
WaRPa~N J. t'~ATH

T1LANSFORMATIONAL G1LAMMAI:k AND TKANSFORMA-
TIONAL PARSING IN THE REQUEST SYSTEM

1. INTRODUCTION

The REQUEST (Restricted English Question-answering) System is
an experimental natural language query system currently under devel-
opment at the n3M Thomas J. Watson Research Center. The general
objective of this work is to explore the feasibility of using restricted
subsets of natural language (in this case, English) as the basis for effec-
tive man-computer communication, with particular emphasis on the
problem of making data-base-oriented services readily available to non-
programmer users. Our initial implementation of R~QUEST (described
here and in a companion paper by S. R. P~TRICK, in the I volume)
addresses the data-base communication problem with reference to the
specific world of business statistics, as exemplified by the summary data
published annually in the "Fortune 500"

An essential feature of the language processing approach embodied
in the REQUEST System is the employment of a very general transfor-
mational parsing algorithm and a large, explicitly formulated transfor-
mational grammar in order to produce semantically interpretable un-
derlying structures of input sentences (questions and commands).
l~qu~sT thus differs markedly from such well-known systems as those
of F. B. T~OlVIPSON (1973) (direct semantic interpretation of surface
structures), W. A. WOODS (1972) (representation of grammatical infor-
mation and parsing strategy in augmented transition networks), and
T. WINOGRAD (1972) (direct incorporation of grammatical information
within the parsing program). Furthermore, the underlying structures
assigned by our current grammar do considerably more than merely
capturing a few relatively superficial syntactic generalizations such as
the relationship between active sentences and corresponding passives:
they are significantly more abstract than the deep structures ofN. CHOlVl-
SKY'S Aspects (1965) and go a long way towards explicit representation

368 WAR~N J. PI~ATI-I

of the meanings of sentences in a notation that bears certain strong re-
semblances to the predicate calculus. Among the motivations for our
choice of approach are 1) the advantages of a transformational model as
a vehicle for capturing significant linguistic generalizations, 2) the rela-
tive case of interpretation of our abstract underlying structures, and
3) the perspicuity of a system organization which separates data from
algorithms and represents linguistic rules direcdy as units, rather than
as discontinuous elements that are distributed over networks or programs.

2. OVERALL SYSTEM ORGANIZATION

The current version of the REQUEST System consists of a set of pro-
grams written in Lisp 1.5, together with an associated set of data files
containing the lexicon, grammar, semantic interpretation rules, and
data base. The system runs interactively on a System/360 Model 67
under CV]cMs in 768K of virtual core. As shown in Fig. 1, the trans-
formational component of the system, whose function it is to analyze
input word strings and compute their meanings (i.e., underlying struc-
tures) consists of two main parts: a preprocessor and a parser. The in-
terpretive component of the system also has two parts: (i) a semantic
interpreter, which translates those meanings into executable code; and
(ii) a retrieval component consisting of data accessing and formatting
functions invoked by the semantic interpreter in order to complete the
question-answering process. The present paper deals predominantly
with linguistic and computational aspects of the preprocessing and
parsing phases, while Petrick's paper covers the details of semantic
interpretation and retrieval.

The role of the preprocessor is to segment the input string into words
and punctuation marks and then look up each segment in the lexicon,
producing a preprocessed string of lexical trees which serves as input to
the parser. Multi-word strings that function as lexical units are identified
by lookup in a special phrase lexicon; while arabic numerals represent-
ing cardinals, ordinals, and dates are supplied with lexical trees algo-
rithmically rather than by matching against the lexicon. In cases where
the information in the preprocessed string is inadequate, due to the pres-
ence of misspellings, unknown words, ambiguous pronoun references,
and the like, the preprocessor prompts the user to supply the required
information.

TRANSFORMATIONAL GRAMMAR AND TRANSFORMATIONAL PARSING 369

f
f

f

f
f

(
1
!
!
I TRANSVOR-
[MA TIONAL
I COMPONENT
I
I
1
I
1
I

I
I
I

I
I

I
I INTERPRETIVE

COMPONENT
I
I

I
i
1
1

/

f

l Input Word
String

PREPROCESSOR

Strhlg

PARSER

Underlxing
~ Str.cture(s)

SEMANTIC ~ k -- - -
INTERPRETER

%

Execlttable \
Code \

(Logical Form) X

RETRIEVALI[~ ~ -- - ~ @

I Output _.1
Fig. 1. Overall System Organization.

