
MARTIN KAY 

M O R P H O L O G I C A L  ANALYSIS 

A computer program that is intended to carry out nontrivial oper- 
ations on texts in an ordinary language must start by recognizing the 
words that the text is made up of. This is the procedure I call morpholo- 
gical analysis. It is necessary because the linguistically interesting prop- 
erties of words cannot be discovered by examining the words them- 
selves but are associated with them in an essentially arbitrary manner. 
Therefore, there must be a list - what we call a dictionary - to define the 
mapping of words into linguistically interesting properties and a pro- 
cess to look words up in this dictionary. 

Many computer programs have been written in which morpholo- 
gical analysis consists of nothing more than accepting any unbroken 
string of letters encountered in a text as a word and referring it to a 
dictionary. This means that, in addition to what is usually found there, 
the dictionary must contain plural forms of norms, all the forms of 
every verb, regular or irregular, all adverbs, and so forth. A machine 
dictionary of English constructed on these principles would contain 
four to six times as many entries as a standard dictionary but some of 
these entries could presumably consist of little more than a reference to 
the standard form of the word - the singular of the noun, the infinitive 
of the verb, or whatever. A modern computer could easily accommodate 
a dictionary of English enlarged in this way and it is an attractive thing 
to do if only because it reduces the problem of morphological analysis 
almost to triviality. The increase in the size of the dictionary is more 
alarming in the case of a highly inflected language. There are, however, 
many languages for which this solution is unthinkable and many for 
which it is clearly undesirable. In ancient Greek, Latin, and Sanskrit, 
for example, it was not customary to leave spaces between words so 
that 

Galliaestomnesdi 
visainpartestres 
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would have been a reasonable way for Caesar to write what would be 
printed as 

Gallia est omnes divisa in partes tres 

in a modern edition. Many languages, like German, admit compotmding 
as a productive part of the grammar so that words like 

Lebensversicherungsgeselschaftsangestelter 

meaning "employee of a life insurance society " can be freely invented. 
Under these circumstances, the policy of referring unbroken strings of 
letters to the dictionary will clearly be inadequate. 

In general, therefore, it is necessary to recognize lexical items in a 
text otherwise than by the simple fact that they are bounded by spaces 
or other non-alphabetic characters. The possibility of words being 
juxtaposed without any explicit boundary must be admitted and it may 
even be desirable to divest the space of its special status as a separator 
altogether and treat it like any other member of the alphabet. This opens 
the possibility of treating many kinds of idioms and fixed phrases as 
ordinary words that happen to contain spaces or other non-alphabetic 
characters. 

But there is more to morphological analysis than recognizing lexical 
items in a connected text in the absence of explicit boundary markers. 
In general, when lexical items are conjoined, they undergo some change 
of form. In English, for example, the plural of nouns is regularly formed 
adding an s. But, if the noun ends in j,  s, x, z,  sh, or ch, an e is intro- 
duced before the s. If the singular form ends in y, then this is replaced 
by ies in the plural. These changes are specified in a chapter of the gram- 
mar called morphographemics which is much more copious in some lan- 
guages than in English. In Sanskrit, for example, morphographemic 
rules are applied when one word is written after another and not only 
when grammatical affixes are appended. Thus, for example, 

rajendra 
is written instead of 

raja indra 

because of a grammatical rule requiring a + i  to be replaced by e 
wherever it occurs. Notice that rules of this kind make the use of spa- 
ces to delimit words almost impossible because, in a case like this, there 
is no non-arbitrary way of assigning the e to the first or the second word. 
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I have been treating grammatical items like inflexional affixes on a 
level with other lexical items. This seems reasonable, at least for the 
immediate purpose which is simply to decompose a text into items that 
are small enough to constitute a finite list in the description of the lan- 
guage and which are composed into larger items by productive pro- 
cesses. The trouble is that texts consist of  more than a concatenation of 
lexical items occasionally modified by the action of morphographemic 
rules. Words undergo productive processes formally different from, 
though functionally identical to, the adjunction of other lexical items. 
The plural that is represented in English by adding an s appears in other 
languages by the repetition of a syllable or part of a syllable with or 
without some change in the vowel of that syllable. In addition to pre- 
fixing and su~xing, some languages admit infixing, a process by which 
the string of characters representing one lexical item is interrupted by 
a second item. In fact, the complete variety of the morphological pro- 
cesses used in the languages of the world has never been surveyed. 

