
THE KNOWLEDGE REPRESENTATION FOR

A STORY UNDERSTANDING AND SIMULATION SYSTEM

HITOSHI OGAWA*, JUNICHIRO NISHI** AND KOKICHI TANAKA*

* FACULTY OF ENGINEERING SCIENCE, OSAKA UNIVERSITY
TOYONAKA, OSAKA 560, JAPAN

** MATSUSHITA ELECTRIC INDUSTRIAL CO.,LTD.
KADOMA, OSAKA 571, JAPAN

Abstruct There exist many difficult
problems to understand a situation and an event
described in sentences or a story. One of them
is to treat with more than one subject and their
relations. Another is the comprehension of
movement of the subjects and their effects to
the others. In this pater, micro-actor is used
as the knowledge representation in which such
the problems mentioned above are solved. The
micro-actor is an artificial intelligence module
for knowledge representation, which is realized
Hewitt's actor concept.

A large problem is often solved by a group of
specialists. Each specialist has his own
knowledge and technique. A specialist can
accomplish independently a small work
communicating with the others. The specialist
is implemented in the form of micro-actor on a
computer. The micro-actor is independent of the
others, and communicating with the others using
one kind of action: sending message to another
micro-actor.

We discuss the following four problems to
understand stories and the approaches to them:
(i) depth of understanding sentences to
comprehend a story, (2) a method to deal with an
event which happens on the specific condition,
(3) synchronization of the events which occur at
same time and (4) treatment of the event which
involves more than one object.

i. Introduction

The common issues of the various themes in
artificial intelligence are the knowledge
representation, and the mechanism of
understanding and inference. The reason is that
the problems in each theme is solved well using
the knowledge known by human in a computer. We
will discuss a story understanding to
investigate how the knowledge is affected by the
change of a world state with the passing of
time.

For right understanding of a story, it is
necessary to check the world knowledge obtained
from input sentences using common sense. This
paper describes the system which simulates the
actions of objects in a story for understanding
an event and forecasting the results of the
story. For the simulation, the system must deal
with the action of individual object and the
relation amang them. A micro-actor is adoped as

the knowledge representation in which the
problems mentioned above are solved. It is
indepenent of the others, and communicating with
the others using one kind of action: sending
message to another one.

Chapter 2 describes about the micro-actor and
its features. In chapter 3~ four of the
problems in story understanding are discussed.
Chapter 4 shows the constructon of the
simulation system and its example.

2. Micro-actor

A micro-actor was proposed as the implementation
of some of abilities of Actor (Hewitt, C. 1973)
in 1977 [7]. The micro-actor described in this
paper is more powerful as it is supplemented
some strong faculties. This chapter discuss the
concept of the micro-actor, then explains the
structure and the feature of it.

2.1 Concept of micro-actor

In a large system, it is difficult to add a new
faculty to it, delete one from it, and modify
it. A solution of such a crucial issue is that a
large system is divided into many specialists.
Each specialist has his own knowledge and
technique to accomplish a small work
independently. Only message passing is the
interaction method between the specialists. A
large problem is solved as follows: It is
divided into the subproblems. If there does not
exist a specialist which can solve a subproblem,
the subproblem is further divided into the
subproblems. When a specialist solves a problem,
it communicates with the others to get his
necessary information, to send the result of
inference, and to check the consistency of
solution. Finally, the large problem can be
solved.

A specialist is implemented in the form of
micro-actor on computers. A proper definition
of each micro-actor leads to a good execution of
a system composed of the micro-actor. The
concept of actor can be applied in various
regions by means of assigning a suitable role to
the micro-actor. For example, if a computer is
regarded as a micro-actor, a powerful method
will be supplied for the implementation of the
parallel process or the distributed process
using more than one computer. This paper
describes that the micro-actors are implementeJ

--15I - -

on a computer for problem solving and kno~¢ledge

representation.

2.2 Construction of Micro-Actor

A micro-actor is composed of a "script" and an
"acquaintance" (Fig. i). The script describes

the behavior which the micro-actor should take
when it receives a message. That is, it shows
the procedural knowledge to use the data in the
acquaintance. The acquaintance stores the data
that the micro-actor knows; for example, its
native values, its attributes, the name of the
other micro-actors it directly knows about, and
the relation with them. That is, it shows the
declarative knowledge.