24

370 WARREN J. PLATH

Operation of the parser 1 proceeds in two stages: first, the rules of a
context-free surface structure grammar are applied to the preprocessed
string by a phrase structure parser in order to compute the surface
structure of the sentence. (Because of the well-known inadequacy of
pure phrase-structure systems in providing unambiguous surface anal-
yses of sentences (S. KUNO, A. G. OETTINGER, 1963), it is often
the case that several structures are assigned). Next, the transfor-
mational parser processes each surface structure in turn, attempting:
to map it step-by-step into a corresponding underlying structure.
In this?rocess, the parser employs a set of transformational inverses
which it applies in precisely the opposite order from that in which
the "forward" counterparts of the same transformations would be
employed in sentence generation: inverses of the postcyclic transfor-
mations are applied first, starting with the "latest" and ending with
the "earliest "; then the inverses of the cyclic transformations are ap-
plied (also in last-to-first order) working down the tree from the least
deeply embedded (main) clause to those that are most deeply embedded.
The parser can check the validity of the inverse transformational der-
ivation at each point by testing the corresponding forward transfor-
mation to make sure a) that (if obligatory) it does not apply to the cur-
rent tree if its inverse failed to apply and b) that it does apply if the in-
verse applied (and in fact precisely undoes the effect of applying the
inverse). This mode of operation is particularly useful for debugging
purposes.

In the course of transformational parsing, most of the spurious sur-
face structures are rejected very quickly by special blocking rules which
employ transformational pattern matching to filter out ill-formed
configurations not detectable by a context-free phrase structure mech-
anism. In the experiments we have carried out to date, it has almost
uniformly been our experience that precisely one underlying structure
is assigned to each sentence except in cases where a) there is genuine
semantic ambiguity or b) a sentence outside the current coverage of
the transformational grammar has been entered into the system. At
least some of this initial success in disambiguation is due to a policy of
making certain transformations sensitive to semantic as well as syntactic
information.

1 The original design and implementation of the parser is due to S.R. PETRICK (1973)
More recently, it has been significantly revised and extended by M. Pivovonsky, who
(with the help of E. O. Lippmann) has also been chiefly responsible for implementation
of the preprocessor. "

TRANSFORMATIONAL GRAMMAR AND TRANSFORMATIONAL PARSING 371

3. AN EXAMPLE

In order to illustrate how the REQUEST System uses transformational
parsing to compute the underlying structures of input sentences, let
us follow the processing of a typical query step by step. At the start
of the session (Fig. 2) the system prompts the user by typing out the
message " QUESTION? ", and the user responds by typing in "Wha t
was GM's gross income for 1970? ". At this point, the preprocessor
segments the input string into a sequence of words and punctuation
marks which is checked against the phrase lexicon to detect the presence
of any multiword lexical strings that should be treated as units. The
result of this process - consisting of a serially-numbered list comprising
words, multi-word units, and punctuation marks - is typed out at the
terminal to confirm receipt of the query. As can be seen from Fig. 2,
the input sequence " gross income" has been identified as a single unit
" GP, OSS-INCOME " on the basis of lookup in the phrase lexicon.
(Had the user typed in " General Motors " or " G. M. " instead of
" GM ", these strings would also have been handled in the same
fashion.)

QUESTION?
What was GM's gross income for 1970?

WHAT(l) WAS(2) GM(3)'S (4) GROSS_INCOME(5) FOR(6) 1970(7) ?(8)

PR.EPROCESSING OUTPUT:

((WHAT (OR (VADJ (+ ADJ + QUANT) WH SOME)
(NP (NOM (V (+ ADJ + QUANT) WH SOME)

(NOM (NOUN (-HUMAN + SG) (V THING)
(INDEX (-CONST) Xl)))))))

(WAS (AUK (+ PAST + SG) BE))
(GM (NPROPNOM (NOUN (-HUMAN + SG) (INDEX (+ CONST + CO) GM))))
('S (GENAF 'S)
(GROSS-INCOME

(NMNL (-HUMAN + SG + Q NOUN + ARG1 + PERIODIC + NMNL)
(V (+ POSS2) AMOUNT MONEY GROSS)
(INDEX (- CONST) X5)))

(FOR. (PREP FOR.)
(1970) (PR.OPNOM (NOUN (-HUMAN + SG + TIME) (INDEX (+ CONST + YEAR) 1970))))
(? (PUNCT (+ QUES) ?)))

Fig. 2, Input and Processing Output for a Typical Query.

