SAL, {xTx<500}>). 

6. SEMANTICS OF QUERIES 
We have already defined a model theoretic 

meaning of IL. Thus the remaining part of 
Montague semantics is defining a translation 
which gives for each syntactic structure of the 
language some meaningful expression of IL. For 
a part of statement E, its translation into IL 
is denoted E t. Relation name R is translated 
into a constant R' of IL whose type is 
determined by its schema declared at DDL. More 
precisely this type is determined with next 
rules. If there is a statement VRname: t' in a 
data definition part, then type of the constant 
Rname' is G(t), where G is a function 
satisfying, 

Def. G: S -~ Dtype 

(i) t = [Sl:t I, s2:t 2 ..... Sn:t n] => 

G(t)=F(t)=<s,<F(t I) ,<F(t 2) ..... <F(t n) ,t>>...>, 

(2) tE S O => F(t) = e. 

Each descriptor <R, s I, s 2, A> is 
translated according to the schema of R and 
sequences of selectors s I and 82. Let s o denote 

the common maximal prefix of s I, s 2 and Is0i'~=n, 

Is I [=n+k, Is 21=n+q, i.e. s I, s 2 are represented 

as Sl=S01.s02...S0n.Sll.Sl2...Slk, s2=s01.s02 

... S0n. S21.s22...S2q. 

t For string s, Isl denotes length of s. 
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[<R, s I, s 2, A>]'= 

~iSlk (~iSon([R(s01"'S0n)]'[R'][is0 n] 

^~. • (3il...~im iSll31S21 

(VlS0n' [il]...[iSll. ]"'[is 21]'"[im]) 

A [R(Sl2""Slk)]'(iSll )(islk) 

^ ~iS2q([R(s22...S2q)]'('is21)(is 2 ) 

^VA'[ is ])))~ 

, where the sequence 3ii...3i m 2~oes~ not 
contain ~iSll or ~'is2 I. The number m and 

positions of [i ], [i ] in the sequence of 
Sll s21 

[il]...[i m] are determined self evidently by the 
DDL statement about R. If n=0 then the first 
component [R(So1...S0n)]'[R'][i] of the above 
conjunctive form is replaced by R'-i. If k=0 
or q=0 then an appropriate but obvious 
modification is also needed. It is possible to 
construct this IL expression systematically 
according to a micro syntax of a descriptor, 
however it is somewhat tedious so we do not 
concern it. When a is a type of sub-schema 
corresponding to the selector s9], A' is a 
predicate of type <a, t> in which Aqi) has the 
value i when an object corresponding to i is an 
element of A. 

Each i s is a bounded variable whose type is 
the one determined by G and sub-schema 
corresponding to a selector s used in a relation 
R. 

Translation of R(Sl...Sn) is defined as 
follows. 

[R(Sl...Sn)]'=~i~is(3il...~im(Vi[il]...[im ] 

A[R(s2...Sn)]'(i)(is))) 

[R(Sn)]'=~i~is(3il...~im(Vi[il]...[is]...[im])) 

, where, each bounded variable il,..0,i_ has the 
same type determined by G and su~-schema 
corresponding each selector which appears in the 
same level of relation R as the selector s n 
appears. Moreover the sequence 3ii,..., 3i n 
does not contain ~i_. 

According to the syntax of Q, translation 
into IL expression is defined as follows. 

Def. 
(1) [O]'=A~xEF][x], 

(2) [l]'=^~x[T][x], 

(3) [-q]'=AXx(~(V[q]'[x])), 

(4) [ql+q2]'=Axx(vEql]'[x]vV[q2]'[x]), 

(5) [qloq2]'=A~x(V[ql]'[x]AV[q2]'[x]), 

(6) [q1*q2]'=A~x(~V[ql]'[x]vV[q2]'[x]), 

(7) [always q]'=A~x(~V[q]'[x]), 

(8) [past q]'=A%x(eV[q]'[x]), 

(9) [future q]'=A~x(FV[q]'[x]), 

(I0) [q when f]', [q whenever f]': 