(i) Script

The script is specified with a set of pairs of
message patterns and rules as follows:

((message patter,nl rule,ll ... rule,lm)
(message patter,n2 rule,21 ... rule,2n)
(message patter,np rule,pl ... rule,pq)).

(ii) Message Pattern

There are two types for pattern:
(i) (MES: ?%N content TO: ?CONT).
(2) (RE: ?%N content).

?%N is only matched with the massage number %n,
where n is a positive integer. A message number
is assigned to an input sentence or a message
for distinguishing it from the others as a tag.
The message n~nber is also used to distinguish a
datLim from the others stored in the same
micro-actor. The atoms prefixed by "?" (e.g.
?CONT) are the variables for pattern matching
The prefix "!" is used instead of the prefix "?"
to refer to the pattern matching variables for
their values ; for example, !CONT. "MES" means a
message and "RE" means a reply. "TO:" means
that the continuation is sent a reply. Assign
"NO-0NE" to !CONT in the case that the answer is

not required. Assign "ME" to fCONT when the
reply is demanded. This is equal to the
subroutine control.

(iii) Rule

A rule is a set of programs, which carries out a
job. The rule consists of three parts as
follows:

((P-C: program,pl ... program,pq)
(N-C: program,nl ... program,nr)
(C-E: program,cl ... program,cs)).

"P-C" is an abbreviation for pre-condition.
"N-C:" means next-condition which is an option.

"C-E:" is an abbreviation for caused-events in
which the messages are sent to the other
micro-actors when both the pre-condition and the
next-condition are satisfied. The form of the
rule is given by Dr. Yonezawa[12], and it is
suggested that the form of the rule is useful to
deal carried out in order of the appearance of
them in the pre-condition and the

the name of a micro-actor

script

the procedural knowledge

acquaintance

the declarative knowledge

Fig. i Construction of micro-actor.

(Frame Name
(Si (Fli (Dill Clil)

(S 2 (F21 (D211 C21 I)

(S 3 (F31 (D311 C31 I)

(F32 (D321 C32 I)

.

.

(S s (Fsl (Dsl I Csl I)

• .. (Dii h Cllh)))

• .. (D21 i C21i)))

• .. (D31 j C31j))

• .- (D32 k C32k)))

• .. (Dsl m Cslm))))

Fig. 2 Frame representation for
the acquaintance.

next-condition. On the other hand, the programs
in the caused-events can be executed
concurrently.

(iv) Program

A program is written in the restricted LISP
notation. The user can freely use the LISP
functions which do not have influence upon the
pointers to lists and atoms; e.g., MEMBERS,
ASSOC and so on. The variables are restricted
to the form !m or !In (Both m and n are positive
integers) for the LISP functions which have
influences upon the pointers; e.g., SETQ and so
on. This restriction prevents the behavior of a
micro-actor from giving unitentional effect to
other micro-actors. The variable !m is used as
well as PROG variable. The user can operate the
basic function (FGET, FPUT and FREMOVE) to deal
with the acquitance. The function FGET is used
to obtain the data from the acquaintance. The
functions FPUT and FREMOVE may put the data to
it and remove the data from it, restrictively.
The user uses the basic function (FGET, FPUT and
FREMOVE) to deal with the acquaintance. These
functions differ from those of PRL[9,10] in
point of the necessity of the frame name. The
functions in this paper deals with only its
acquaintance. Therefore, the execution of the
basic function does not affect the other
micro-actors. A specification for message
passing is as follows: (=> the name of a
r~cro-actor a message).

152

(v) Acquaintance

The frame is employed to represent the
acquaintance as shown in Fig. 2. The respective
substructures of a frame are named; Slot, Facets
Datum and Comment. A slot shows which property
the data in it are connected with. A facet
shows kinds of the data; e.g., values,
constraints, procedures and so on. A datum is

elementary information associated with the
facet, and a comment is additional information
for the datum. More than one facet can be
included in a slot.

2.3 Behavior of Micro-Actor

The micro-actor becomes active and tries to play
its role when it receives a message Mi. If the
message pattern Pi is found, a rule Ri is
searched for, which is one of rules making a
pair with the pattern Pi, and whose
pre-condition should be satisfied. When there
is the next-condition in Ri, all programs in the
next-condition should be evaluated. If the
next-condition is satisfied, the easued-events
are executed. If there is no rule whose
pre-condition is satisfied concerning the
pattern Pi, the micro-actor tries to find
another message pattern which is matched with
Mi.

