
HIERARCHICAL MEANING REPRESENTATION AND
ANALYSIS OF NATURAL LANGUAGE DOCUMENTS

Toyo-aki NISHIDA and Shuji DOSHITA

Department of Information Science
Faculty of Engineering, Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto, 606, Japan

Abstract

This paper attempts to systematize natural
language analysis process by (I) use of a
partitioned semantic network formalism as the
meaning representation and (2) stepwise
translation based on Montague Grammar. The
meaning representation is obtained in two steps.
The first step translates natural language into
logical expression. The second step interprets
logical expression to generate network
structure. We have implemented set of programs
which performs the stepwise translation.
Experiments are in progress for machine
translation and question answering.

i. Introduction

Conventional AI systems dealing with natural
languages paid much efforts on the problem, how
to translate natural language input into the
internal knowledge structure such as micro
PLANNER statements[14], semantic networks[6],
frames[l], etc. Most of these systems directly
translate input sentences into task oriented
internal structure. The architecture of these
systems will be much simplified if systematic
meaning representation and analysis method based
on a formal theory is incorpolated.

This paper proposes a stepwise translation
system based on Montague Grammar (MG for
short)[3]. Partitioned semantic network[6] is
employed as a meaning representatin. Input
sentence is firstly translated into logical
expression and then semantic network is
generated by interpreting it. Semantic network
is the output of the natural language analyzer.
This will be further compiled into task oriented
representations to be used by a task oriented
problem solver. This paper concentrates on the
natural language analyzer. The following is a
summary of our approach:

NATURAL LANGUAGE ANALYZER

& LE .&. PSN - - - . task oriented
representations

where NL: natural language,
LE: logical expression,
PSN: partitioned semantic network,
T: translation mapping,
I: interpretation mapping.

We have developed natural language analyzers
for English and Japanese respectively. This
paper describes the one for English. The
experiments are in progress with these systems.
The applicability of the proposed approach is
discussed briefly.

2. Overview of the approach

This section gives the readers an overview
of the system by illustrating an example.
Before illustration we shall present the
formalisms of LE and PSN.

LE -- lo$ical expression
The notion of LE is based on Cresswell's

%-categorial language[2]. The following is the
syntax of LE:

- the set of syntactic categories (Syn): two
basic categories are used, i.e., 0 of
sentence and 1 of name. Given categories
T,O~, ... ,O,, then <T,Ol, ... ,On> is the
category of a mapping that makes an
expression of category T out of expressions
of category ol, ... ,~, respectively.

- the set of symbols (F): F = #~y~FO, where Fo
is a finite set of symbols, and if Ol#o 2
then FO,~F~=~.

- the set of variables (X): X= ~5~Xo, where
Xo is a set of variables such that if ~i#o~
then X~znXa~=~ , and that intersection of F
and X is empty.

- the set of expressions (E): E = ~ ~E~, where
E~ fills the following properties:

(i) Xo GEo,
(ii) FocE~,
(iii) if ~ gE<T,Oi, ... ,~a> and

~I, ... ,~gEot, ... ,E~a,
then the expression ~(~I, ... ,~n) £ET,

(iv) if B gXo and ~cET,
then the expression 18[~] e E<Y,O>,
where I is a distinguished symbol in E.

PSN -- partitioned semantic network
PSN denotes the semantics of LE. The notion

of network partitioning is based on Hendrix's
K-net [6]. The constituents of PSN are:

- a space which denotes a possible world
- a typed nodes
- an arc with a case label

85

SENTENCE

NG

DET NOUN

/
Every man

VP
/\

VT NG / / \
DET NOUN

I I
loves a woman

((EVERY MAN) (LAMBDA X ((A WOMAN) (LAMBDA Y (LOVE X Y)))))

~E~MAN) (LAMBDA~~(LAMBDA Y (LOVE X Y))))

EVERY MAN LOVE (A WOMAN)

I I A A WOMAN

I I
Every man loves a woman

(a) the syntax tree. (b) the semantic tree.

Fig. 3. Syntax analysis and generation of LE for the sentence,
"Every man loves a woman."

Sometimes linear notations are used instead of
PSN structure. The linear notation can be
further interpreted by meta language [8],
however this is beyond the scope of this paper.
Fig. 1 illustrates PSN structures together with
linear notations.