these will be defined in section I0, 

(11) [T]'=AT, [F]'=AF, 

(12) [ql=q2]'=A(V[ql]'mV[q2]'), 

(13) [~f],=A(V[f],), 

(14) [flVf2]'=A(V[fl]'vV[f2]'), 

(15) [flAf2]'=A(V[fl]'AV[f2]'), 

(16) [fl=>f2]'=^(~V[fl]'VV[f2]'), 

(17) [always f],=~v[f],, 

(18) [past f],=pV[f], 

(19) [future f]'=FV[f] ', 

(20) [f2 when fl ]', [f2 whenever fl]': 

these will also be defined in section i0. 

In case of [0]'. [I]', type of x is 
determined by the context of its usage in a 
query. 

7. DATA MANIPULATION STATEMENTS 
Insertion, deletion and update of tuples in 

database are now considered. We concern the 
case where we can manipulate either one tuple at 
a time or a set of tuples with a single command. 

Syntax of update statements is defined as 
follows. Update statements are built up from 
certain descriptor and operation. More exactly, 
the set M of data manipulation statements is 
defined with the following four cases: 

I~ (se t oriented update) 
d: descriptor, <f,d> ~ M 
, where f means arbitrary operation on 
the object in the answer of d, 

(2) (individual insertion) 
(2-i) <R, t> E M 

, where, R is a relation name and t is a 
tuple which is intended to be inserted 
into R, 

(2-2) d: descriptor, <d, t> £ M, 
(3) (individual deletion) 

(3-1) ~<R, t> e M, 
(3-2) d:descriptor, ~<d, t> £ M, 

(4) (set oriented deletion) 
~<R, S, A> ~ M 
, where, R is a relation name, s 2 is a 
sequence of selectors and A is the subset 
of D t which is accessed by s 2. 

A set oriented update statement (i) changes 
all elements in a relation R that are elements 
of answer for query q by values which is a 
result of operation f on them. An individual 
insertion (2-1) means insertion of a tuple t 
into a relation R as usual, and an individual 
insertion (2-2) means insertion of a tuple t 
into the all relations which are elements of 
answer for query d. We can define the meaning 
of individual deletions (3-1), (3-2) in the same 
manner as in the case of insertion by changing 
the word 'insert w by 'delete v. Set oriented 
deletion statement (4) deletes all tuples whose 
values accessed by B 2 are in A from relation R. 
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8. SEMANTICS OF DATA MANIPULATION 
In the Montague semantics, a data 

manipulation statement is translated into 
forward predicate transformer, which is a 
function from a state predicate to a state 
predicate whose type is <s, t>, and which has 
the format of an intension of an assertion. So 
the predicate transformer has a type <<s, t>, 
<s, t>> and has the format kP(~), where 
P~VAR<o +> and ~ is a term of type <s, t>. For 
set orlented update statement, we define the 
translation into IL as follows. In this 
definition symbol ,+t is used to designate the 
• . , + , 

inverse of the translatlon, i.e. [[E] ] =E for a 
term E of IL. 

[<f,d>]'=[R:=[~i l...~is01 ..,~im(~J s01(VR'[il ] 

... [Js01] ... [im] A [%R(s02...S0n)]' 

[ j s01] [ is01 ]))]+]', 
[%R(s02...S0n)]'=lj~i(i-A(~il...),is02...~i m 

(~ j s02(vJ[ i I ]...[ j s02]"'[ i m] 

^ [%R(s03...S0n)]' [Js02][is02])))), 

[%R(S0n)]'= ljNi(i" A(%i l...Xis0...~im(~-js0n( 

vj[il]...[Js0n]...[im] A iS0 n" A( %ii... 

)~iSll...lis2 I...%im(3 j Sl 1 (Vj SOn[ il ]... 

