
A PRODUCTION SYSTEM MODEL OF FIRST LANGUAGE ACQUISITION

Pat Langley
Department of Psychology

Carnegie-Mellon University
Pittsburgh, Pennsylvania USA 15213

Abstract

AMBER is a model of first language
acquisition that improves its
performance through a process of error
recovery. The model is implemented in
ACTG, an adaptive production system
language. AMBER starts with the ability
to say only one word at a time, but adds
rules for inserting additional words in
the correct order, based on comparisons
between predicted and observed
sentences. These insertion rules may be
overly general and lead to errors of
commission; in turn, these lead to more
conservative rules with additional
conditions. AMBER's learning mechanisms
account for many of the developments
observed in children's speech.

Introduction

The acquisition of language has been
a popular topic among researchers in
Artificial Intelligence. Impressive
language learning programs have been
developed by Siklossy [i], Hedrick [2],
Anderson [3], Selfridge [4], and Berwick
[5]. The generality and power of these
systems vary greatly, but they share one
characteristic: none of the programs
provide a psychologically plausible
model of children's language learning.

In this paper I describe the
beginnings of a more realistic model of
first language acquisition. This model
is called AMBER, an acronym for
Acquisition Model Based on Error
Recovery. As its name implies, the
model simulates the incremental nature
of the child's language learning
process. AMBER is concerned with the
production component of children's
speech, since most of the reliable data
relate to production rather than the
understanding process.

Below I summarize the major
developments found during this period.
After this, I present an overview of
ACTG, the production system language in
which the model is stated. Next I
consider some assumptions about the
child's linguistic knowledge at various
stages during the learning process.
After considering the initial and final
stages of AMBER, I discuss the learning

mechanisms leading to the transition
process. Finally, I consider the
limitations of the model and propose
directions for future research.

The Mayor Phenomena

Children do not learn language in an
all-or-none fashion. They begin their
linguistic careers uttering one word at
a time, and slowly evolve through a
number of stages, each co~taining speech
more like that of the adult than the one
before. In this section I discuss the
features of the three stages which AMBER
attempts to explain. I discuss these
stages in their order of occurrence,
dealing only with the major phenomena in
each case.

The One-Word Stage

Around the age of one year, most
children begin to produce words in
isolation, and continue this strategy
for some months. Presumably tile child
spends much of this period connecting
particular words to particular concepts;
once this has been done, he can produce
these words under the appropriate
circumstances. AMBER does not attempt
to explain the word-learning process.
Like Anderson's LAS [3], it assumes that
links between words and concepts have
already been established.

Bloom [6] has examined this period in
detail, with an eye to understanding the
relation between the one-word stage and
those which follow it. Early in this
stage, successive one-word utterances
seem entirely disconnected; the child
randomly comments on anything that
happens to be in the environment.
Later, he begins to name in succession
different aspects of the same event or
object; words are still separated by
noticeable pauses and no regular order
can be detected, but conceptual
continuity seems present. Moreover,
this development occurs only a few
months before the child begins to
combine words into very simple
sentences. AMBER's starting point lies
somewhere within this later part of the
one-word stage.

-183

Teleg [.#phi c Speech

Around the age of 18 months, the
child begins to combine words into
meaningful sequences. In order-based
languages such as English, the child
usually follows the adult order.
Initially only pairs of words are
produced, but these are followed by
three-word and later by four-word
utterances. The simple sentences
occurring in this stage consist almost
entirely of content words. Brown [7]
has described speech during this period
as telegraphic, since g rammatical
morphemes such as tense endings and
prepositions are absent, as they would
be in a telegram.

Brown has also noted that the
majority of two-word utterances express
a rather small set of pairwise semantic
relations. AMBER assumes a small number
of case relations such as agent, action,
and possession from which Brown's
pairwise relations can be derived. In
addition, tile child uses a few function
words like "there", "more", and
"all-gone" to express simple forms of
nomination, recurrence, and negation.
AMBER attempts to learn the relative
word orders for expressing these
recurring relations.