372 wAm~m,l j. PLATH

The next action of the preprocessor is to look up each of the num-
bered items in the lexicon. Absence of a given item from the lexicon
may stem either from an actual gap in lexical coverage or from an input
typing error on the part of the user. In such cases the user is prompted
to retype the offending item, but can also drop the entire question and
start again if he so chooses. Since there are no errors or missing words
in our current example, however, the preprocessor is able to complete
the entire lookup successfully without calling upon the user for correc-
tive action.

The final output of the preprocessing phase (Fig. 2) is an ordered
list of dictionary entries, each consisting of art entry key paired with an
associated tree (or disjunction of trees) represented as a parenthesized
string. The basic notational convention used in our tree representation
is that an expression of the form (A((+)FEATI {+)FEAT2...{ +)
FEA Tn) B C) stands for a tree of the form:

A((_C_+)FEArl (+) F2 Ar2... (+)FEAr.)
/ \

B C

where A, B and C are nodes and FEAT1 ... FEATn are syntactic or
semantic features.

As an examination of the preprocessing output of Fig. 2 shows,
the lexicon is designed in such a way that the process of substituting
lexical trees for corresponding input items results in making numerous
local changes in the input string - changes which take it as far as pos-
sible, at this early stage, along the way towards underlying structure
(J. j. lkomNsoN, 1973). Thus, on the one hand, all inflected items
are replaced by stems whose part-of-speech nodes carry the corre-
sponding tense and number information in the form of syntactic
features, along with a variety of semantic features. Furthermore,
common nouns such as "gross income" are already interpreted
as combinations of underlying predicates (V) and variables (INDEX
(-CONST)) in anticipation of the way they are represented in under-
lying structure. (The specific values of index variables, such as the
"X1 " and "X5 " in Fig. 2, are used to keep track of matters of
reference in more complicated sentences by having the preprocessor
assign identical variables to pronouns and their antecedents. No such
complexity arises here, however, and the preprocessor simply employs
the word number of each common noun in manufacturing a unique

TRANSFORMATIONAL GRAMMAR AND TRANSFORMATIONAL PARSING 373

variable name.) In addition, proper nouns, such as " 1970" and
" GM ", are treated as logical constants (INDEX (+ CONST))
which belong to particular semantic classes - in this case those of
year names (+ YEAR) and company names (+ CO).

Once specification of the preprocessed string is complete, control
passes to the parser, whose first task is to attempt to assign a surface
structure to the preprocessed string. The parser makes use of a context-
free surface grammar and standard phrase structure parsing techniques
in attempting to connect the sequence of lexical trees into a coherent
surface structure tree (actually as many such trees as the rules will allow).
In this case three distinct surface structures are produced, as indicated
by the bracketed terminal strings displayed at the top of Fig. 3. The
only difference in the three surface analyses lies in the treatment of the
string "for 1970 ": In analysis (1) it is (correctly) treated as a postmod-
i fief of "gross earnings " - now represented in standardized form as
((AMOUNT MONEY GROSS) XS); in (2) the string is broken up,
with " f o r " treated as a stranded preposition postmodifying "gross
earnings " and " 1970 " treated as a major noun phrase constituent of
the sentence (e.g., as in " What year are those the figures for - 1970? ") ;
while the third analysis again treats " for 1970" as a prepositional
phrase unit, but this time as a major constituent of the sentence rather
than as a postmodifier of "gross earnings "

Control now passes to the transformational parser, which takes each
surface structure in turn (in last-to-first order) and attempts to map it
step by step into a corresponding underlying structure through the
systematic application of inverse transformations. As shown in Fig. 3,
analyses (3) and (2) are rapidly eliminated through the application of the
blocking transformations TCMPDBLK (" time compound blocking ")
and PRPBLOCK (" (stranded) preposition blocking "), respectively.
TCMPDBLK exemplifies the interaction of syntactic and semantic
information in the transformational component of the REQUEST Sys-
tem, in that it filters out a variety of otherwise acceptable structures in
which a noun phrase or prepositional phrase with head noun marked
(+ TIME) is adjacent to a noun phrase with head noun marked (+
PERIODIC), but where the former is not analyzed as a modifier of
the latter. PRPBLOCK simply eliminates analyses where a putative
stranded preposition immediately precedes a nominal expression.