[Js11]"" [is21]'"[i m] ^ ([$R(s22...S2q)]' 

[is2 I] ÷ [*R(Sl2...Slk)]'[js ][i s ], 
• 1.1 11 

Zs11"JSll)))))))), 
[$R(s22...S2q)]'=li(~il...~is22...~im(Vi[i I] 

""['Zs22]"'[im] ^ [$R(s23"'S2q)]'[is22]))' 

[ SR(s2q)]'= ~i(~ il...] i2q...~ im( Vi[il]... 

[is2 ]...[i m] ^VA'[i s ])), 
• 2q 

[*R(Sl2...Slk)] '=xjTki~i'A(),il... ~zSl2... Aim 

(~ Jsl 2 ( vj[ il ]...[ j Sl 2]...[ im ] ^ 
][ • ) ) ) ) ,  

[*R(s13""Slk) ]' [Jsl 2 zSl2] 

[*R(Slk)] '= Aj Ni(i" ̂ ( ki I ...~iSlk..,%im(~ j Slk(Vj 

[il]'"[Jslk ]'''[im] ^ iSlk= f'( 3Slk' )))))" 

For individual insertion or deletion their 
translations are as follows. 

[<R,t>]'=[R:=[lil...lim(il=tl A ... A im=t m -+ 

T, R'[il]...[im])]+] ', 

[~<R,t>]'=[R:=[Xil...~im(il=t I ^ ... ̂  im=t m -+ 

F, R'[il]...[im])]+] ' 

• where we assumed t=<t I, t 2, ... ,. t~>.. If 
n=0, k=0 or q=0 then appropriate modlflcatlons 
are needed as in the case of query statements. 
For insertion operation <d,t> and deletion 
operations ~<d,t>; ~<R,S,A>, we can define their 
corresponding IL expressions in the same manner 
as shown in the case of set oriented update. 

By using an intensional version of Floyd's 
semantics of assignment 12 

[A:=B]'=IP^~z[{z/VA'}VpAVA'-{z/VA']B'], 

and semantics of composition 
[A;B]'= %P[ B'(A'(P))], 

we complete the definition of the semantics of 
the update statements, 

Now, we consider the following simple 
example for comprehension of the above 
definition. 

Example 4 
Suppose relation EMP2 is declared at data 

definition part as 

EMP2=[ KIDS:[NAME:string, AGE:in,I, SAL:int], 

and that before the update, 

<*2,<EMP2, SAL, KIDS.NAME, {Jack}>> 

holds that A([<EMP2, SAL, KIDS.NAME• {Jack}>]' 
-AXx(x-20')). 

We denote this precondition by PC. The 
translation of the update statement is 

[<*2, <EMP2, SAL, KIDS.NAME, {Jack}>>]' 

= [EMP2:=[XiKXis(~js(VEMP2'(iK)(Js ) 

A(~iN~iA(ViK(iN)(iA)^iA'Jack ') 

is-Js*2 , is=Js)))]+]' 
=%pA~z({z/vEMP2'}vpAvEMP2'-{z/vEMP2 ' } 

(%iK~is(~js(VE~2'(iK)(Js) 

A(~iN~iA(ViK(iN)(iA)AiA'Jack ') 

is-Js*2, is=is))))). 

PC=A(A~is(~iK(VEMP2'(iK)(is)A 

~iN~iA(ViK(iN)(iA)AiN'Jack'))) 

-^~x(x-20')). 

Then after the update, 

A~z(A~is(~iK(z(iK)(is)A~iN~iA(ViK(iN)(iA ) 

^iN-Jack')))-A%x(x-20')) 

^VEMP2''(%iK~is(~Js(Z(iK)(Js) 

^(~iN~iA(ViK(iN)(iA)AiA'Jack ') 

÷ is-Js*2, is'Js))))) • 
From this we derive that, 

^%is(~iK(VEMP2'(iK)(is)A~iN~iA(ViK(iN)(iA ) 

AiN-Jack')))-A~x(x-40'). 

Example 5 
As another example, we consider the 

relation as follows. 

EMP3=[NAME: string, MGR: string]. 

For this relation we perform an update such as 
the manager of manager of John is Smith, i.e. 

<=Smith,<EMP3,MGR,NAME,<EMP3,MGR,NAME,{John}>>>. 