AND(P,Q) OR(P,Q) NOT(P) V?X.P(?X)
(a) (b) (c) (d)

ANY j I

3?X.P(?X) V?X.B?y.p(?x,?Y) 3?y.V?X.P(?X,?Y)
(e) (f) (g)

Fig. i. Basic PSN structures,
(with linear notations).

Some special structures are used to denote
intensional entities. See fig, 2 below.

I .,l p
~_ i . . , , ?X ~" D•.., ~ P SETOF I ?x 1 1

INDEF[?X; P(?X)]
of. gx[p(x)]

DEF[?X; P(?X)] SETOF[?X; P(?X)]
of. Ix[p(x)] el. {xlp(x)}

Fig. 2. Intensional structures in PSN.

Overview of the meanin$ analysis process
Now we illustrate an example. Consider the

following simple sentence:

(EX-I) Every man loves a woman.

(STEP i) Morpholo$ical analysis
Input sentence is analyzed by consulting

dictionary in which LE expression and

grammatical category are assigned to each word.
For the given sentence (EX-i), we obtain:

Every: cat=DET, sem=EVERY
man: cat=NOUN, sem=MAN
loves: cat=VT, sem=LOVE, (form=+S)
a: cat=DET, sem=A
woman: cat=NOUN, sem=WOMAN

(STEP 2) Syntax analysis and seneration of LE
Morphologically analyzed sentence is further

analyzed by a set of grammar rules. Each
grammar rule consists of syntactic generation
part and semantic composition part. For the
sake of illustration, let the grammar rules be:

SENTENCE -->NG+VP,
sem=list[sem[NG];sem[VP]]

NG -->DET+NOUN,
sem=list[sem[DET];sem[NOUN]]

VP -->VT+NG,
sem=Iist[LAMBDA;?X;

list[sem[NG];list[LAMBDA;?Y;
list[sem[VT];?X;?Y]]]]

The syntax analysis and semantic composition are
done in parallel. If one of them detects
anomaly, the application of the rule is aborted.
Fig. 3 illustrates the result of the syntax
analysis and semantic composition for our
example. The syntax tree shows the phrase
structure of the sentence. The semantic tree
shows the history of semantic composition. The
root node of the semantic tree is the LE (in
LISP notation) obtained from the sentence.

(STEP 3) Interpretatign of LE
Extracted LE is evaluated

generation procedure as follows:
by a network

(i) interpretin$ (EVERY MAN)
A fragment of a universal quantification is

generated.

86

(2) intepretin$ (A WOMAN)
An intensional node is generated.

MA,

Jante~c°n~se~INDEFA WOMA " ~' - N

(3) interpretatin$ LOVE
A relational node for the two place

predicate LOVE is generated.

I "7- ~ a / \.o .[WOMAN]I
NDEF~,- ?Y~' , :!]

(4) to replace the OBJECT slot of LOVE
by its extensi0n
Since the verb "love" is an extensional

verb, the OBJECT slot is extensioned, i.e., is
replaced by an existentially quantified
variable. In our system new individual node is
generated in the sense of Skolem constant. We
treat scope ambiguity at this time; if this
Skolemization is to be done in a local world,
scope ambiguity is announced. In this case
three ambiguities are detected as for where the
Skolemized node is placed, i.e.,

(i) the innermost space ~3:
V?X.[MAN(?X) -~.~?Y[LOVE(?X,?Y)]],

(ii) the middle space ~2:
V?X.3?Y[MAN(?X) -~ ?Y[LOVE(?X,?Y)],

(iii) the outermost space ml:
H?Y.V?X[MAN(?X) --~ LOVE(?X,?Y)].

Since the reading (i) and (ii) are logically
equivalent, there are essentially two
ambiguities. If the reading (i) is selected,
the final network structure is:

' IMP IES
ANY ~ m ~ - k _ ~ . ~ . ~ . ~ J LOVE WOMAN

[- " - i , ?X ,, - - - - - - - - '

Comments on scope ambiguity
One of the interesting feature of MG is the

treatment of scope ambiguity of quantification.
In MG, scope ambiguities are captured as
ambiguities of semantic composition. However,
considering the following two points:

- how to filter out redundancies; sometimes
this redundancy is reduced in the

interpretation process,
- the resulting parsing

inaccurate readings,
sometimes involves

it is plausible to treat scope ambiguities in
the interpretation process as shown in the above
example.