The parser now proceeds to work on analysis (1), starting out by
applying inverse postcyclic transformations that eliminate terminal
punctuation (continuation 1.1) and genitive aftixes (continuation 1.2),

QUESTION?
What was GM's gross income for 19701
WHAT(l) WAS(2) GM(3) 'S(4) GROSS INCOME(5) FOR(6) 1970(7) ?(S)

SUP.FACE STRUCTURES:
1. (((WH SOME) (THING X1)) BE ((GM 'S) (((AMOUNT MONEY GROSS) X5) (FOR 1970))) 1)
2. (((WH SOME) (THING X1)) BE ((GM 'S) (((AMOUNT MONEY GROSS) X5) FOR)) 1970 1)
3. (((WH SOME) (THING X1)) BE ((GM 'S) ((AMOUNT MONEY GROSS) X5)) (FOR 1970) 1)

SENTENCE 3:
(((WH SOME) (THING Xl)) ((GM' S) ((AMOUNT MONEY GP.OSS) X5)) (POP. 1970) 1)

FORWARD TCMPDBLK APPLICABLE. NO CONTINUATION

SENTENCE 2:
(((WH SOME) (THING X1)) BE ((GM 'S) (((AMOUNT MONEY GROSS) XS) FOR)) 1970 ?)

FORWARD PRPBLOCK APPLICABLE. NO CONTINUATION

SENTENCE 1:
(((WH SOME) (THING Xl)) BE ((GM 'S) (((AMOUNT MONEY GROSS) X5) (FOP. 1970))) ?)

SPNCTINS APPLIED. GO TO CONTINUATION 1.1

CONTINUATION 1.1 :
(((WH SOME) (THING Xl)) BE ((GM 'S) (((AMOUNT MONEY GtkOSS) XS) (FOIk 1970))))

GENINFL APPLIED. GO TO CONTINUATION 1.2

CONTINUATION 1.2:
(((WH SOME) (THING X1)) BE (GM (((AMOUNT MONEY GROSS) X5) (FOR 1970))))

WHERASE APPLIED. GO TO CONTINUATION 1.3

CONTINUATION 1.3:
(((WH SOME)(THING Xl)) BE (GM (((AMOUNT MONEY GROSS) X5) (FOR 1970))))

INFOR APPLIED. GO TO CONTINUATION 1.4

CONTINUATION 1.4:
(((WH SOME) (THING X1)) BE (GM (((AMOUNT MONEY GROSS)X5) (IN 1970))))

WHATPRNT APPLIED. GO TO CONTINUATION 1.5

CONTINUATION 1.5
(BE (GM (((AMOUNT MONEY GROSS) X5) (IN 1970))) ((WH SOME) (THING Xl)))

PREPINS APPLIED. GO TO CONTINUATION 1.6

CONTINUATION 1,6:
(BE (GM (((AMOUNT MONEY GROSS) XS) 1970)) ((WH SOME) (THING Xi)))

WHATFORM APPLIED. GO TO CONTINUATION 1.7

CONTINUATION 1.7:
(BE (GM (((AMOUNT MONEY GROSS) XS) 1970)) ((WH SOME) (AMOUNT X1)))

WHATNUMA APPLIED. GO TO CONTINUATION 1.8

CONTINUATION 1.8:
(BE (GM (((AMOUNT MONEY GROSS) X5) 1970)) (h (((WH SOME) LARGE) (AMOUNT Xl))))

QUWHMARK APPLIED. GO TO CONTINUATION 1.9

CONTINUATION 1.9:
(BE (GM (((AMOUNT MONEY GROSS) X5) 1970)) (A (((WH SOME) LARGE) (AMOUNT Xl))))

ERASEBDS APPLIED. GO TO CONTINUATION 1.10

CONTINUATION 1.!0:
(BD BE (GM (((AMOUNT MONEY GROSS) X5) 1970)) (A (((WH SOME)LARGE) (AMOUNT Xl))) BD)

IDEQUDEL APPLIED. GO TO CONTINUATION 1.11

CONTINUATION 1.11:
(BD BE EQUAL (GM (((AMOUNT MONEY GROSS) IS) 1970)) (A (((WH SOME) LARGE) (AMOUNT
xl))) BD)

AUXlNUMA APPLIED. GO TO CONTINUATION 1.12

CONTINUATION 1.12:
(BD EQUAL (GM (((AMOUNT MONEY GROSS) X5) 1970)) C A (((WH SOME) LARGE) (AMOUNT
Xl))) BD)

PRUNES APPLIED. GO TO CONTINUATION 1.13

CONTINUATION 1.13:
(BD EQUAL (GM (((AMOUNT MONEY GROSS) X5) (¢ 1970 ~))) (A (((WH SOME)LARGE) (AMOUNT
X1))) BD)

NPPREPOS APPLIED. GO TO CONTINUATION 1.14

CONTINUATION 1.14:
(BD EQUAL (THE (((AMOUNT MONEY GROSS) X5) (~' GM 1970 '0)) (A (((WH SOME) LARGE)
(AMOUNT Xl))) BD)