The translation of this update statement is 
[<=Smith, <EMP3, MGR, NAME, 

<EMP3, MGR, NAME, {John}>>>]' 
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=[ EMP3 : =[~ iN%iM( ~ jM ( VEMP3, (iN) ( jM ) 

A(V[<EMP3, MGR, NAME, {John}>]'(iN) 

+ JM-Smith,, JMmiM)))]+] ' 

=[EMP3 :=[%iNAiM(~JM (vEMP3 ' (iN) (jM) 

A(VA~iM2(~iN2(VEMP3'(iN2)(iM2) 

^iN2-John')) (i N ) 

-+ JM-Smith,, JM-iM)))]+] ' 

=~P^~z( { z/VEMP3' }VpAVEMP3'- 

(~iN%iM(~OM (z(i N ) (jM) 

^ ( ~ iN2 ( z ( iN2 ) ( i N ) ̂ iN2-John ' ) 

-+ JM-Smith', JM'iN))))). 

Assume that before the update holds that 
^(([<EMP3, MGR, NAME, {John}>]'-^Xx(x-John')) 

A([<EMP3, MGR, NAME, {Smith}>]'- 
A~x(x-Jack'))). 

Then we obtain that afterwards 
^~z(z(John') (John')^z(Smith') (Jack') 

^VEMP3 "( % iN%iM ( ~jM ( z( i N ) ( jM ) 

A(~iN2(z(iN2) (iN)AiN2mJohn ' ) 

÷ JM-Smith', JM-iM))))). 

This implies 
VEMP3 ' ( John ' ) ( Smith ' ) ̂ VEMP3 ' ( Smith ' ) ( Jack ' ). 

9. SEMANTICS OF NULL VALUES 
We can define various kinds of null values, 

indeed ANSI/SPARC interim report 13 cites 14 
possible manifestations of null. However, the 
two important kinds of null value have the 
meanings 'value at present unknown' and 
'property inapplicable'. 

Formal treatment of the first kind of null 
value has been resolved by the ideas of null 
substitution principle and non-truth 

functionality princip i e. 4'14 
In this article we study the second kind of 

null value more precisely. We introduced two 
null values NULL1, NULL2 of the second kind of 
null values. NULL1 is intended to mean that 
nothing exists at current state but there may be 
some states in which the value exists. NULL2 is 
intended to mean that there exists absolutely no 
value in any state. 

Those semantics are formally defined by 
auxiliary update postulates. 

(i) Update postulate for NULL1 
For every tlEl and every A ~ Tm<s,a > 

(a=<al,<...<an,t>>...> e Dtype), 

if Vs,g(A) (tl) (fal)... (fak)... (fan)=l 

and f ak=NULL1 

,then Vs'g(A)(tl)(fal )'''(hak)'''(fan)=0 

hak E MaC{NULL1] for all 

and there exists t2¢I such that 

V s,g(A) (t2) (fal)...(rak). . . (fan)=l 

for rake Ma~{NULLI , NULL2}. 

!2) Update postulate for NULL2 
For every t1£I and every A ~ Tm<s,a > 

(a=<al,<...<an,t>>...> E Dtype), 

if Vs,g(A)(tl)(fal)...(fak)...(fan)=l 

and f ak=NULL2 

, then for every t 2 e I 

and every h c M -{NULL2} 
a k a k 

Vs,g(A) (t2) (fal) ... (hak) ... (fan)=0 • 

i0. SEMANTICS OF STATE REFERENCE 
To define the semantics of queries with 

'when' or 'whenever', it is necessary to 
consider the case that s is a type. We define 
such a logic called Two-Sorted Type Theory, and 
denote it by Ty 2. 

Def. The set T' of types of Ty 2 is the 
smallest set such that 
(i) e, t, s E T', 
(2) a, b e T' => <a,b> E T'. 
Note that T c T' (T: the set of types of IL). 

Def____~ The sets Tm~ of terms of Ty 2 of type a are 
defined with the following rules recursively. 