Since the system holds the COMMON-SCRIPT which
is necessary for all micro-actor, the users may
specify the micro-actor by the peculiar script.
The COMMON-SCRIPT has the message pattern (MES:
?%N ?X TO: ?CONT) and acts as follows:
(a) If the variable IX (corresponding to ?X)

indicates one of the basic functions (FGET, FPUT
and FREMOVE), then it is put into practice.
(b) If !X shows one of the extension functions

(i.e., there exists a micro-actor corresponding
to it), the rules are obtained from the
micro-actor corresponding to the extension
function, and they are performed. The variables
!In (n = i, ..., 5) are corresponed to the
arguments; for example, !!l means the first
argument.
(c) If IX indicates a set of rules, then !X is

accomplished.

2.4 Demon for Micro-actor

A demon function is newly added to the
micro-actor to build a story understanding
system. Micro-actors correspond with men,
animals and objects which appear in a story.
Each action is described in the script. The
acquaintances show peculiar values and the
relation to the others. It is, however,
difficult to get a result of the simulation of

the world situation obtained from a story. For
example, assume that there is a micro-actor Taro
(names of micro-actors are underlined) which
corresponds to a man named Taro. Consider the
method that Taro sends a message to a certain
micro-actor when he arrives at place X. In this

case, Taro must see if his place is place X
whenever Taro changes his place. To do this
well, the demon function is necessary, which
always checks if there exists the specific
situation or not, and behaves an appropriate
action: In this exampled once the demon function
comes to know that Taro is at place X, it sends
a message to a certain micro-actor.

We can use demon functions using is the frame
representaion like FRL, and two kind methods of
the demon functions mentioned below. Two of new
demon functions are made in consideration of the
activation method of micro-actors: The
micro-actors are activated when then receive
messages. 0nly a post-action method is adopted
in the present system.

Pre-action A pre-action demon is described
in the form of rules in a pre-action slot in the
acquaintance. When a micro-actor receives a
message, rules in the pre-action slot are
evaluated before the micro-actor begins to
execute its role according to the script.

Post-action A post-action demon is
described in the form of rules in a post-action
slot in the acquaintance. After the micro-actor
finished to execute its role according to the
script, the rules in the post-action slot are
evaluated.

2.5 Features of Micro-actor

The knowledge representation using the
micro-actors can establishes both its modularity
and easibility of interaction. This section
states the features of a micro-actor using
examples.

The declarative knowledge and the
procedural one The knowledge is represented in
either the declarative form or the procedural
one. The following example shows how to
represent the knowledge in the micro-actor.
Assume micro-actor Human which shows the
knowledge about a human being. Though we have a
great deal of knowledge about a human being, two
simple examples will be shown. One is
represented as the declarative knowledge: "A
human is a kind of animal." The representation
of this knowledge is to put value ANIMAL to Ako
slot in the acquaintance of mlcro-actor Human.
The other is represented as the procedural
knowledge: "When there exists an obstacle (e.g.,
tree, wall, etc.) in his way, he jumps over it
if it is low, otherwise, he go a long way
around." This knowledge is shown in the form of
rule, and the rules are put to either the
script, or Pre-condition slot or Post-action
slot in the acquaintance of micro-actor Human.

Modularity It is essential to be able to
represent a great deal of knowledge by a group
of small modules. As mentioned in 2.1, the
micro-actor can independently accomplish a small

--153--

work, and only message passing is the
interaction method between one and another. The
messages received by a micro-actor describes
what the micro-actor must do. The messages sent
from a micro-actor shows what the micro-actor
needs. We can understand the action of a
micro-actor from only the messages sent from or
received by the micro-actor. Therefore, we may
only check the messages sent or received to
change the micro-actor. Furthermore, we can
easily understand the micro-actor system
inspecting the messages.

The modurality brings the construction in which
a classification and a hierarchical structure of
knowledge is easily represented. The following
shows the example about the representation of
knowledge in a hierarchical structure.

The obstacles to the human (e.g., John and Tom)
are generally trees, fire, wall, and so on.
Dogs are, however, obstacles to Tom if he
dislikes them. In the micro-actor system, these
obstacles are specified in a hierarchical
structure as shown in Fig. 3. In Fig. 3, the
names and the acquaintances are shown in boxes.