GENOFMRK APPLIED. GO TO CONTINUATION 1.15

CONTINUATION 1.15:
(BD EQUAL (THE (((AMOUNT MONEY GROSS) X5) (~' GM 1970 ~,))) (A (((WH SOME) LARGE)
(AMOUNT Xl))) BD)

ORDNOUNF APPLIED. GO TO CONTINUATION 1.16

CONTINUATION 1.16:
(BD EQUAL (THE (X5 (~ (AMOUNT MONEY GROSS) X5 GM 1970 ~))) (A (((WH SOME) LARGE)
(AMOUNT Xl))) BE))

SEARCHING FOR EMBEDDED CLAUSES

SENTENCE 4:
((AMOUNT MONEY GROSS) X5 GM 1970))

ERASEBODS APPLIED. GO TO CONTINUATION 4.1

CONTINUATION 4.1 :
(BD (AMOUNT MONEY GROSS) X5 GM 1970 BD)

LOC2FEAT APPLIED. GO TO CONTINUATION 4.2

CONTINUATION 4.2:
(BD (AMOUNT MONEY GROSS) X5 GM i970 BD)

PREPPNP2 APPLIED. GO TO CONTINUATION 4.3

CONTINUATION 4.3:
(BD (AMOUNT MONEY GROSS i X5 GM 1970 BD)

SEARCHING FOR EMBEDDED CLAUSES

A STRUCTURAL DESCRIPTION OF SENTENCE 4:
(BD (AMOUNT MONEY GROSS) X5 GM 1970 'BD)

A STRUCTURAL DESCRIPTION OF SENTENCE 1:
(BD EQUAL (THE (X5 (~' BD (AMOUNT MONEY GROSS) X5 GM 1970 BD '0)) (A (((WH SOME) LARGE)
(AMOUNT Xl))) BD)

UNDERLYING STRUCTURES:
1. (BD EQUAL (THE (X5 (. BD (AMOUNT MONEY GROSS) X5 GM 1970 BD .)))(A (((WH SOME)
LARGE) (AMOUNT X1))) BD)

LOGICAL FORM: "
(SIZEOF

(SETX
(QUOTE Xl)
(QUOTE (AND (EQUAL (QUOTE 18752354000) X1 (AMOUNT Xl)))))

ANSWERS:
1. $18752354000
NEXT QUESTION?

Fig. 3. On-line Trace of t~e Processing of a Typical Query.

3 7 6 W A R R E N J . I~LATH

substituting in their stead the features (q-QUES) and (-I-GEN), re-
spectively, on higher nodes which do not show up in the trace displayed
in Fig. 3. Inverse WHERASE applies next, inserting the feature (-I-
WH) on the NP node that dominates the structure ((WH SOME)
(THING X1)) - an action once again not visible in the trace (continu-
ation 1.3). At this point, the inverse transformation INFOK recog-
nizes the preposition " for" as a surface variant of " in" within a
(q-- TIME) postmodifier of a (+ NMNL) noun (continuation 1.4), fol-
lowing which inverse WHATFP, NT (one of five variants of WH-
movement implemented in the current grammar) effects a major reor-
dering of clause components by sister-adjoining the NP dominating
((WH SOME) (THING X1)) to the right of the NP following the
auxiliary (continuation 1.5).

Processing the structure against the remainder of the postcyclic
transformations successively deletes the preposition " i n " in favor of
the features (q-LOC2) and (+ IN2) (continuation 1.6), replaces
"thing " by the more specific noun "amount " (continuation 1.7),
expands ((WH SOME) (AMOUNT X1))intoa (A (((WH SOME)
LARGE) (AMOUNT X1))) (continuation 1.8), and finally eliminates
the (q- WH) feature on the NP dominating the latter (continuation 1.9)i
(It should be noted here in passing that the WHATNUMA transfor-
mation not only accounts in part for the underlying equivalence of
sentence pairs like " What were GM's earnings? " and "How large
were GM's earnings? ", but also for the equivalence of pairs beginning

"How large j'an amo..t't of " and ~. a number .f "'"

" What { nmb~. ouo, } of . . . " .)