In the remainder of this paper, I shall outline a procedure for morpho- 
logical analysis of which it is not too unreasonable to hope that it will 
accommodate most of the languages of the world while, at the same time, 
being efficient enough to be considered for inclusion in practical com- 
puter systems in competition with more specialized methods that have 
been proposed. The procedure I shall outline has the additional advan- 
tage that it can be made to blend in an interesting way with syntactic 
processes that can be expected to follow. 

Morphographemic rules are made available to the procedure in the 
form of a set of string-rewriting rules whose job is to reduce the lex- 
ical items in a text to canonical forms which can then be referred to 
a dictionary. 

For example, a rule approximately of the form 

l e d  --> y + e d  

would transform the word tried into try + ed. The " + "  represents a 
boundary between a pair of lexical items; operationally, it will be a 
lexical item in its own right and will occur as part of no other lexical 
item. 

Consider the string 
He tried the fuses 

The morphographemic rewriting component of the system proposes 
three forms for the word tried and two for the word fuses so that a to- 
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tal of six strings are delivered to the next component of the system. 
Only one of these, namely 

He try+ed the fuseq-s 

is correct. If more rewriting rules had been applied, a great many more 
strings would have resulted. In fact, if each of the words in a longer 
sentence were given two forms by the rewriting rules, then 1024 dif- 
ferent strings would be generated. 

Clearly, what is required is the ability to work with expressions with 
something like the following form: 

He tr(i/y+)ed the fus(es/-~-s) 

in which the parentheses include alternative substrings separated by 
slashes. This should be more than just a notational convention but 
should reflect the inner workings of a system in which the amount 
of material generated and the amount of processing to be done on 
it is more nearly proportional to the sum than the product of the am- 
biguities. 

Let the string to be analyzed be represented in a diagram of the 
following kind: 

This kind of diagram is what I call a chart. Each letter labels an edge. 
There is an initial and a final vertex and the remaining vertices corre- 
spond to the points in the string at which a pair of letters meet. When 
the rewriting process is complete, the chart will look like this: 

o - - - o - - o - - o  i -  - d - - - & - - ~ - - ~ - ~ o - - - o - - o - - ~ o . - - ~  

H E sp T R ~ s  I) T H E sp F U S E S 

I 12-~-E D 

Each of the six strings that the morphological rewriting component 
must produce for this example is represented by a path from left to 
right through the chart. Instead of rewriting in the strict sense, the rules 
have caused new edges and vertices to be added to the chart. A rule 
like 

i e d  -~ y + e d  
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is interpreted as an instruction to look for instances of the string ied 
and to introduce a new path from the vertex before i to the vertex 
following d with the labels y, + ,  e, and d. 

There are many simple ways of representing the same logical struc- 
ture that a chart diagram represents inside a computer. One is to rep- 
resent each edge by a quadruple (label, character, alternate, successor). 
Each edge has a unique label which, in the computer, can be the index 
of the edge in a set of  three parallel arrays in which the other compo- 
nents are stored. The second component is the letter or other character 
represented by the edge. The alternate is the label of  another edge inci- 
dent from the same vertex. A vertex, in this representation, is simply 
the set of edges incident from it. The index of the first of  these to be 
put in the chart serves also as the index of the vertex. The remaining 
edges are found by taking the alternate of the first edge as the second 
edge, the alternate of the second as the third, and so on until an edge 
is encountered that has no alternate. The chart displayed above, in which 
three rewriting rules have been applied to the string He tried the fuses 
is represented as follows: 

Labd Character Alternate Successor 
1 H 0 2 
2 E 0 3 
3 sp 0 4 
4 T 0 5 
5 R 0 6 
6 I 19 7 
7 E 0 8 
8 D 0 9 
9 sp 0 10 

10 T 0 11 
11 H 0 12 
12 E 0 13 
13 sp 0 14 
14 F 0 15 
15 U 0 16 
16 S 0 17 
17 E 28 18 
18 S 0 0 
19 Y 23 20 
20 + 0 21 
21 E 0 22 

14 
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22 D 0 9 
23 I 0 24 
24 E 0 25 
25 + 0 26 
26 E 0 27 
27 D 0 9 
28 q- 0 29 
29 S 0 0 

The first 18 entries represent the characters of the original string. The 
only changes that have been made to these are in the "alternate" col- 
umn for entries 6 and 17. These correspond to the first characters of 
substrings to which rules have applied. Entry 6, for example, has 19 as 
its alternate and entries 19 through 22 represent the string y+ed. The 
successor of entry 22 is 9 indicating that y+ed is a replacement for the 
led in entries 6, 7, and 8, the last of which also has 9 as its successor. 
The string led was, in fact, rewritten by two different rules so that entry 
19 also has an alternate and entries 23 through 27 represent the output 
of the second rule. Entry 6 is the head of an alternate chain that also con- 
tains 19 and 23, and these are indeed three edges that are all incident 
from the same vertex, a vertex that we can think of as represented by 
the number 6. 