The Acquisition of Grammatical Morphemes

Brown [7] has also studied the period
from about 24 to 40 months, during which
the child masters the grammatical
morphemes which were absent during the
previous stage. Brown pointed out that
these morphemes modulate the major
meanings of sentences which are
expressed through content words. AMBER
reflects this distinction by
representing the information expressed
by contents words and grammatical
morphemes in different ways. These
morphemes are learned gradually; the
time between the initial production of a
morpheme and its mastery (i.e., when it
is correctly used in all required
contexts) may be as long as 16 months.

In addition, Brown has examined the
order in which 14 English morphemes are
acquired, and has found this order to be
remarkably consistent across children.
For example, present progressive
(eating) and plural (dogs) were always
learned quite early, while third person
singular (eats) and copulas (is, are)
took longer. He found that the
syntactic and semantic complexities of
the morphemes were highly correlated
with their order of mastery. Since the
current version of AMBER cannot deal
with exceptions, I will consider only
regular constructions in this paper.

The ACTG Formalism

AMBER is implemented in ACTG, an
adaptive production system language.
Below I present an overview of AC%G,
beginning with a discussion of its
propositional network. After this I
consider the representation of
procedures as productions. Finally, I
examine ACTG's facilities for changing
its own behavior through the creation of
new productions.

The Propositional Network

ACTG stores its factual, declarative
knowledge in a long-term propositional
network. Individual facts are stored as
propositions, which may be arbitrary
list structures. As we will see in more
detail below, AMBER incorporates two
main types of propositions. One sort
expresses a goal to say a particular
word in a certain position. The second
type of proposition expresses various
kinds of relations, including facts like
x possesses y, y is a *ball, and "ball"
is the word for *ball (where concepts
are preceded by "*" to distinguish them
from their associated words).

At any given time, some subset of the
propositional network is active. Many
of the active propositions have been
recently added to the network by
productions. Others, after lying
dormant for a time, have been
reactivated through their association
(i.e., sharing of symbols) with other
recently activated facts. AMBER uses
this process of spreading activation
primarily to retrieve information about
the words associated with particular
concepts. The level of activation for a
proposition naturally decays over time,
unless it is offset by other factors.

The Production System

ACTG represents procedural knowledge
as a set of condition-action rules
called productions. The conditions and
actions of these rules can be quite
general, since they may contain
variables that match against arbitrary
structures. When all the conditions of
a production match against some portion
of active memory, its actions may be
carried out. These may interact with
the environment, or add new propositions
to the active part of the network.
Structures matching variables in the
conditions remain bound to these
variables in the actions. After a
production has been applied, the state
of memory is reexamined and the system
cycles.

184-

If two or more productions are found
to be true, one must be selected in
preference to the others. This decision
is based on the relative strength ~ of
the productions, and on the summed
activations of the propositions matched
by each. The product of these two
numbers is computed, and the production
with the highest value is selected.
Since a single production can match
against a set of propositions in
different ways, ties may sometimes
occur. In such cases, one of the
matches is selected at random.

The ACTG Learning Mechanisms

ACTG incorporates a powerful set of
mechanisms for modeling learning
phenomena. The most basic of these is
the designation process, which allows
the creation of a new production as one
of the actions of an existing rule.
Variables bound in the conditions of the
learning rule are passed to the
offspring, making the new rule more
specific than its creator. Most of
AMBER'S learning heuristics rely on the
designation process.

A second mechanism leads to the
strengthening of a production each time
it is recreated. Since the strength of
a rule plays an important role in the
selection phase, productions which have
been relearned many times will be
preferred. On the other hand, the
strength of a rule can be decreased if
it leads to an error, lowering its
chances for selection.

The discovery of an error also leads
to a call on the discrimination process.
Here the recent firings of the
responsible production are examined. If
one or more propositions have been
present at successful firings and absent
at faulty ones, they are added as extra
conditions on a new, more conservative
version of the rule. Together with the
strengthening and weakening processes,
this mechanism gives ACTG the ability to
recover from overgeneralizations.