The application of inverse cyclical transformations begins with the
insertion of sentence boundaries (BD) on the highest clause by the in-
verse EKASEBDS transformation (continuation 1.10). This is followed
by insertion of the main predicate "EQUAL" by inverse IDEQUDEL
(continuation 1.11). IDEQUDEL is one of a set of four related trans-
formations that supply one of the five underlying predicates IDENTI-
CAL, EQUAL, RANK, LOCATED, and MEMBEK in clauses with
a BE auxiliary and no predicate head (verb or adjective), the choice
depending on syntactic and semantic features of the main NP's in the
clause. Examples of each of the five types of copulative clauses covered
by these transformations are:

TRANSFLRMATIONAL GRAMMAR AND TRANSFORMATIONAL PARSING 377

" Is Jones xYz 's president? ", " What were GM's 1970 earnings? ",
"Wha t company was fifth in 1969 sales? ", "Is the headquarters of
IBM in Pittsburgh? ", and" Is a city a place? ", respectively.

After the main predicate "EQUAL " has been inserted, the aux-
iliary is deleted by inverse AUXINUMA, whose forward counterpart
combines the functions of auxiliary insertion and number agreement
(continuation 1.12). Next (continuation 1.13), inverse S-pruning
(PRUNES) turns the postmodifying structure " 1970 " into a subordi-
nate clause fragment dominated by a sentence node $1. (This shows
up in the bracketed terminal string as insertion o f " (* *) " surround-
ing " 1970 ".) Inverse noun phrase preposing (NPPREPOS), which
relates such surface pairs as " GM's sales " and " the sales of GM ",
then applies (continuation 1.14) (i) moving the NP node dominating
" GM" into initial position in the subordinate clause fragment, (ii)
marking that NP with the features (+ PREP) and (+ OF), and (iii)
replacing the original copy of that NP by " THE ". The features (+
PREP) and (+ OF) are then erased by inverse GENOFMRK, which
also replaces the feature (+ GEN) by the feature (+ POSS2), which
indicates inalienable possession.

The final transformation that applies in the first cycle is inverse
noun formation (ORDNOUNF), which moves the V dominating
(AMOUNT MONEY GROSS) into the subordinate clause fragment
as main predicate along with an NP dominating a copy of the variable
X5, with the original copy of X5 remaining outside the subordinate
clause as the "binding " instance of that variable. (The original version
of the noun formation transformation - and, more generally, the over-
all treatment of variables and constants in the grammar - are due to
Paul Postal.)

Application of the inverse cyclical transformations to the subordi-
nate clause (now labelled " SENTENCE 4 " by the program) is rela-
tively uneventful. The only transformations that apply merely insert
sentence boundaries (continuation 4.1) and delete the features (+ IN2)
and (+ POSS2) from the NP nodes dominating " 1970" and " GM ",
respectively. Since there are no further embeddings, the transformational
parsing procedure terminates, producing a unique underlying structure
for the sentence. As described by S. R. P~TRIC~:, the underlying struc-
ture is then mapped by a Knuth-style semantic interpreter into a cor-
responding logical form. Finally, the logical form is evaluated inter-
pretively to yield the answer " $18, 752, 354, 000"

378 WARREN J. PLATH

4. CURRENT STATUS OF THE REQUEST GRAMMAR

The immediately preceding example provides a partial illustration
of approximately one-quarter of the transformational apparatus of the
current REQUEST grammar, which includes 18 blocking rules and 63
pairs of transformations (forward and corresponding inverse). The sur-
face grammar currently comprises 261 context-free rules which, through
the use of rule-factoring techniques, effectively represent a set of rules
more than half as large again. The grammar also contains 18 base rules
and 222 auxiliary phrase structure rules, which are used by the parser
in checking the well-formedness of underlying structures and transfor-
mationally-derived structures, respectively.

The grammatical coverage provided by the current REQUEST gram-
mar is relatively extensive, but tends to be heavily concentrated in a
limited number of areas, with certain important construction types
not covered yet at all. This pattern of coverage is not a product of acci-
dent or oversight, but has arisen quite naturally from two basic consid-
erations. The first involves one of the more obvious strengths of a
transformational model of natural language (particularly one with rel-
atively "deep " underlying structures): its capacity for relating wide
ranges of synonymous surface structures to common underlying forms.
Within the context of a man-machine interaction situation, it is highly
desirable to capitalize on this strength as a means of enhancing the natu-
ralness of the interaction language for the user. To this end, we have
been attempting to build up our grammatical coverage in such a way
as to allow the user great latitude of grammatical formulation in expres-
sing each of the limited number of semantic relationships provided for
in the system. With such "locally full " coverage, we hope to minimize
what the user must learn about constructions to be avoided and how
to avoid them.

The second consideration is that for ~QUEST, as for any natural
language tmderstanding system, it makes sense to concentrate on gram-
matical constructions of importance in expressing the central relation-
ships in the "world " of the data base in question. A case in point in
our current grammar is the extensive coverage of constructions involv-
ing notions of rank and ordinality - concepts which assume a central
role in the world of the " Fortune 500 ".

