
EBERHARD PAUSE 

A CLASS OF T R A N S F O K M A T I O N A L  

R E C O G N I T I O N  G R A M M A R S  

1. PETmCK considers transformational grammars (T-grammars) o f  
a special* form which essentially have the properties described by N. 
CHOMSKY (1965). 

a) The base grammar is context-free. One recursive element S 
is distinguished. The base trees in general have the form 

s 

s 

or in linear notation 

Consequently each base tree consists o f  a finite set o f  subtrees or ker- 
nel trees each of  the form S(@ $1(...)@) where x is a s t r ing  Over 

i I shall assume the reader somewhat familiar with the theory of generative trans- 
formational grammar. : -: 
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V -{@}.~ A string in which maximally n kernel trees stand one above 
the other has the depth (of embedding) n. 

b) Transformational rules (T-rules) are singulary or binary. The 
singulary ones operate on a subtree, called constituent tree, whose 
initial node has the label St and whose terminal string contains no 
sentence boundary symbol @. The binary T-rules work on a constit- 
uent tree and the kernel tree (called the matrix tree) which dominates 
it directly. 

c) The transformational rules are linearly ordered and are ap- 
plied cyclically in this order from bottom to top. That is, a cycle is 
completed after the singulary and binary rules have been applied to 
a constituent tree. (In the process the sentence boundary symbols of 
this subtree are removed). 

Now Petrick defines a class of T-grammars generating recursive lan- 
guages by first stating the condition of the "recoverability of dele- 
tions ". That is, only • terminal node or a subtree which is identical 
with another subtree that remains in the resulting tree after the appli- 
cation of the T-rule can be deleted. He states further conditions so that 
there is an upper bound for the depth of embedding of a base tree 
underlying a sentence of the grammar. In his case that means, that 
a base tree that underlies a sentence of length n can have maximally 
depth n. 

A recognition grammar for a T-grammar of this class is constructed 
by Petrick roughly in the following way: Transformational derivations 
are generated, and starting with the trees that constitute these deri- 
vations he determines context-free rules, so-called "auxiliary rules ", 
reflecting the structure of the derived trees. By means of these auxiliary 
rules a given string can be attributed as much structure as is necessary 
for applying the "inverse " T-rules. If the string is a sentence of the 
given grammar one can obtain the underlying base tree(s) by this 
procedure. 

2. The following problems arise in connection with the class of 
transformational grammars defined by Petrick: 

a) To my knowledge there is no finite procedure to determine 
whether a given T-grammar has the defining properties of the class 
or not, which represents a solution to the problem whether there exists 

V means the entire vocabulary, Y~ the terminal, ~ the nonterminal vocabulary of 
the base. 
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in principle some recognition procedure for the grammar. There also 
remains the question of whether this problem is recursively solvable 
at all. 

b) In general there is no finite number of auxiliary rules implied 
by the derivations of a T-grammar of this form. For that reason Pe- 
trick can only construct auxiliary rules for finitely many derivations. 
These rules can then be used only for the analysis of sentences whose 
underlying base trees have maximally depth n (for a given n)whose 
length is therefore smaller than or equal to n. For sentences contain- 
ing more than n words a new recognition grammar has to be construc- 
ted. There may also be sentences of length smaller than or equal to 
n which cannot even be analysed because the depth of their under- 
lying base trees exceeds the specified boundary. 

c) The set of trees accepted by the auxiliary rules is larger than 
the one generated by the original grammar. As a consequence spurious 
trees result at the end of the analysis process and these mustbe discard- 
ed by an additional synthesis phase. 

These problems suggest that it might be reasonable to look at the 
following requirements when using a grammar for the recognition of 
sentences. It should belong to a (nontrivial) class of grammar having 
the following properties: 

a) All generated languages are recursive. 
b) It is decidable whether a given grammar belongs to the class 

o r  n o t .  

c) There should be a general procedure which costructs for each 
grammar of this type a practicable recognition grammar. That is, 
analysis with such a grammar should be as efficient as possible. 

I do not wish to claim that these requirements have all been met for 
the type of grammar that I worked with. 8 But I want to show now 
what results I obtained with a different approach to the matter and 
what difficulties one obviously faces when dealing with transform- 
ational recognition. 

3. In what follows I will first of all illustrate a general method by 
which the set of base trees, given by some arbitrary context-free gram- 
mar can be decomposed into a finite set of kernel trees. This construc- 
tion serves (in section 4) as a basis for the definition of a class of T- 
grammars that generate recursive languages. A hierarchy of types of  

3 For details see my dissertation (E. PAUSE, 1972). 
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grammar will be characterized, included in this class, such that for each 
type membership of a given grammar is decidable. Section 5 deals 
with recognition grammars. 