3. Implementation of translation mapping (T)

This section treats the translation
mapping T. Firstly, we show how we associate LE
with each phrase of English. Then we describe
the rule based parser.

The association of LE with En$1ish phrases
(l) Simple sentence

Simple sentence is composed of a subject and
a verb phrase. Subject is a noun phrase. The
LE for a noun phrase is in category <0,<0,i>>.
The LE for a verb phrase is in category <0,i>.
The LE for a sentence is a functional
composition of an NG and a VP. See the
following illustration:

np(vp) e E0

n ~ v p e E<O,i>

(2) Verb phrase
Basic part of a verb phrase is composed of

either an intransitive verb or a transitive verb
plus an object. For example, The LE for a
phrase "have a book" is obtained as follows:

Ix 1[(a(book)) (ly l[possess(x,y)])] e E<0,1>

possess ~ E<O,i,i> a(book) e E<0,<0,1>>

(3) Noun phrase
A noun phrase maps a one-place predicate

into a sentence, that is, in category <0,<0,i>>.
The constituents of a noun phrase are:

- determiner (DET) in E<<O,<0,1>>,<0,1>>
- number (NBR) in E<<0,1>,<0,1>>
- adjective (ADJ) in E<<0,i>,<O,i>>
- head noun (NOUN) in E<0,1>
- plural morpheme (+S) in E<<0,1>,<O,I>>
- post modifier (Q) in E<<0,1>,<0,1>>

(example) "the two efficient algorithms"

the(two(*pl(efficient(algorithm)))) E E<O,<0,1>>

the~two (*el (~ef ficient (algorithm)))

~o *m~ifef: [cie~nt(~l ith "

efficient(algorithm) *pl

I I
the two efficient algorithm +s

(DET)(NBR) (ADJ) (NOUN) (+S)

8 7

(4) Postmodifier
(i) Relative clause

A relative clause is composed of the symbol
'which' and a sentence. 'Which' makes a
postmodifier of a noun out of the sentence. A
special symbol #ante (in E<O,<0,1>>) is supplied
for the eliminated antecedent in the relative
clause. See the following example:

g E<<0,1>,<0,1>>
which (#ante (Ix, [(a (input)) (ly I [accept (x, y)])]))

which #ante (/Ix I [(~nput)) (ly I [accept (x, y)])])
/

(a (input)) (lye [accept (x,y)])] #an[e xXlC /'''--
accept a (input)

which qb accep t (s) a put

(ii) Adjective prepositional phrase
The LE for a preposition is in category

<<0,0>,i>, that is, makes an adverb out of a
name. The LE for an adjective prepositional
phrase is constructed using a special symbol
*ape E<<<<0,1>,<O,i>>,i>,<<0,0>,i>>. Roughly
speaking *ap converts an preposition into "an
adjective preposition" which makes an adjective
phrase out of a name. See the following example:

. £ E<<0, i>, <0,i>> Ip< n 1~[~yl[(theisystem))
~'~- ~ (tx, [((*ap (of)) (x)) (p (y))])]]

*ap (of) the (system)

of the system

(5) Noun clause
A noun clause is constructed from a key

word (e.g., "that", "whether", etc) and a
complement sentence. The LE for the keyword
maps a sentence into a noun phrase, that is, in
category <<0,<0,1>>,0>. See the following
example:

whether(it(Ix_[(the(input)) _<^ <^ _>>
x , y)])])) e~ U, U , l

/ t(XXl[(the(Inp~[accept(x,Y)])])

whether it accept the input
(WHETHER) (SENTENCE)

(6) Mood
We treat

uniformly.
different mood of a sentence

Declarative is default.
Interrogative is denoted with a symbol #QUES.
#QUES may be paraphrased as:

Ip[I(Ix1[(you(ly1[P(IZl[aSk(x,Y,Z)])]))])]
~"I ask you .., " e E<0,<0,<0,1>>>

Indirect questions and direct questions are
treated uniformly. For YES-NO questions, a
symbol (whether) is used which maps a

sentence into a noun clause. For example,

"Does he run?" ~#QUES(whether(he(run))) EE0

For WH-questions, see the following example:

"Who runs?" ~#QUES(who(#ante(run))) E E0

where, the symbol (who) maps a sentence into
a noun clause.