Pseudo parallel processing can be easily
implemented. This secton will show the example
of that John and Tom play at a tug of war (Two

person draw a rope in the opposite direction.).
John and Tom are assigned to micro-actor John
and micro-actor Tom, respectively. To simulate
the tug of war, it is necessary that John and
Tom are activated simultaneously. This is,
however, impossible of implementation using our
facilities. Therefore, the example is simulated
with pseudo parallel processing.

We also use micro-actor SIMTW which has the
knowledge about a tug of war. Fig. 4 shows the
relation of the micro-actors.

Human

(Obstacle (:value (tree))
(:value (fire))
(:value (wall)))

l
i

I
Tom

(Ako , (:value (human))]
(Obstacle (:value (dog)))

i

(Ako (:value

Fig. 3 An example of a hierarchical structure.

SIMTW cannot be active until it receive the
messages from both Tom and John. If it receives
two messages, then it check the situation of the
tug of war: e.g., if Tom and John draw a rope in
opposite directions with the same might, then
the tug is continued. If one of them is more
powerful than the other, then he becomes a
winner. When one of them falls down, there is
no power to draw a rope. Then he is loser

Parallel processing is possible if Tom and John
are independently implemented using two
micro-computers. In our system, we use one
computer to implement the micro-actor system.
Therefore, necessary is the micro-actor for
synchronization of the action of Tom and of
John. The detail will be described in chapter

4.

3. Problems in Story Understanding

There exist many difficult problem to
understand a story. In this chapter, we discuss
four main problem in them, and approaches to
them.

(1) How deeply should a sentence be understand
to comprehend a story?

A consistent meaning should be obtained from a
sentence neither in too detail nor in too rough
in order to comprehend a story. The level of
detail at which a sentence is understood depends
upon the context and one's interest. The
example will be given to us using the following
sentence: "John was walking." One may think that
the sentence means that John advances. This
interpretation leads the reason enough to
understand "John arrived at a town." However, it
is not the reason enough to understand "John was
tired." One must infer as follows: Action
"walking" consists of the relaxation of muscles
and the tension of them. One of reasons for his
fatigue may be the repetition of the tension and
the relaxation of muscles. We, therefore, infer

Tom

Draw a rope

John

Draw a rope

~message /message

SIMTW

Compare the message from Tom and one
from John when they are received.

Fig. 4 Construction of the micro-actors
for a tug of war.

- - 1 5 4 - -

that his fatigue is caused by the long distance
walking until we find another reason for it.

To implement te above inference, we adopted a
frame representation to be easy to represent
knowledge in a hierarchical structure, and
developed the convenient method to deal with
such knowledge.

(2) How to deal with an event which happens on
the specific condition.

To answer the questions about a story, it is
necessary to refer to the knowledge base and to
forecast the event which will happen in the
future. One of methods for a forecast is the
simulation of the story. In the simulation,
there exests an event which happens only on the
special condition. The simulation is performed
to investigate at where Tom will arrive using
the information obtained from the story, when
the system receives the question "Can Tom arrive
at a town?" If there is obstacles on his way, we
cannot predict Tom's behavior. Therefore,
whenever he changes his position, the system
should see if he is in the town. The demon
function is useful to check this rather than
programming his behavior in the script. In this
paper, the rules are in the post-action slot,
which send a messge to micro-actor Answer if Tom
is in the town. These rules are activated after
being applied some rules in the script of Tom.

(3) How to describe the knowledge changed
frequently.

When there exist some subjects which move at the
same time, the simulation system must change
simultaneously their position. However, it is
impossible to implement the parallel processing
by using a CPU machine. For example, assume the
scene that Tom and a dog are walking oppositely.
The simulation system changes their positions in
order: first Tom moves then the dog moves, or in
the opposite order. The different results are
brought in the different ordering when there is
the restriction that they must not come across.
To settle the above issue, we use the time-flag
in order to represent the situations of them.
The method is a little unconvenient for
describing the situation per time. It, however,
needs neither the specific faculty to remember
its careers, nor the memory space to hold new
situations for the micro-actors because they are
changed at the same time.

Fig. 5 shows the list of the acquaintance of
micro-actor Tom. Sn is the abbreviation of
Stepn(Suffix n is a positive integer.). Si
indicates the time when the system is the
initial state. Suffix n is increased one by one
as a certain time passes. Place slot indicates
the present place of Tom, and Fig° 5 says that
he was in Pi6 (Place 16) at Si and in Pi7 at $2.
In ACT slot, the action of Tom is described.
According to Fig. 5, Tom is going to P20.