The chart comes close to achieving the economy desired of the re- 
writing component of the system. Notice, however, that there are still 
three separate edges labeled d preceding the second space. In order to 
see why this must be so, consider the following more abstract example: 

1) 1Lewrite a as d when it precedes b 
2) Rewrite b as c when it follows a 

If the initial string is ab, then the rewriting process must deliver three 
strings, namely ab, ac and db. The set does not include dc. Now look at 
the diagrammatic representation. Interpreting the rules in the most 
straightforward way, one might expect to get 

C 

d 
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But this does include a path representing the string de. If phrases like 
when it precedes .... and when it follows .... are excluded from the rules, so 
that we must say: 

la) Rewrite ab as ac 
2a) Rewrite ab as db 

we not only stress the mutual incompatibility of the two rules, but also 
produce a situation in which the most natural interpretation of the 
rules gives the correct result. We now get 

It is possible for rules to operate on characters resulting from the 
application of previous rules. A compact statement of the rules of San- 
skrit morphology would capitalize on this possibility to a large extent. 
In English, it might never be used in a realistic system, but it is not 
difficult to manufacture examples that are not hopelessly implausible 
even in English. Consider a word like cruddily. One rule might rewrite 
this as cruddy+ly and a second rule might then rewrite this as crud+y+ly.  
Part of the input to the second rule is the final y of cruddy which the 
first rule introduced. In the chart, this would appear as follows: 

~_c_c o R o__F__u o__D_.D o D__~_oxZ_o L__oYY__ o 

+ Y + L 

What this means is that, when substrings are being considered as candi- 
dates for rewriting, every path through the chart must be considered, 
including those that arise as a result of previous rewriting. This brings 
up the basic problem of syntactic analysis, namely, how can one guar- 
antee that every possibility will be explored once, but no more than 
once. A full discussion of this problem is beyond the scope of this paper 
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and I shall therefore limit the discussion to one simple but very general 
technique which can be modified in innumerable ways in the interests 
of  efficiency. 

Let us consider just four rewriting rules taken from the morpholo- 
gical section of  a hypothetical English recognition grammar: 

i e s  ~ y + s  
i e d ~  y + e d  
i l y ~ y + l y  

d d y ~ d +  y 

A considerable amount of  space and, as we shall see, work, can be sav- 
ed by representing the rules also in diagrammatic form. Although 
it is, in many ways similar to a chart, I shall use the term transition net- 
work, or simply network to refer to this diagram so that it will be easy 
to refer to both in the same context. For the same reason, I shall refer 
to the lines in a transition network as arcs rather than edges. A network 
representing these four rules would be as follows: 

y+s  
S 

~ / , ~ ~ ~ d  Y q_ e d 

d+)/ 

In this representation, if several rules begin in the same way, the similar 
parts are only represented once and if the similar initial parts of  a set 
of  rules are matched against a set of  edges, this will be a partial test of  
all the rules in the set. In the computer, this can be represented as fol- 
lows: 
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Label Character Alternate Successor Replacement 

1 I 7 2 
2 E 5 3 
3 S 4 0 - - > Y + S  
4 D 0 0 - - + Y + E D  
5 L 0 6 
6 Y 0 0 - + Y - { - L Y  
7 D 0 8 
8 D 0 9 
9 Y 0 0 - + D + Y  

All parts of  the network can be reached from arc number 1. The set 
o f  alternates of  arc number 1 correspond to sets o f  rules that differ in 
their very first character. 