- Imperative is denoted with a symbol #IMP.
#IMP may be paraphrased as:

%p[I(lXl[(you(lYl[P(lZl[order(x,y,z)])]))])]
~"I order~you .~. " g E<0,<0,<0,1>>>

For example,

T
"Take it."~#IMp(inf(Ix[it(ly[take(x,y)])]))

6 E0
(7) Other features

Some other features are shown by example.

(i) possesive
e E<0,<O,i>>

l~n 15 (the(ship)) (%x1[((*poss(x)) (name)) (z)])]

l~n 1~l~n 1~(the(ship)) name
"~ '~" (lx%'~f(*poss (x)) (y)) (z)]))]] [

~ ~ . E E<<0,<0,1>>,<0,1>>

I the(ship) *poss

the ship 's name
(NG) ('S) (NOUN)

where *posse E<<<0,<0,1>>,<0,1>>,i>.

(ii) Passive

E<0,1>
%Yl [(the (automaton))

(Ixl~*psub~ ~accept))(Y))])]

*en(accept) %So[(the(automaton))
(Ix I[(*psubj (x)) (s)])]

/ ~ *psubJ the(automaton) /

be/ acc~epted Jy thS ~u~tomaton

where *ene E<<0,1>,<0,1,1>>,
*psubj E E<<0,O>,i>.

A rule based parser
This section describes a computer program

which analyzes input sentence and translates it
into LE. The set of rules defined in this
section so far are given to the parser in the
following format:

<advice>, <score>
A ~

<sem>

where ~ is a sequence of nonterminals
or nonterminals with holes.

88

The <advice> section treats syntax
augmentation of a rule by means of message
passing and testing mechanism. A program is
embedded which tests whether the messages
received from descendants are consistent and
which may also send messages to its parent.
These messages convey syntactic information
about number, person, ease, verb form, ~tc. The
format of a message is:

... .> .) (<attributei>=<value I ..

For example, see the following illustration:

PSN=3
NBR=SGL

CLAUSE

"--2 ~P/ ~VERB-FORN=+S
He has a book.

The <sem> section is a semantic composition
program which will construct LE for the node
from decendant nodes. In implementing programs,
the use of semantic markers is effective. A
semantic marker conveys some auxiliary
information approximately describing semantic
constraints. The LE and semantic markers for a
node are packed into a data structure, called a
word frame D and manipulated by <sem> section
programs.

The <score> section determines the priority
of the rule. A rule with the highest priority
will be tried first.

The grammar system has a feature that allows
a user to write elimination rules directly. For
example, the following is a rule for a relative
clause:

NP -~NP+(CLAUSE-NP)

This means that a relative clause is a clause
wlth Just one NP eliminated. The semantic
coupling of the antecedent and the eliminated
noun phrase is described in the <sem> section of
the rule.

Now we shall go into the detail of the
parser, called EASY (for the English Analysis
SYstem). The organization of EASY is summarized
in the following diagram:

input sentence

I MORPHOLOGiCAL dictionar
~ANALYZER

IRULE ~internal ~PRE- ~external~
IINTERPRETER I Irule I ;COMPILER~ ~grammar J

\structure/ \rule /

LE

Before starting parsing, given set of rules
are pre-compiled. Nonterminal nodes are
connected together and a data structure like
ATNG is generated. For example, if we compile
the example grammar given in section 2, the
following structure (called an expectation path)

is generated for the nonterminal DET:

DET ~ NG ~ SENTENCE
(NOUN) (VP)

This reads that a DET will grow up to be an NG
if a NOUN follows it, and the NG will, in turn,
grow up to be a SENTENCE if a VP follows it.

The rule interpreter analyzes input sentence
with this compiled rules and a dictionary. EASY
is a top-down parser and reads input sentences
from the left to the right. EASY starts parsing
by expecting the node SENTENCE. The main loop
of the rule interpreter is:

- test if the current word has an expectation
path to the expected node,

- if the path is found, select the path with
the highest priority and save other paths,

- if no path is found, try the following two
rules: (i) try a left recursive rule since
this type of rule is not compiled in the
pre-compile phase, and (~) test if the
expected node is eliminated via antecedent
elimination rule,

- if both of them fail, memorize the failure
and backtrack.

4. Implementation of interpretation mapping ~I)

The interpretation mapping I generates a
partitioned network structure as a denotation of
the meaning of a sentence.