(A~O (:VALUE (HUMAN)))
(MIGHTY (:VALUE (5)))
(LIVING (:VALUE (ANIMAL)))
(HEIGHT (:VALUE (LITTLE)))
(PLACE (Sl (:VALUE (PI6)))

(s2 (:VALUE (PIT))))
(ACT (Sl (:V (MOVE)) (:O (P20)))

($2 (:V (MOVE)) (:O (P20))))

Fig. 5 The acquaintace of
micro-actor Tom.

(4) How to deal with the event which involves
more than one subject.

There may be more than one subject in an event
stated in a story. When they are related with
one another, we must skillfully deal with the
relations of them. There are two kinds of
relations between the subjects in a story. One
is cooperation (e.g., Tom and John push a box
together), and the other is opposition (e.g.,
Tom and John play at a tug of war).

There are many ambiguous sentences dealing with
cooperation. In the case of sentence "Tom and
John made a shed for dog in cooperation," there
are some interpretation as follows:

(i) They divided the labor: e.g., One of them
bought materials and the other constructed the
shed.
(2) They worked together for all Jobs.
(3) One of them worked according to the other's
direction.
The above example says that we can consider many
complicated relation for cooperation in a simple
sentence. In this paper, we use the second
interpretation for simplicity.

Both cooperation and opposi£ion is dealt in the
similar way in this simulation system. Examples
will be given using the following sentences:
(i) Tom and John play at a tug of war.
(2) Tom and John push a box together.

In order to deal with sentence (i), we make
micro-actor SIMTW which stores the knowledge
about a tug of war: e.g. "A winner is a person
who is more powerful than the other." "A
winner's opponent is a loser." and so on. When
SIMTW receives both a message from Tom and one
from John, it compares the power of Tom with one
of John, and Judges a winner. A Coop (which
means cooperation) slots are added to the
acquaintances of To__m_and'John to store the name
of his opponent.

The treatment of sentence (2) is similar to one
of sentence (i). We make micro-actor SIMPUSH
which compares the sum of power of Tom and John
with the weight of the box, when it receives
both a message from Tom and one from John.
SIMPUSH sends micro-actor BOX a message to get
its weight. If the sum of power of two person

--155--

is larger than the weight of the box, SIMPUSH
sends messages to To____m, John and Box to change
their position.

4. Simulation System

In the last chapter, we discussed the main
problems in story understanding and the methods
using micro-actors to settle them. In order to
confirm the validity of these methods, we
simulate how the world described in a story will
change with the passing of time. The simulation
is shown as an animation. In this chapter, we
state the simulation system consisting of
micro-actors and its executive examples.

4.1 Planning

It is necessary for simulating to specific
attribute, location, action etc. of the objects
in a story. In this system, micro-actors are
made corresponding to objects in a story, and
the necessary is stored in them.

There are the micro-actors which have general
knowledge about the objects (e.g. person, dog,
tree and so on) in this system. These
micro-actors give the micro-actors corresponding
to the objects the default values of general
action and property. The simulation is based on
the information given to the micro-actors
corresponding to the objects. For example,
micro-actor John is made according to sentence
"John is a human". John is obtain the
properties of a human: e.g. he is little size
for a kind of mammal, he can move freely, he
plays games, and so on. Of eource, they are
modified easily when new information is given.

If a sentence describes what is concerning with
the micro-actor made already~ a information in
the sentence is given to the micro-actor. The
information is represent either in the script or
in the acquaintance.

Information about action is described in the
script. For example, micro-actor Walk sends
micro-actor John the rules for walk, according
to "John walks to P20". (P20 indicate a place
whose discriminative number is 20.) The rules
represent the necessary actions to move toward
the goal and~ if necessary, call the other
rules: e.g. to jump an obstacle, to pass aside

it, and so on.

Information indirectly relating to action is
represented in the form of demon. In the case
that "John dislikes a dog", the post-action slot
stores the rules that John goes away from a dog
when the dog comes near him. When John is
walking, his action does not change until he
meets with a dog. He, however, avoids it and
walks to his goal if he comes across a dog.

There is the issue whether John comes across the
dog or not. This system divides a world into

15(=5×3) places. This reason is just the
convenience for the indication of animation. We
use these place to check if two objects meet
together or not. Two objects "meet together" if
they are in the same place. They "come near" if
their places are neighboring. Otherwise, they
"are kept apart".