We are now ready to consider how a transition network can be 
applied to a chart in such a way as to allow all applicable rules to be 
identified and carried out exactly once. Like almost all non-determin- 
istic procedures, this involves the use of  a list of  tasks that still remain 
to be done at any given moment during the execution of  the procedure. 
This list is sometimes referred to as a stack because it is usual to maintain 
the policy of  never removing from it any but the last entry made so 
that the last task remembered will always be the first to be carried out, 
and the word " s t a ck"  is reserved for lists that are used in this way. 
I shall use another term, namely task list, because I do not wish to sug- 
gest any such discipline. Indeed, it is a feature of  this procedure that the 
tasks on the list can be carried out in any order whatsoever without 
altering the eventual result. 

An entry on the task list is a triple (arc, edge, vertex). When the 
task is carried out, an attempt will be made to match the arc to the edge. 
If  this completes the matching of  tlae left-hand side of  a rule with a sub- 
string in the chart, then some new material will be introduced into 
the chart beginning at the vertex named in the triple and eliding at the 
vertex which is the successor of the named edge. 

In greater detail, the task specified by the triple <a, e, v) is carried 
out as follows: 

1. Let b be the alternate of a. If b is not zero, create a new task < b, 
e, v ) and put it on the task list. 

2. Consider the edge e and any other edges that there may be on its 
alternate chain in turn. Let d be the current edge. Carry out the process de- 
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scribed below for each new edge d. In other words, first let d = e ,  then set 
d to the alternate of d on each occasion unless d has an alternate of O, in which 
case, stop. 

If the characters of the arc a and the edge d are not the same, do nothing. 
If they are the same and the arc has a replacement, then introduce a new 
sequence of edges into the chart to represent the replacement starting at 
vertex v and ending at the vertex which is the successor of d. Whether or 
not there is a replacement, if the arc has a successor s and the edge has a suc- 
cessor t, then create a new task ( s, t, v ) and put it on the task list. 

It will be clear from this that a task can create any number of  new tasks 
and this is why it is necessary to keep a list of  them. 

The entire process is set in motion by putting on the task list a task 
(I, w, w) for each vertex w in the chart. Recall that, for such purposes 
as this, a vertex is represented by the label of  its first edge and, initially, 
there will be exactly one edge incident from each vertex. I might, 
therefore, just as well have said that a task is created for each edge in 
the chart. Tasks are now removed from the list and carried out until 
none remain. 

The procedure, as described so far, will result in the rules being ap- 
plied to the characters o f  the initial string and all possible results obtain- 
able in this way being added to the chart. However, there is no provi- 
sion for applying rules to substrings that arise, in whole or in part, from 
the application of  other rules. Part of  the problem can be solved by ad- 
ding a newtask (I, n, n) for each new vertex n that is added to the list 
as a result o f  applying a rule. In fact, the initial task list and these later 
additions would all be Covered by a general requirement that a task 
(I, n, n) is created for every vertex n added to the chart, initially or 
later. But there remains the problem of  ensuring that, when new edges 
are introduced incident from existing vertices, all processes that should 
apply to that edge do in fact apply. The difficulty is that at least some 
tasks will already have been applied to the edges incident from that 
vertex and will ,  by now, have disappeared without trace. A simple 
example will show how this can arise. 

Suppose that the initial chart is as follows: 

O---.-------- O ~  O 
a b 
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and that the rules are as in the following network:  

C 

b 

d 

The initial task list is as follows: 

Arc Edge Vertex 

1 1 1 
1 2 2 

The first task is removed from the list and carried out. Since arc number  
1 has an alternate, a new task is put on the list. Since we are assuming 
that the order of  the task list is immaterial, let us add the new task at 
the head of  the list so that we now have: 

Arc Edge Vertex 

2 1 1 
1 2 2 

The current edge has no alternates so that it is the only one to be con- 
sidered in this task. The/abel  on the edge is a and the label on the arc 
is b. These do not match and the task therefore comes to an end. The 
next task is (2, 1, 1). Arc 2 has no alternate so that no new task has to 
be created for it. There is only one edge to be considered and arc 2 
does, in fact, have the same symbol as edge 1. There is no replacement 
but both arc and edge have successors. A new task is therefore created, 
and we place it, as before, at the head of  the list, which is now as fol- 
lows: 

Arc Edge Vertex 

3 2 1 
1 2 2 

This new task is now immediately removed f rom the list to be carried 
out. Once again, there is only one edge to consider and its character is 
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b. This does not match the c on the arc and the task therefore terminates. 
Notice that there are now no tasks on the list with vertex number 1 so 
that there is no longer any possibility of adding new edges at that vertex. 
The one task remaining will cause a new edge to be added at vertex 2 
which could have been successfully used by the task just completed. 
But it is now too late. To complete the story, task (1, 2, 2) is now started, 
leaving the task list empty. The arc and edge match and a replacement 
is made giving the following as the final chart: 