We don't use the truth-conditional
formalism. If complete knowledge about the
world is givens a computer program can simulate
the model to compute the truth value as in [4]
or [7]. However in the actual situation of
natural language understanding process, complete
knowlegde cannot be given, but only partial
knowledge is available. Accordingly, it is
plausible that new knowledge is acquired from a
given sentence in the context of old knowledge
structure. For this purpose, Montague's truth
conditional approach is indirect and more direct
a programming language.

In what follows we try a direct approach.
The style of generating networks resembles
Scott-Strachey's semantic function [13] which
generates a denotation from a statement of
programming language.

In order to generate network structure, we
use a system which consists of a supervisor
function GEN plus dictionary, The arguments of
the supervisor are:

(LE, space#, environment, message).

LE is a logical expression. The space#
specifies the space in which LE is interpreted.
The environment specifies the denotation of each
variable by a llst of variable-denotation pairs.
The message is used for communication between
network generating word specialists.

A dictionary entity for each lexicon of LE
contains a case pattern or an embedded word

89

specialist program.

Interpretation of the LE for each category
In what follows we use linear notation of

PSN beacuse of the space limitation, and we
refer to the LE for each category simply by
the category name.

(i) Interpretation of a sentence
The meaning of a simpie sentence is governed

by the meaning of the verb. A dictionary entity
for a verb includes a case pattern for the verb.
According to the verb type, the case pattern
looks like:

intransitive verb: ((SUBJ, EXT, ...)),
extensional transitive verb:

((ACTOR, EXT, ...) (OBJ, EXT, ...)),
intensional transitive verb:

((ACTOR, EXT, ...) (OBJ, INT)),

where, the first element of a case slot is a
case label which is used only for distinguishing
the slot, and the second element of a case slot
indicates extensionality of the slot. If the
slot indicates extensionality, the filler will
be replaced by its extension. This manipulation
will be treated later in this section.

(2) Interpretation of a noun phrase
Most significant noun phrase may be in the

form, DET+NOUN. The formula is interpreted as
follows:

(a/an)+noun: %?P[?P(INDEF[?X; noun*(?X)])],
the+noun: I?P[?P(DEF[?X; noun*(?X)])],
every+noun: %?P[ANY[?X; noun*(?X)-~?P(?X)]],
no+noun: %?P[ANY[?X;noun*(?X)~~?P(?X)]],

where p* means the denotation of p.

Personal pronouns is interpreted as follows:

I: the SPEAKER attribute,
you: the HEARER attribute,
he: paraphrased as the male,
she: paraphrased as the female.

Proper name is interpreted as follows:

proper-name: DEF[?X; NAME('proper-name,?X)].

(3) Interpretation of an adjective
An adjective maps a noun into another noun.

Here we treat those that plays this role.
Interpretation of plural is:

*pl(noun):
I?X[SUBSET(?X,SETOF[?Y; noun*(?Y)])]

i.e., *pl(noun) denotes a predicate which is
true iff the argument is a subset of
{X{ noun*(x)}.

Adjectives are interpreted by word
specialists embedded in the dictionary. A word
specialist for an adjective examines the
argument (a noun) and maps it into another noun.

Thus the word specialist can handle de dicto
readings of adjectives. For example,

small(lion) ~
%?X[LION(?X)&LESS-THAN(DEF[?Y; SIZE(?X,?Y)],

average-size-of-lion)].

(4) Interpretation of a postmodification
A relative clause (in restrictive use) maps

the head noun into a modified noun, as follows:

(which(sentence))(noun).

A distinguished symbol 'which' announces the
occurence of a relative clause and sends the
denotation of the antecedent as a message. The
argument of 'which' is a sentence including the
eliminated noun phrase '#ante' which will
receive the message and substitute the
denotation. See the following example:

the((which(l(%x[#ante(ly[attack(x,y)])])))
(problem))

"the problem which I attack"

Interpreting the formula is:

DEF[?X;
GEN ~(which(l(lx[#ante(ly[attack(x,y)])]))

(problem))(z); space#; z:?X; NILE]
= DEF[?X;

GEN ~and(problem(z),
l(%x[#ante(%y[attack(x,y)])]));

space#; z:?X; #ante:?X~]
= DEF[?X; AND(PROBLEM(?X),ATTACK("I",?X))].