4.2 Simulation

The last section describes a method of planning
the action of each micro-actor. The activation
of micro-actors must be planed well, because
micro-actors should act in a pseudo parallel for
the simulation. This system adopts a
micro-actor Sinchronizer for a pseudo parallel
processing of micro-actors. Sinchronizer
synchronously sends a message to a micro-actor
corresponding to an animate object. Namely, it
sends each of the micro-actors only one message
to activate it for every frame of the animation.

The actions of the planned micro-actors simulate
the change of the world given from a story. A
mean processing part is necessary for us to know
the results of the simulation and the mean
indicated by world state obtained in the
simulation. For example, in the case that two
person play at a tug of war, the change of the
world is indicated as the content that strong
person A can draw near a rope (with weak one B).
Such world state, however, means that A has won
and B has lost the game. The mean processing
part is also implemented using micro-actors.
The interaction form the simulation part to the
mean processing part is a message passing from a
micro-actor in the simulation part to a

micro-actor in the mean processing one. In the
example of a tug of war, a demon is adopted to
send a message when one player can draw a rope
(with the other player), and a micro-actor in
the mean processing part is prepared to received
the message and to judge the winner of the game.
This organization, furthemore, makes it possible
to explain some actions (For example, that John
dislikes a dog is the reason why he released the
rope and moved to another place.). Fig. 6 shows
the construction of the two parts.

The two parts are implemented on PANAFACOM
U-1500. We constructed the animation indication
system to monitor the simulation. This sysem
consists of two parts: picture Display System
(PDS) and Picture Instruction Generator (PIG).
The PIG generates the instructions to display
the objects in the simulation in the animation
style. As the PIG receives messages including
only essential information (name and action:
e.g. ((A John) (V walk)), the PIG acquirs the
detail information (e.g. type, size, etc.) to
display the animation from knowledge base. Then
the PIG makes the instructions and sends them to
the PDS. The PDS displays the animation
according to the instructions. The PIG and the
PDS are implemented on PANAFACOM U-1500 and NEC

- 1 5 6 -

I A tug of war I I Dislike I
4'

7,<.> /

me an

processing

simulation

Fig. 6 The relation of mean processing
part and simulation part.

Pii Pi2 Pi3 Pi4 Pi5

Pi6 Pi7 Pi8 Pi9 P20

P21 P22 P23 P24 P25

Fig. 8 Names of places in the
display unit.

PC-8001, rspectively. The details of the
animation display system will be presented at
another chance.

4.3 Example

An input story is shown in Fig. 7. Places Pi6,
Pi8 and P20 in Fig. 7 indicate the places an the
display unit as shown in Fig. 8. After the
sentences indicated in Fig. 7 are understood,
the simulation begins when the following
question is input:

"Can Tom become a winner of the game?" (9)
Since we do not have the analyzer of natural
language (Japanese), sentences are given to the
system in terms of Case grammer as shown in Fig.
9. The numbers in Fig. 9 correspond to the
sentences in Fig. 7 and the question. Letter V,
A, O, L, I and G indicate verb, subject, object,
location, instrument and goal, respectively.
List (M (? G)) means that the sentence is a
question one.

John and Tom are human. (i)
Ropel is a rope. (2)
Spot is a dog. (3)
John, Tom and Ropel are at place Pi8. (4)
Spot is at place P20. (5)
John dislikes a dog. (6)
John and Tom play at a tug of war. (7)
Spot walks toward place Pi6. (8)

Fig. 7 Input sentences in a story.

i. ((V IS-A) (A (TOM JOHN)) (O HUMAN))
2. ((V IS-A) (A (ROPEI)) (O ROPE))
3. ((V IS-A) (A (SPOT)) (0 DOG))
4. ((V IS-AT) (A (TOM JOHN ROPEI)) (L PiS))
5. ((V IS-AT) (A (SPOT)) (L P20))
6. ((V DISLIKE) (A (JOHN)) (O DOG))
7. ((V PLAY-AT-A-TUG-OF-WAR)

(A (TOM JOHN)) (I ROPEi))
8. ((V MALK) (A (SPOT)) (G P16))
9. ((M (? G)) (A (TOM))

(V PLAY-AT-A-TUG-OF-WAR) (G WINNER))

Fig. 9 The input sentences and the
question in the form of
Case grammer.