AMBER's Linguistic Knowledge

Learning is the result of an
interaction between a set of relatively
general techniques for acquiring
knowledge and the environment in which
they find themselves. In this section I
consider AMBER's representation of that
environment. After this I examine the
procedures the model assumes at the
outset, as well as the form of the rules
at which it eventually arrives.

Representing Sentences

Before AMBER can learn how to
generate legal sentences, it must be
exposed to examples of such sentences.
One might represent a sentence as a
simple list of words in the order they
are said. However, though children
learn to produce words in the correct
order very early on, they also omit many
words that an adult would include. For
example, the utterance "Daddy ball"
omits information about the action being
carried out, as well as tense
information. AMBER's representation of
the sentences it hears reflects this
ability to note order in the absence of
information about adjacency.

The model represents the occurrence
of each morphem e as a separate
proposition, each containing information
about the speaker, the word being
produced, and the relative order of
occurrence. Thus, the fact that Mommy
said the sentence "Daddy bounces the
ball" would be stored as a set of seven
propositions: (said 1 Mommy pause);
(said 2 Mommy Daddy); (said 3 Mommy
bounce); (said 4 Mommy s) ; (said 5 Mommy
the); (said 6 Mommy ball); and (said 7
Mommy pause). The first and last
propositions act as delimitors which
mark the beginning and end of the
sentence. This representation, combined
with ACTG's pattern-matching capability,
allows the statement of learning rules
which focus on relative word order but
ignore adjacency information. The
resulting production rules omit words,
just as the child does.

Representing Meaning

Adults conversing with a child almost
invariably discuss recent or ongoing
events, so that the child can associate
some event with every sentence he hears.
The language acquisition process does
not consist solely of learning to
produce or parse legal word
combinations; it consists of learning
the mapping between meanings and words.
Accordingly, AMBER is presented not with
isolated sentences as its data, but with
sentence/meaning pairs.

AMBER represents the meaning of a
sentence as a number of propositions,
each incorporating one of a small set of
relations. The most prevalent of these
is the type relation, which connects
tokens to the various concepts of which
they are examples. There is no
restriction on the number of type
relations which may come off a token;

-185---

thus, the propositions (token-i type
red) and (token-i type ball) state that
the object token-i is both red and a
ball. Events are represented with
relations such as a ~ , action, and
object. The propositlons (event-i agent
token-2), (event-i action token-3), and
(event-i object token-4) represent an
event with an agent, action, and object
whose types have yet to be specified.

AMBER's representation makes a strong
distinction between the main meaning of
a sentence as expressed through its
content words and the modulations of
this meaning as expressed through its
grammatical morphemes. The model
assumes that a type relation pointing to
a particular concept (e.g., *ball) is
present for every content word (e.g.,
ball) found in the associated sentence.
Moreover, a word-for relation is assumed
present to establish the connection
between word and concept. The presence
of these two relations tells AMBER when
a word contributes to the major meaning
of a sentence.

Modulations on this meaning are
represented by a different set of
relations, such as number,
time-of-action, possession, and so
forth. Some of these relations connect
tokens to various values, as in token-i
number singular) and token-2
time-of-action past). Others, as in
(token-4 possesses token-5) and token-5
in token-6), actually relate tokens.

AMBER's Initial Performance System

AMBER starts with the ability to
produce single words in isolation. But
even at this stage, the model draws on a
set of general heuristics for generating
utterances which will still be useful
after its learning is complete. AMBER
does not say words as soon asthey come
to mind; first there is an active
planning stage during which sequential
goals are set.

The model starts with rules for
initializing and ending this planning
phase, and for implementing its plans
once they are complete (that is,
actually saying the words in the planned
order). The goals which result from the
planning process look very like the data
from which AMBER learns. The two-word
utterance "Daddy ball" would be
represented by the propositions (goal 1
AMBER pause), (goal 2 AMBER Daddy),
(goal 3 AMBER ball), and (goal 4 AMBER
pause), in which the model is the
speaker.