An adjective prepositional phrase also
modifies a noun. An attributive noun or a
de-verbal noun is treated as a noun which is a
one-place predicate in LE, but which takes two
or more arguments in PSN level. Adjective
prepositional phrases supply these arguments to
the head noun. For example, interpreting the LE:

the(ly
[(the(car))(lx[(((*ap(of))(x))(color))(y)])]),
"the color of the car",

results in:

DEF[?Y;
GEN ~(((*ap(of))(x))(color))(y);

space#; x:DEF[?X; CAR(?X)], y:?Y; NIL~]
= DEF[?Y;

GEN~color(y); space#;
y:?Y; *ap:of:DEF[?X; CAR(?X)]~]

= DEF[?Y; COLOR(DEF[?X; CAR(?X)]; ?Y)].

Thus in the interpretation process, the message
communications between specialists play a
significant role.

(5) Interpretation of a noun clause
A space is used to denote the interpretation

of a noun clause. A noun clause is interpreted
as follows:

90

I
fun(sentence)~DEF[?X; fun*(?X,ml)],

where T(~l,sentence*),

where 'fun' stands for a symbol such as 'that',
'whether' ... etc. that maps a sentence into a
noun clause. Fun* is an appropriate PSN
predicate. T(~,p) is a meta predicate that
means the object formula p is true in the
possible world (or space) denoted by ~. For
example, interpreting the LE:

why(not((the(program))(lx[work(x)]))),
"why the program does not work"

results in:

DEF[?X; REASON(?X,m2)],
where T(~2,NOT(WORK(the-program*))).

In this case, fun=why and fun*=REASON. The
resuting denotation roughly reads "the reason of
the situation m2 and in ~2 the object referred
to by the expression the(program) does not
work."

(6) Interpretation of other features
- Possessive form is treated as a compound

determiner. See the following example:

fRO I$ (the(programmer))
-v,~- (%x[((*poss(x))(idea))(z)])],

"the programmer's idea".

The resulting denotation is:

DEF[?X; AND(IDEA(?X),
POSSESS(DEF[?Y; PROGRAMMER(?Y)]; ?X)]

- Interpretation of a passive including the
deep subject. For example,

(the(sentence))
(ly[(the(automaton))

(lx[(*psubj(x))((*en(accept))(y))])]),
"the sentence is accepted by the automaton",

is interpreted as follows:

ACCEPT(DEF[?X; AUTOMATON(?X)],
DEF[?Y; SENTENCE(?Y)]),

where, *psubJ sends as a message the
denotation of the deep subject, and *en
receives the message to supply the OBJECT
slot of the internal verb ACCEPT.

Extensionin~ intenslonal structures
An intensional PSN structure for a noun

phrase is extensioned if the PSN structure is
put into a case slot which indicates
extensionality.

An INDEF type PSN structure is replaced by
an 1-unit (which denotes an individual
constant). For example,

I (Ix [(a(book)) (~y [possess (x,y)])]),
"I have a book."

The intermediate PSN structure is:

POSSESS("I",INDEF[?X; BOOK(?X)]).

Since the OBJECT slot of the predicate POSSESS
indicates extensionality, this becomes

AND (POSSESS ("I", C), BOOK(C)),
where C is a Skolem constant.

For DEF type structure, since the denotation
refers some uniquely determined object, a
referent search program is activated. The
program searches local contextual memory by
matching each candidate against the given
intensional PSN structure. The pattern matching
operation in PSN corresponds to deduction on
meta language, that is, the deflntion of match
is:

PSN. matches PSN^
if~ meta(PSNl) ~mplies meta(PSN2)

In order to find the referent, various kinds of
knowledge will be needed [5]. However, this
topic is beyond the scope of this paper.

The intensional PSN structure is replaced by
a PSN structure found. For example, consider
the following two sentences:

This paper describes a system (i)
The system analyzes programs (2)

After the interpretation of the sentence (i),
the local memory contains:

DESCRIBE(A,B)&PAPER(A)&SYSTEM(B).

For the sentence (2), the intermediate structure
is:

ANALYZE(DEF[?X; SYSTEM(?X)],programs*).

After the referent search procedure, the
structure becomes:

ANALYZE(B,programs*).

Since the denotation DEF[?X; SYSTEM(?X)] matches
the node B (for, SYSTEM(B) holds), it is
replaced by the node B.