O 

£ 

,lid - -  O 

This problem can be solved in a variety of  ways. Most of  them con- 
sist in carefully controlling the order in which items are removed from 
the task list. For reasons that will emerge later, I shall here propose an 
alternative solution. With each vertex in the chart, there will be asso- 
ciated a wait  list which will simply be a list of  things to be done to any 
new edge added at that vertex. An entry on a wait list will be a couple 
(arc, vertex). Whenever a new edge is added at the given vertex, a 
new task will be created for each item on the wait list, the required tri- 
ple being formed by adding the new edge to the couple on the wait list. 
It remains only to describe how new entries are made on a wait list. 
This is done in a third step which we now add to the description of  
how tasks are carried out. 

3. Add the couple (a ,  v ) to the wait list of the vertex to which e 
belongs ~ it is not already there. 

In the example just considered, this will cause, among other things, a 
couple (3, 15 to be placed on the wait list for vertex 2. When the new 
edge representing the character c is appended to this vertex, a new task 
will automatically be created, namely (3, 3, 15, where 3 is taken to be 
the label of  the new edge. When this task is carried out, it will lead 
immediately to the addition of  a new edge at vertex 1 and the final 
chart will have the desired final form, namely: 

d 
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The principal problems that arise in dictionary consultation concern 
(1) what to look up, and (2) how to store and gain access to the diction- 
ary. The problem of what to look up is the problem of deciding which 
of the substrings that the chart contains at the end of the rewriting pro- 
cess should be referred to the dictionary. We shall see that the approach 
we take to the second of these problems is strongly conditioned by the 
solution we adopt to the first. 

One of the earliest solutions to the problem of what to look up was 
the following: start at the beginning of the string and find the longest 
word in the dictionary that can be matched beginning at that point. 
Then repeat the process starting with the first unmatched character. 
This so-called longest-match procedure is easy to fault. In a word like 
underivable, it will surely recognize under as the longest initial compo- 
nent and go on to forage for something in the dictionary to match 
ivable. Furthermore, the scheme would doubtless have to be modified 
before it could be applied to data presented in the form of a chart be- 
cause there could be more than one longest matching initial substring 
if they lay on different paths. Almost any process applied to a chart 
will necessarily have to be nondeterministic. But it is easy to see that 
the process of dictionary consultation must, in any case, be nondeter- 
ministic because there are many cases of morphological ambiguity. In 
English, there are a few words like elipses that are derivable from more 
than one stem; in this case elipse and elipsis. In other languages, such 
examples are much easier to find. The word conti in Italian is the plural 
of both conto and conte and there are many other words like it. 

It seems, then, that nothing less than a procedure that exhausts the 
coverings of all the strings in the chart will have the generality we re- 
quire. By a covering of a string I mean a segmentation of the string into 
non-overlapping substrings each of which is an entry in the dictionary. 
The English word interminable has only one correct segmentation that 
would be deemed correct in most texts, but it has at least two coverings 
by the English lexicon, for it is not only in q- terminate + able, but also 
inter + mine + able. The second analysis might possibly be consider- 
ed correct in a text on mining containing a sentence like These strata 
are not interminable with presently available machinery. 

Logically, there is little to distinguish dictionary consultation from 
the application of rewriting rules. In one case strings of characters are 
rewritten by other strings of characters whereas, in the other, they are 
rewritten by strings of items of a fundamentally different kind, namely 
words or the lexical descriptions of words. The principal difference is 
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that dictionary consultation is a process that does not apply to its own 
results; the input always consists of characters and the output of words. 
But there are practical considerations that are usually adduced to distin- 
guish dictionary consultation as a special process. 

Dictionaries are very large relative to many of the other bodies of 
data that a linguistic computer program must treat and it has therefore 
usually been impossible to accommodate them in the rapid-access 
store of a computer. Reference to external files is notoriously slow and 
therefore expensive and special techniques are often necessary to make 
it practical. Now, machines are getting larger and they are frequently 
designed so that the rapid-access store appears to be much larger than 
it actually is. But, leaving these facts aside, we nevertheless find that 
the format I suggested for the rewriting rules can readily be generalized 
to accommodate a dictionary, and in ways that yield practical and effi- 
cient systems. 