At the outset, AMBER has only a
single rule for inserting such goals in
memory; stated in English for the sake
of clarity and with its variables
underlined, it is:

If you have no goals yet,
and you see vtoken with type v type,
and vword is the word for vtype,

then set up a goal to pause,
followed by a goal to say vwo~d,
followed by a goal to pause.

This rule separates the goal utterance
from others by initial and final pauses.
Thus, even though successive words may
describe different aspects of the same
event, they will be separated by
noticeable gaps just as Bloom observed.
Only after additional rules have been
formed for inserting sounds between the
initial word and the pauses can
multi-word utterances begin to occur.

AMBER at Later Stages

On the basis of comparisons between
sentences it hears and those it
predicts, AMBER creates and modifies
rules for saying multiple words at a
time. These rules lead to the insertion
of new goals between existing ones.
Thus, they are dependent on the innate
rules described above for initializing
the goal insertion process and for
carrying out goals once they have been
set.

Imagine a situation in which AMBER
sees Daddy bouncing a ball. Also
suppose that the one-word rule we saw
above happens to select "bounce" as the
word that should be said. This would
lead to three goals: (goal 1 AMBER
pause), (goal 2 AMBER bounce), and (goal
3 AMBER pause). After some experience
with English, the model will have
generated a rule like:

If you have a goal to pause,
followed by a goal to say vword2,
and you have no intermediate goals,
and vword2 is the word for vtype2,
and vtoken2 is of type vtype2,
and vtoken2 is the action of vevent,
and vtokenl is the agent of vevent,
and Vtokenl is of type vty~el,
and vwordl is the word for vtypel,

then insert a goal to say vwordl
between the other goals--

This rule would add a goal to say the
agent "Daddy" after the first pause and
before "bounce", using the proposition
(goal 1.5 AMBER Daddy). Similar rules
lead to the production of two- and
three-word sentences expressing the
major relations described by Brown.

-186

Later, AMBER also acquires rules for
inserting grammatical morphemes. Since
most grammatical morphemes are adjacent
to the word whose meaning they modulate,
they are generally inserted directly
before or after the content word with
which they occur. For example, a rule
for regular pluralization might be
stated:

If you have a goal to say vword,
and vword is the word for vtype,
and vtoken is of type vtype,
and vtoken is the agent of vevent,
and the number of vtoken is plural,

then insert a goal to say S
directly after vword

This rule is specific to the agent of an
event, but similar rules could be
learned for objects and locations. Some
morphemes express a relation between two
content words, such as the prepositions
"in" and "on" and the morpheme for
possession. In these cases, the
morpheme is inserted between the two
related content words.

The Acquisition Process

For a system to learn from its
mistakes, it must be able to compare its
own actions to the desired ~ones, note
the differences between them, and modify
its behavior accordingly. In this
section I describe AMBER's error
correction mechanisms. First I examine
the model's prediction mechanism and its
relation to the goal structures
mentioned earlier. Next I discuss
AMBER's response to errors of omission,
first for content words and then for
grammatical morphemes. Finally, I
consider errors of commission and the
resulting call on the discrimination
mechanism.

The Equivalence of Goals and Predictions

AMBER learns by comparing its
predictions about what will be said in a
given situation to what it actually
hears. However, a learning system must
do more than improve its ability to
predict; it must also improve its
ability to perform. AMBER accomplishes
this by using the same productions for
making predictions and for planning its
speech acts. As we saw above, these
rules add goal structures such as (goal
3 AMBER bounce) when AMBER is the
speaker. When another person is the
speaker, the resulting structures, such
as (goal 3 Mommy bounce) if Mommy is the
speaker, are treated as predictions

instead of goals. Learning occurs only
when someone else is speaking and the
system is in prediction mode, while
sentences are produced only in
performance mode.

Correcting Content Word Omissions

AMBER's transition from the one-word
to the multi-word stage is primarily due
to the actions of a single learning
heuristic. This rule applies when a
content word is heard between two other
words (or pauses) but was not predicted
there; the result is a new performance
rule for inserting analogous words in
analogous positions in the future.
AMBER knows enough about the nature of
language to generalize across the
particular words and concepts involved.
However, it retains information about
case relations and shared tokens (e.g.,
two of the words may have described
aspects of the same object).