5. Discussion

All the mechanisms presented so far has been
implemented as LISP programs and are working on
the personal LISP system in our laboratory. Now
experiments and improvements are in progress.

As stated in the first section, advantages
of our method can be shown if it is applied to
wide applications. Experiments are in progress
as for machine translation and question
answering.

--91

Machine translation [12]
As the first step to the machine

translation, we are implementing a program which
generates Japanese from the LE obtained by
analyzing English. The generator program
evaluates LE just the same way as the
interpretation program does. This approach
investigates the linguistic phenomena in
analyzing and generating natural language.

~uestign answerin$ [9]~ [i0]
Another application is to answer questions

about the integrated network structure. In
order to make conversation with a user, the
input sentence should be further evaluated. For
example, for user's question actual
question/answering process must be invoked.
Thus a pattern directed procedure is used. This
approach investigates meaning representation and
deduction.

Extension to other languages [ii]
The meaning representation is, in principle,

independent of which language is used. To show
this, we must analyze more than one languages.
Although in this paper, the object language is
English, we have implemented a Japanese parser
and are in the course of implementation of
Japanese to English machine translation program.

Further work
The important problems to be solved are:

- the problem of discourse, especially, how to
treat focus attention or ellipsis in our
formalism,

- the semantics of PSN; the semantics of PSN
may be defined either by associating each
network structure with a logic-oriented meta
language or by defining inference rules on
PSN explicitly; the semantics must explicate
implications and synonyms among PSN
structures; furthermore the semantics must
be extended to treat the concepts such as
action or event,

- accommodation of transformational aspects;
it seems that the transformational theory
further decomposes the translation mapping
T; the introduction of transformational
aspect will increase the feasibility of the
system.

6. Conclusion

We have shown a logico-linguistic approach
to the analysis of natural language by computer.
AI techniques are combined with Montague-type
grammar. The main features of the approach are
shown for the fundamental subset of English.
The promising applications may be semantic based
machine translation and deductive question
answering on natural language.

Acknowledsements

We would like to thank the other members of
Prof. Doshita's laboratory, and in particular,
Mr. Masaki KIYONO both for his participations
of numerous discussions and for his assistance.

References

[i] D. G. Bobrow and T. Winograd,
An overview of KRL, A knowledge
representation language, CSL-76-4,
Xerox, Palo Alto Reseasrch Center, 1976.

[2] M. J. Cresswell, Logics and languages,
Methuen & Co. LTd, 1973. (translated into
Japanese by Ishimoto and Ikeya,
Kinokuniya, 1978).

[3] D. R. Dowty, A guide to Montague's PTQ,
Indiana University Linguistic Club, 1978.

[4] J. Friedman, D. B., Moran and D. S. Warren,
Evaluating English sentences with a
logical model, Information Abstracts of
COLING 78, University of Bergen, Norway.

[5] B. J. Grosz, The representation and use of
focus in a system for understanding
dialogs, in Proc. IJCAI-77, 1977, 67-76.

[6] R. Fikes and G. Hendrix, A network-based
knowledge representation and its natural
deduction system, in Proc. IJCAI-77, 1977,
235-246.

[7] J. R. Hobbs, Making computational sense of
Montague's intensional logic, AI 9(1978),
287-306.

[8] R. C. Moore, Reasoning about knowledge and
action, in Proc. IJCAI-77, 1977, 223-227.

[9] T. Nishida and S. Doshita, The framework
of knowledge representation and its
retrieval in LGS -- the literature guide
system, in Proc. IJCAI-79, 1977, 662-664.

[i0] T. Nishida and S. Doshita,
A knowledge-based literature guide system
-- A new approach to document retrieval,
IFIP 80 (to appear).

[ii] T. Nishida, Y. Sakakibara and S. Doshita,
Analysis of predicates of Japanese and the
generation of English, National
Conventional Record of IPS Japan, 1980,
(in Japanese).

[12] T. Nishida, M. Kiyono, T. Yamanaka and
S. Doshita, English-Japanese translation
based on semantic analysis, National
Conventional Record of IPS Japan,
(in Japanese).

[13] J. E. Stoy, Denotational semantics: The
Scott-Strachey approach to programming
language theory, The MIT press, 1977.

[14] T. Winograd,
Understanding natural language,
Academic Press 1972. (translated into
Japanese by Fuchi, Tamura and Shirai,
Sangyo-tosho, 1976).

92