An example of what has been achieved so far in striving towards
the goal of locally full coverage is the range of relative clause structures

TRANSFORMATIONAL GRAMMAR AND TRANSFORMATIONAL PARSING 379

handled by the current grammar. To begin with, the basic relative clause
patterns covered (1) include counterparts of all the declarative main
clause patterns handled by the system - among them patterns involving
actives (1. a, d, g, h, k, 1, m), passives (1. b, c, e, f, i, j), datives (1. d,
e, f, g, h, i, j), and optional time and place adverbials (1. k, 1, m), as
well as the interaction of all of these with clausal negation. In addition,
the relative clause types covered not only share with wh-questions the
option of preposition stranding (1. c, f, h, j), but also include provisions
for optional substitution o f " that" for the relative pronouns "which ",

who , whom , when , and where under appropriate cir-
cumstances (1. a, c, d, f, h,j, k, 1) as well as for optional deletion of those
pronouns under still more restricted circumstances (1. d, f, h, j, k, 1).

(1)

a. companies ~ that { diddidn, tnot f make computers

b. companies by which computers were not made
weren't

which J ~ were
c. companies t that t c°mputers t werenot ? madebYweren , t ,

I which I ~did not
d. companies that t didn t sell XYZ computers

e. companies by which

l were 1 I computers were not sold to XYZ
weren't

I I XYZ was not l sold computers
wasn't

computers were not sold to XYZ
weren't ,t

l w° I XYZ was not sold computers
wasn't

II '°'dl g. companies to which ABC did not
didn't I sell

computers

by

380 WARREN J. PLATH

 whic ! s°ldlc°mPuterSt°sell h. companies that ABC l did not }
didn't

t were) i. companies to which computers were not ~ sold by ABC
weren't

l which) l were t i. compauies t~at t computers wer0weren, tnot ~ sold to by A~C

1 w~chl l s°Xdl
~. ~e ~o~;o~0~ ,~ t ~ I ~'°~i~ t ~°~ ~o, x~.

in New York in 1969

t
in which f

wheD. I. the year that ABC
I sold t

did not j sell
, { didnt t 1

computers to XYZ I XYZ computers j in New York

I inw ich i where [sold
m. the city *that i ABC did not ,~ ~ didn't J sell

computers to XYZ I in 1969 I XYZ computers

In addition to the surface patterns exemplified in (1), a variety of
other relative clause constructions are covered. In (2), we see examples
of possessive relatives, which appear in surface structures either as the
preposed genitive form "whose" or as the postmodifying preposition-
al phrase " of which ". As can be observed from (2.b-f), in producing
such structures, the wh-movement rules of the current grammar can
either: (i) "pied pipe" a larger noun phrase containing a relative pro-
noun to clause-initial position (2.b, d); (ii) front only a relative pro-
noun which is the object of a preposition, leaving the remainder of the
larger NP behind along with a stranded preposition (2.c, f); or (iii)
do a combination of (i) and (ii) (2.e).

TRANSFORMATIONAL GRAMMAR AND TRANSFORMATIONAL PARSING 381

(2)

l whose headquarters t a. companies the headquarters of which are (located) in New York

l wh°se assets f Chile expropriated b. companies the assets of which

c. companies that Chile expropriated the assets of

t whose subsidiaries' earnings I
d. companies the earnings of whose subsidiaries the government impounded

the earnings of the subsidiaries of which

i whose subsidiaries I e. companies the subsidiaries of which the government impounded the earnings of

lw ,c l
f. companies that the government impounded the earnings of the subsidiaries of

Another important part of relative clause handling in the current
grammar is the coverage of a variety of patterns of relative clause re-
duction (3). In the case of adjectival predicates such as "profitable ",
the (optional) reduction process involves deletion of the relative pro-
noun and suppression of auxiliary insertion, producing reduced surface
clauses like (3.b) from the same structures that underly full clauses like
(3.a). If the results of clause reduction contain only an adjectival cons-
tituent (e.g., if no phrase like " in 1970" is present), it is obligatorily pre-
posed to yield a structure like (3.c). In cases such as (3.d), where the
adjectival predicate itself is independently subject to deletion, one of
the possible outcomes (3.e) of the reduction process is a prepositional
phrase, with or without a preceding negative. In cases where the predi-
cate in the full relative clause is nonadjectival (3.f, h, j), there is a similar
reduction process, again involving deletion of the relative pronoun and
suppression of the auxiliary. Here, however, an additional process is
involved: replacement of the predicate by the corresponding -ing form
(3.g., i, k). The final possibilities of relative clause reduction shown in
(3) have to do with more restricted processes in which relative clauses
with the predicate "have " (3.j, 1) optionally reduce to prepositional
phrases with "wi th " or " o f " (3.k, m).