As an example, suppose AMBER sees
Daddy bouncing a ball. The model
predicts the one-word sentence "Daddy"
(preceded and followed by pauses), while
it actually hears "Daddy is bounce ing
the ball" (again bounded by pauses).
Since the grammatical morphemes "is",
"ing", and "the" are not connected to
concepts by word-for links, they are
ignored by the current learning
heuristic. However, the words "bounce"
and "ball" each have associated concepts
which occurred in the observed event.
An insertion rule is created for each,
the first inserting the action word
after the agent word and before the
final pause. The second is very
similar, inserting the object word after
the agent and before the pause.

These rules give AMBER the abiiity to
generate agent-action and agent-object
combinations, but no more. The new
rules cannot cooperate to produce
agent-action-object combinations, for
once one of the rules has fired, the
conditions of the other are no longer
met. But once this has happened, the
system can learn additional insertion
rules, such as that for inserting the
object word between the action and the
final pause. Yet even after this has
occurred, the performance rules are
dependent on the selection of the agent
word as the initial goal. Additional
insertion rules must be learned to deal
with cases in which the action or object
is the first goal to be inserted.

- 187--

Correcting Morpheme Omissions

As it is improving its ability to
produce strings of content words, AMBER
is also learning to insert grammatical
morphemes. Some of the morphemes which
modify a single token, such as tense and
pluralization endings, occur after the
words describing the token. Others,
such as copulas (is, are, were) and
articles (a, the), occur before the
modified words. Separate learning
heuristics are necessary for these two
cases, but there forms are nearly
identical.

These learning rules are evoked when
a particular morpheme is heard before or
after a content word, but was not
predicted in that position. The result
is a performance rule which inserts the
morpheme either before or after words
playing similar roles in the future
(e.g., "ing" after the word for the
action). AMBER knows that the
particular content word is irrelevant;
however, the case relation filled by
that word and the morpheme are retained.

AMBER also knows that several content
words may be used to describe the same
object (e.g., "the big red ball s") , and
that these words will occur together in
any legal sentence. This is analogous
to an assumption made by Anderson's LAS
[3], which he has called the 9raph
deformation condition. AMBER incorpor-
ates this assumption into its morpheme
insertion rules, ensuring that a
morpheme will be inserted either before
the earliest or after the latest content
word describing a token (thus, "big the
red s ball" would never be produced).

The acquisition of relational
morphemes, such as those expressing
possession and location, is handled by a
different rule. This heuristic is
evoked in the same situations as the
heuristic for content words, except that
the unpredicted morpheme must not be
associated with any concept via a
word-for link. In addition, the objects
described by the two correctly predicted
words must be directly related (e.g., a
token of milk is on a token of table).
The resulting performance rule inserts
the morpheme between the sets of words
describing objects in the observed
relation. Note that A~BER cannot
acquire such relational morphemes until
it can correctly predict the order of
the words to be related.

Correcting Errors of Commission

Once AMBER has learned a number of
rules for inserting goals, it can make a
new sort of error: the model can
incorrectly predict that a word will
occur in a certain position. A single
learning heuristic is sufficient to deal
with all such errors of commission. Its
condition is simple, but in addition to
weakening the offending rule, its action
calls on the discrimination mechanism to
produce a more conservative variant.

To reiterate, this technique compares
the last successful application of a
rule to the more recent faulty
application in the hope of finding
additional conditions to constrain it in
the future. Thus, if AMBER predicted
the sequence "ball red" when "red ball"
was heard, the discrimination process
would be evoked. Comparing this case to
an earlier one in which "blue block" was
correctly predicted, AMBER would note
that "blue" is a color while "ball" is
not. Thus, the new rule would insert
one word before another describing the
same object only if the former were a
color like "blue" or "red"

Although discrimination is useful in
learning some content word orders, its
major import lies with grammatical
morphemes. Since the initial rules for
nonrelational morphmemes are too
general, their use quickly leads to
wrong predictions. For instance, if the
morpheme "ed" was incorrectly expected
to follow an action word, AMBER would
note that correct predictions of "ed"
occurred only when the time of the
action was past. Similarly, AMBER would
quickly learn to insert "s" after the
word for the agent only when its number
was plural.