(I) CON s c Tm~, 

(2) VAR a c Tm~, 

(3) A, B E Tm~ => A+B, A-B, A'B, A÷B e Tm~, 

T ' ' => A[B] E m b, (4) A E TmSa,b>, B e Tm a 

(5) A E Tm~ => %XaA £ ' Tm<a,b>, 

(6) A, B ~ Tm~ => (A-B) ¢ Tm~, 

(7) A, B e Tmta, P E Tm~ => (P ÷ A,B) ~ Tm~, 

(8) A e Tm~, c E CON<s,b>, x e VARs, B E Tm~ 

=> {B/c[x]}A ~ Tm~, 

(9) A ~ Tm~ => PA e Tm~, FA e Tm~. 

To define the semantics of Ty 2 the model 
M'=(M a, < , m)ae T, is introduced, where M a is a 
frame based on non-empty sets D, I, and < is a 
linear ordering on I. 

We define the frame as the indexed family 
(Ma)aE T, of sets, where 

Def. 
(I) M e = D U {NULL1, NULL2}, 

(2) M t = 2 = {0, 1}, 

(3) M s = I, 

(4) M<a,b > = MbMa ={FIF: M a -> Mb} (for a~s), 

(5) M<s,a > = MaI = {FIF: I -> Ms}U{NULLi,NULL2}. 

For each constant Cs, m(Ca) E M a, and for 
each variable x a, g(Xa) c M a. Interpretation of 
term A a which is denoted VM,g(Aa) is defined in 

such a way that the following conditions hold. 
(We dropped the subscript 'M'.) 
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Def. 
(i) Vg(x a) = g(Xa), x a E" VAR a, 

(2) Vg(C a) = m(Ca), c a ~ CON a, 

(3) ~ (7) similar to the case of IL, 

(8) Vg({Bb/C<s,b>[Xs]}Aa)=Vg'(Aa ), 

, where g'=g(xs/X), x s ~ VARs, X c I, 

such that for all constant C~s,b > except c, 

Vg(ci[Xs ]) = Vg,(Ci[Xs ]) 

and Vg,(C[Xs]) = Vg(B), 

(9) Vg(PA t) = 1 if there is some g' = g(xs/X) 

such that g'(x s) < g(x s) and Vg,(A) = i, 

0 otherwise, 

(i0) Vg(FA t) = I if there is some g' = g(~s/X) 

such that g(x s) < g'(x s) and Vg,(A) = I, 

0 otherwise. 

For each term A a of IL we can define the 
translation of A a in Ty 2. Such translation is 
defined with next rules, and denoted A:. 

Def. 
(i) [Xa]* = x a, 

(2) [Ca]* = C<s,a>[Xs], 
(3) [A<a,b>[Bb]]* = A*[B*], 

(4) [hXaAb]* = kxA*, 

(5) [Aa-Ba]* = [A*-B*], 

(6) [^Aa]* = ~XsA*, 

(7) [VA<s,a>]* = A*[xs]. 

Now we can define the semantics of query 'q 
when f' as a term of Ty 2. 

[q when f]'=~x~x(~x~([[f]']*[x~]A 

[[q]']*[x~][x])) 
, which means intuitively the set of objects 
which satisfy q in each states where f has a 
value I. Similarly we define the following. 

[q whenever f]'=Xx~x(Vx~([[f]']*[x~]A 

[[q]']*[x~][x])), 
Ef 2 when fl]':Xx~Xx(~x~(EEfl]']*[x~]^ 

[[f2]']*[x~])), 

[f2 whenever fl]'=~X~%X(VX~([[fl]']*[x~]A 
[[f2]']*[x~])). 

Ii. CONCLUDING REMARKS 
We believe we have demonstrated feasibility 

of the Montague's approach to the semantics of 
hierarchical database systems with historical 
data. 

As for future reasearch directions, we 
would like to point out the importance of (i) 
finding normal forms which allows efficient 

evaluation of terms, and (ii) finding a set of 
axioms for equivalence transformations which 
derive normal forms from given terms. 
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