Photo. i and Photo. 2 show two frames of the
animation made from the sentences in Fig. 9.
Photo. i indicates the state that John and Tom
begin to play at a tug of war, and Spot is
walking toward place Pi6. In Photo. 2, John ran
away since Spot came near him. Therefore, Tom
has won the game and is delighted.

5. Conclusion

There are two types for the representation of
knowledge: the declarative one and the
procedural one. The difference between them is
which we attach importance to modularity or
convenience of interaction. The micro-actor has
been proposed as the method in which the
modularity is established without sacrificing
the possiblities for interaction.

This paper has treated of four problems to
understand a story: (i) depth of understanding a
sentence to comprehend a story, (2) a method to
deal with an event which happens on the specific
condition, (3) synchronization of the events
which occur at the same time and (4) treatment
of the event which involves more than one
object. We have tried to solve these problems
using micro-actors. The most difficult problem
is the last one in the above. When the system
deals with the last problem, it must have
ability of the simulation in which the objects
change their states in parallel. The convenient
way for this is that a object affects only
relevant objects. Since message passing is only
the interaction method between nmicro-actors,

--157--

Photo. I The state that Spot comes near
Tom and John who play at a tug
of war.

Photo. 2 The state that John ran away
and Tom has won.

this method is very available for the parallel
processing or the psudo parallel processing.
Furthermore, not only the declarative knowledge
but procedural one can be embedded in the
micro-actors and the problems mentioned above
have been solved with relative ease.

This paper has described the knowledge
representation for a story understanding and a
simulation system for it. In another paper, we
have presented a tracing technique, using
micro-actors, of blood vessels in
stereorado-graphic images of a cerebrum-vascular
system. Futhermore, some other systems have
been constructed usig micro-actors with success
[8].

The autors appreciate many helpful conversations
with members of Prof. Tanak's Laboratory of
Osaka University. Especially, they thank H.
Karasawa and T. Takahashi. The micro-actor has
been implemented in LISP 1.7 which was developed
by S. Doshita et al. in Kyoto University.

References.
[i] Hewitt, C., Bishop, P. and Steiger, T.: "A
UNIVERSAL MOSULAR ACTOR FORMALISM FOR ARTIFICIAL
INTELLIGENCE", Proc. of IJCAI-75, pp.235--245

(1973).
[2] Hewitt, C., and Baker, H.: "TOWARDS A
PROGRAMMING APPRENTECE", IEEE Trans. on Software

Engineering (1975).

[3] Kahn, K. M.: "AN ACTOR-BASED COMPUTER
ANIMATION LANGUAGE", AI WORKING PAPER 120
(1976).
[4] Kahn, K. M.: "DIRECTOR GUIDE", AI MEMO 482
(1978).
[5] Lehnert, W.: "IIUMAN AND COMPUTATIONAL
QUESTION ANSWERING", Cognitive Science, Vol. i,
No. i, pp.47--73 (1977).
[6] Minsky, M.: "FRAME SYSTEM"," in Winstom
(ed.) Visual Information Processing (1975).
[7] Ogawa, H. and Tanaka, K.: "A STRUCTURE FOR
THE REPRESENTATION OF KNOWLEDGE --A PROPOSAL FOR
A MICR0-ACTOR--", Proc. of IJCAI-77, pp.248--249
(1 9 7 7) .
[8] 0gawa, H., Nanba, H. and Tanaka, K.: "ACTIVE
FRAMES FOR THE KNOWLEDGE REPRESENTAION", Proc.
of IJCAI-79, PP.668--675 (1979).
[9] Roberts, R. and Goldstein, I.: "THE FRL
MANUAL", AI-MEMO 409, MIT (1977).
[I0] Roberts, R. and Goldstein, I.: "THE FRL
PRIMER", AI-MEMO 408, MIT (1977).
[ii] Wilensky, R.: "WHY JOHN MARRIED MARY:
UNDERSTANDING STORIES INVOLVING RECURRING
GOALS", Cognitive Science, Vol. 2, pp.235--266
(1978).
[12] Yonezawa, A.: "A SPECIFICATION TECHNIQUE
FOR ABSTRUCT DATA TYPES WITH PARALLELISM",
Research Reports on Information Sciences in
Tokyo Institute of Technology, No. C-17 (1978).

158