The conditions under which some
morphemes are applied can be more
complicated. Thus, the morpheme "were"
is inserted before the action word only
when the time of the action is past, and
when the nu~er of the agent associated
with that action is plural. AMBER would
be forced to learn these conditions in
two stages, first creating a variant
with one condition and later a version
including both.

As a result, the more complex the
conditions under which a morpheme
occurs, the longer AMBER will take to
master its use. If one equates the

188

number of conditions with semantic
complexity, then the discrimination
process provides an elegant explanation
of Brown's data on the order of
acquisition for grammatical morphemes.
Semantically more complex morphemes are
mastered later because they require more
conditions, and these conditions can be
learned only one at a time.

Suggestions for Future Research

In summary, AMBER does a fine job of
accounting for the major phenomena
described at the beginning of the paper.
However, the model makes a number of
simplifying assumptions and stops
improving after it has reached a certain
level of expertise. In this section I
suggest some directions in which AMBER
should be extended.

Learning Word/Concept Associations

AMBER assumes that words and concepts
are already connected through word-for
links stored in long-term declarative
memory. These connections play an
important role in letting the system
distinguish between content words and
grammatical morphemes. At least some of
these connections must be present before
any ordering rules can be learned, but
the model provides no explanation of
their origin. Extending AMBER to let it
make its own word/concept associations
is clearly a direction for future work.

Selecting a Representation

AMBER relies heavily on the
representational distinction between
major meanings (expressed by type links)
and modulations of those meanings
(expressed by others). Unfortunately
for the model, some languages express
through content words what others
express through grammatical morphemes.
This suggests that the child does not
start with a representation like
AMBER's, though it may arrive at the
same point as the result of experience
with a particular language. Future
research should consider how the child
comes to treat some meanings as major
and some as minor as a function of his
native language.

Dealing With Exceptions

In its current version, AMBER cannot
deal with irregular grammatical
constructions. Some past forms, such as
"ate", require a special word for past
events, but this cannot be expressed in
the current formalism for word/concept
associations. Some plural forms r.equire

different endings than most, such as
"oxen". These can be expressed in
production form, but no conditions exist
to distinguish these situations from the
majority. Future versions of AMBER
should have extended representations
which address these issues.

Explaining Later Stage s

AMBER's progression stops after it
has mastered the grammatical morphemes.
It never learns how to ask questions, or
how to generate sentences with relative
clauses. In fact, to present the model
with other than simple declarative
sentences would be an invitation to
disaster. Future incarnations of the
system should begin with the basic
notions of recursion and transformation.
Coupled with the existing learning
mechanisms and the extensions discussed
above, this should allow AMBER to
progress far beyond its present level of
expertise, and to become a true language
user.

References

[i] Siklossy, L. Natural language
learning by computer. In H. A. Simon
and L. Siklossy (eds.) , Representation
and Meaning: Experiments with Infor-
mation Processing Systems. Englewood
Cliffs, N. J.: Prentice-Hall, 1972.

[2] Hedrick, C. Dissertation, Carnegie-
Mellon University, 1974.

[3] Anderson, J. R. Induction of
augmented transition networks. Cogni-
tive Science, 1977, i, 125-157.

[4] Selfridge, M. Dissertation, Yale
University, 1979.

[5] Berwick, R. Dissertation, Massa-
chusetts Institute of Technology, 1980.

[6] Bloom, L. One Word at a Time. The
Hague: Mouton, 1976.

[7] Brown, R. A First Language : The
Early Stages. Cambridge, Massachusetts:
Harvard University Press, 1973.

Acknowledgements

This research was supported by Grants
SPI-7914852 and IST-7918266 from the
National Science Foundation. I would
like to thank John R. Anderson for
useful discussions which led to many of
the ideas presented in this paper.

189