The heart of the idea is to conflate the initial parts of strings when 
they are the same so that the whole set of strings is stored in the form 
of a tree. The only disadvantage that this has as a storage scheme for 
dictionaries is that, especially near the root of the tree, an arc can have 
an inordinate number of alternatives so that an appreciable amount of 
time would have to be expended in searching through them. In English, 
for example, there are words beginning with each of the 26 letters of 
the alphabet so that it would take an average of 13 trials to find the ini- 
tial letter of a word. There is a variety of ways to overcome this prob- 
lem. The following is a somewhat simplified version of one that has 
proved efficient, both in time and storage. The method combines the 
representation in the form of a tree with the well known technique of 
binary search. 

Sort the dictionary into alphabetical order and choose a word from 
somewhere near the center of the resulting list. This word - the whole 
word and not just its first letter - will occupy the root of the tree. Sup- 
pose the word is man. Divide the dictionary in two at this point and 
choose a second word from near the center of the list of words that 
preceded man. This will occupy a node connected to the root by a line 
labeled with a zero. Suppose the word is fortune. Now consider only the 
words that precede fortune in the list, pick a word from near the middle, 
and connect it to the node for fortune with a line also labeled with a zero. 
Proceed in this manner until the first word in the dictionary is appended 
to the end of the chain. What we have now is a diagram of the fol- 
lowing kind: 
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o/able 0 

aardvark 

The remainder of the dictionary now consists of five lists: the words 
following man, the words b e t w e e n  fortune and man and so on. Consider 
first the words that follow man in alphabetical order. Divide this into 
four sublists according to the length of the initial substrings that the 
words share with man. Thus, there will be a sublist of words beginning 
with the letters man, a sublist beginning with ma but not having an n 
in the third place, a sublist beginning with m but without an a in posi- 
tion 2, and a sublist of words that follow man in the dictionary but which 
share no initial substring with it. Now remove the shared initial sub- 
strings from the beginnings of the members of these lists - three letters 
from the members of the first list, two from the second, and so forth. 
The fourth list remains unchanged. Observe that the alphabetical ordering 
of the lists is preserved because the same initial substring is removed 
from the beginning of all the words in a given sublist. Now choose a 
(truncated) word from near the center of each sublist and connect it to 
the node for man by a link labeled with a number one greater than the 
number of letters in the initial substringjust removed from it. For exam- 
ple, if matter is chosen from the third list, it is first trtmcated to atter 

and is then used to label a node connected to the root of the tree by a 
link labeled with a 3. Repeat this process for each of the five lists, adding 
new nodes below each of the existing ones. The result will look some- 
thing like this: 
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tJla1~ 

e r  

/,/er 

Each word in the tree (except aardvark) is connected by a link labeled 
" 0 "  to a subtree o f  words all o f  which precede it in alphabetical order. 
All other links lead from a word to a subtree of  words that follow it in 
the alphabet. A link labeled n connects a word to alphabetically later 
words that differ from it in the nth position, but not before. 

Each of  the words so far accommodated in the tree was chosen from 
the center of  some sublist. These sublists are now installed below the 
corresponding words in exactly the same way. 

It is an entirely straightforward matter to look words up in a dic- 
tionary stored in this way. The algorithm is as follows: 

1. Let w be the word to be looked up and v be, initially, the root of 
the tree. 

2. If w occupies node v, then announce success; otherwise continue. 
3. If w precedes the word at note v in alphabetical order, then let 

n = 0 and skip to step 6. 
4. Let n equal the first position, counting from left to right, at which 

w differs from the word at node v. 
5. Remove the first n-1 characters from w. 
6. If there is a link labeled n below v, let v be the node at the end of 
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that link and return to step 2; otherwise announce that the word is not in the 
dictionary. 

The method is readily recognizable as a variant of the familiar technique 
known as binary search. The principal difference lies in the treatment 
of words that share initial characters. This modification makes possible 
considerable economies in storage space because common initial sub- 
strings are only stored in one place. However, the variation also leads 
to interesting economies in the work that must be done to identify words 
in character strings stored in the form of a chart. 