382 WARREN J. PLATH

(3)

profitable in 1970 a compan 0s w chl I wet° I that were not
weren't

b. companies (not) profitable in 1970

c. (un)profitable companies

in New York
aren't ~ ~ Y

t located I in New York e. headquarters (not) { e

f" 1969 earnings I which l t h a t I I diddidneXCeeded l n ° t t tl exceed $1,000,000

g. 1969 earnings (not) exceeding $1,000, 000

h. the company I which I ' ranked f l see°rid (highes0 I that I was in second place in 1969 sales

i. the company (ranking) I sec°nd (highest) I in second place in 1969 sales

l~.v,°~ I t ~" o. k. companies with £.

g.

1. the subsidiaries that ABC has

t~.0 ~o~,~,.~o o ~ c I
m. ABe's subsidiaries

In concluding our discussion o f the current status of the REQUEST
Grammar, let us turn from our sampling of current coverage to a brief
enumeration o f important constructions not now handled by the sys-
tem. At this writing, major known gaps include:

(a) absence of any provisions for conjunction or disjunction;

TRANSFORMATIONAL GRAMMAR AND TRANSFORMATIONAL PARSING 383

(b) need to augment coverage of quantifiers (currently limited to
ordinal and cardinal numeral quantifiers) to include a much broader
range of logical, numerical, and temporal quantifiers, e.g., "each ",
"every ", " all ", " any ", "some ", " n o ", "none" , "more than n ",
"less than n.", "exactly n ", " a t most n ", "a t least n ", "once ",

twice , n times , always , ever , never , more than n
times ", "a t least n times ", " n times in succession ", etc.;

(c) absence of provisions for handling arithmetic predicates such
as "total ", "average ", "ratio ", "rate ", and "per ";

(d) inadequate coverage of comparatives (currently limited to a
few constructions with " exceed ") and superlatives (currently limited
to clauses with underlying predicate "rank ").

The four areas of deficiency just cited are all of considerable impor-
tance in relation to the provision of facilities for asking and answering
semantically complex questions that seek information only implicitly
stored in a collection of numerical data of the sort we are dealing with.
They also represent areas of significant independent linguistic interest.
Our present hope is that a reasonable range of the phenomena under
(a) - (c) will prove tractable when dealt with under a presently contem-
plated extension of the parser which will make transformational power
available at a point immediately prior to surface parsing: but the extent
to which that hope is realized remains to be seen. With regard to com-
paratives and superlatives, a great deal of work lies ahead of us, partic-
ularly when it comes to handling the changes in clause inclusion rela-
tionships that seem to be involved in deriving sentence pairs l ike" XYZ
earned more than ABC " and "XYZ's earnings exceeded ABC's "
from a common underlying source.

In spite of the large amount of linguistic work remaining to be done
in order to achieve truly satisfactory coverage, I believe we have pro-
gressed sufficiently far at this point to have demonstrated both the ex-
perimental viability and the future promise of a transformationally-
based approach to natural language question answering.

ILEFEILENCES

N. CHOMSKY, Aspects of the Theory of
Syntax, Cambridge (Mass.), 1965.

B. HENISZ-DOSTERT, F. B. THOMPSON,
The REL Project, in "Quarterly Prog-
ress tLeport ", California Institute of
Technology, Pasadena, April 1, 1973.

S. KuNo, A. G. O~TTmG~R, Syntactic
Structure and Ambiguity of English, in
Proceedings of the 1963 Fail Joint Com-
puter Conference, Baltimore, 1963.

S. IL. P~TmCK, Transformational Analysis,
in tL. tLUSTIN (ed.), Natural Language
Processing, New York, 1973, pp. 27-41.

S. 1:~.. PI~TRICK, Semantic Interpretation in

the REQUEST System, in the I vol-
ume of this book.

J. J. ROBINSON, An Inverse Transforma-
tional Lexicon, in 1L. ILUSTIN (ed.),
Natural Language Processing, New York,
1973, pp. 43-60.

T. WINOG•AD, Understanding Natural
Language, in ~ Cognitive Psychology ~,
III (January 1972) 1, pp. 1-191.

W. A. WooDs, P,.. M. KAPLAN,]3. NASH-
W~B~a, The Lunar Sciences Natural
Language Information System, Final
Report, BBN tLeport No. 2378,
Cambridge (Mass.), June 15, 1972.