Suppose the rewriting procedure is changed to allow for two kinds 
of task, the original rewriting tasks and what I shall call dictionary tasks. 
A dictionary task will be represented oll the task list by a quadruple 
(node, edge, vertex, position) in which the edge and vertex fill the 
same roles as in the rewriting task but, instead of an arc representing 
part of a rewriting rule, there is a dictionary node. Position is a number 
giving the number of characters of the substring that labels the diction- 
ary node which have already been matched. A dictionary task (n, 
e, v, p) is carried out as follows: 

Is the character at "[ 
edge e equal to the ] 

character at position I 
p o f n o d e n ?  .1 

S ~ 

J If  the char. [ 
/ at edge e is I i1¢ less than the less than the 

17 Let x = p I char. at pos. 
p of  node n, 
let x = 0, else 

let x = 1. 

, /  
I If  there is a 
link numbered 
X to  a n o d e  IlI~ 

then create task 
<m,  d, v, 1 > .  

Ye~ 

Is the last character at ] 
node n in position p?] 

ls there a 
SUCCeSSOr t 

to edge d? 

create task 
< 11~ t~ V, 
p + l ) .  

" L e t d = t  i I f t l  
and p = p + 1 1 

Yes 

I 
Construct an 

edge from 
vertex v to 
SLICCCSSOr Of 

edge d. 
Create task 
< r,f, f, 1). 

I f  there is a 
link numbered 

p + l  t o a n o d e  
m and a successor 

t o f  edge d, 
then create task 
<m,  t, v, 1 ) .  
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Whenever a dictionary task is carried out, a character in the diction- 
ary is compared with the characters associated with each of the edges 
incident from a given vertex. Paths in the chart may diverge, but the 
process of looking up substrings in the dictionary is one process up to 
the point of divergence. 

The principal advantage of this data structure for a dictionary is 
that it minimizes the cost of referring different possible analyses of 
the same word to the dictionary in cases where the differences occur 
mainly at the end. The algorithm for looking words up also combines 
with the string-rewriting strategy I have proposed in a happy manner. 
The organization also allows new words to be added to the dictionary 
in a straightforward manner without disturbing the existing structure 

- nothing more than a new link and a single new node at the bottom 
of the tree is ever required. A simple recursive strategy will restore the 
dictionary to the form of a simple alphabetical list. The method of con- 
structing a tree of this kind from an alphabetical list that I have describ- 
ed was designed to make the structure clear and not as an algorithm 
for incorporation in a computer program. However, algorithms do 
exist, which are beyond the scope of this paper, for performing this 
operation simply and efficiently. But the principal advantages of 
doing morphological analysis in this way have still to be stated. 

The use of wait lists makes it possible, as I have already remarked, 
to relax any restrictions there might otherwise have been on the order 
in which tasks awaiting execution are selected. If processing is allowed 
to continue, the same results are guaranteed to emerge. What this 
means is that there can be complete freedom in designing strategies that 
will increase the probability of reaching a satisfactory solution early 
in which case the option of abandoning the remaining tasks is open. 
For example, dictionary tasks might always be given priority over mor- 
phographemic rewriting tasks on the principle that a lexical item iden- 
tified in the text in its standard dictionary form is likely to have been 
correctly identified, especially if it occurs between non-alphabetic char- 
acters. Tasks operating on parts of the chart further to the right might 
be given priority over those further to the left simply because they are 
nearer to reaching a conclusion. It would even be possible to augment 
the grammar in such a way as to allow individual rules to give an expli- 
cit priority to the tasks they create. I do not want to urge any one of 
these policies here, but merely to stress that the basic algorithm leaves 
the field entirely open. 

Perhaps more important is the fact that other tasks, unconnected 
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with morphological analysis can be interleaved freely between those that 
have been mentioned. The chart was originally designed for use in syn- 
tactic analysis 1 and recent work suggests that syntactic analysis can prof- 
itably be performed as a set of independent, self-synchronizing tasks 
as suggested here. If these tasks are intermixed with those required for 
morphological analysis, the range of possibilities for driving towards 
a likely solution while foreclosing none of the possibilities allowed by 
the grammar is greatly extended. What I am proposing is, in the large, 
obvious: do first what is likely to lead earliest to a successful conclusion 
and put off other things until later. The particular organization I have 
suggested is attractive because it seems likely to lead to this goal without 
any attendant increase in programming complexity. Indeed, these prin- 
ciples are likely to make for greater perspicuity of the resulting pro- 
gram. 

1 M. KAy, Experiments with a powe~fl parser, RM-5452-Ptk, Santa Monica (Cali- 
fornia), 1947. 