The whole matter is discussed with respect to T-grammars of a 
generalized form: 

a) Every context-free grammar can serve as base grammar. 
b) Transformational rules are unordered. There is no distinction 

between singulary and binary rules. 4 
We may assume that a context-free grammar P-~ (V, Y,, R, S) 

where V-lg = ~, the sentence symbol S in ~, is reduced and has a 
standard form. s That is, R contains only rules of the form 

(I) S ~ ~, 

(II) A ~ D1 ... D,, n _> 2, A in ~, D~ in l ~ - {S},otherwise,if S ~ ~. is in R e 

(III) A ~ a, a in ]g. 

There is no loss of generality on considering only context-free 
grammars of this form since for every context-free grammar an equiv- 
alent standard form grammar could effectively be given. 

A recursion sequence (of length k) of a standard form context-free 
grammar P is defined as a sequence of rules from R 

Ao ~ uxAxvx 
A1 ~ u~A2v~ 

Ak.1 -~  u,Akv, 

where A~ is in ~. u,, v, in V*, v Ao = A ,  and A~ :~ A i (for i ¢: j) other- 
wise. Each symbol A i occuring in the sequence is a recursive element 
in P. Since there are only finitely many elements in • every recursion 

4 In E. PAUSE (1972) I also investigate T-grammars that c°ntain generalized transfor- 
mations of roughly the same form as discussed by N. CHOMSK'Y (1957). Concerning the 
form of the T-rules I refer the reader to the sample grammar in section 4. 

For details see for instance S. GrNSBURG (1966). 
e ~. denotes the empty string. 

V* denotes the free semigroup (generated by V). 
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sequence of P can maximally have length m ~- /O/s  and since! R is 
a finite set, the number of recursion sequences of P is finite. : 

Two recursion sequences are equivalent if they could be ideni~ified 
by cyclical permutation of the rules. This leads to the concept o~: the 
equivalence class or recursion cycle of a recursion sequence. Exactly 
k recursion sequence of length k which could be transformed into one 
another: constitute a recursion cycle. Therefore each recursion cycle is 
uniquely determined by specifying one recursion sequence belonging 
to it. 

Now all recursion cycles of a standard form context-free grammar 
P = (V, ~g, R, S), where t = / 0 / ,  could be enumerated in the following 
way: Let us consider all sequences of rules from R of the form 

s =  Ao u,AI,,  
ri~ : A1 -> u2A~v~ 

r~,: Ak~l --> ukX, v, 

where r~, is in R, A s in • and Aj ~ A,~ (for-j ~ m), then after maxi- 
mally k _~ t steps either 

a) X, is in ~g or  
b) X, is equal to Aj for some j smaller than k. 

In case (b) the sequence of rules rii ..... ri,, noted as above, obviously 
represents some recursion sequence of P. Clearly, there are only finite- 
ly many sequences as given above in P and it is easy to see that in all 
these sequences (which correspond in some sense to all derivations in 
P of length smaller than or equal to t) there is to be found at least one 
representative of each recursion cycle of P. 

Now equivalent recursion sequences are identified until there re-- 
mains exacdy one  representative for each cycle. Furthermore, one 
arbitrary recursive element of each recursion cycle is chosen. Let {C1, 
.... Cs} be the set of these symbols each of which is called a base symbol 
of P together with the sentence symbol S. Then consider all occurences 
of base symbols on the right hand side of the rules of P as terminal 
elements which could not further be expanded by some rule. Construct 

s / ~ / d e n o t e s  the cardinality of  ~ .  
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aeriv~tion trees by taking the set Z = { G  . . . . .  C,} u {S) as start sym- 
bols: you will obtain a finite set of trees B with terminal string either 
in ~,~" or in {Ig u Z}* having the following properties: 

a) every base tree corresponding to some sentence derivation 
in :P can be uniquely decomposed into elements of B (in the obvious 
man.ner). 

b) If elements of B are embedded into one another by identifying 
each time some initial node with some terminal node having as label 
the same base symbol the resulting tree is always a subtree of a tree 
ass¢,ciated with some sentence derivation in P. 

Hence the elements of B are kernel trees in almost the same sense 
as are those occuring in base trees considered by Petrick. I will not 
give here a proof of my main statements but will illustrate them by 
an example. 

Let P = (V, Z, R, S) where Ig ~- ( a, d, f, i, j, n, v, x, y }, 

= ( C ,  D, E, F, F', H, L J, K, M, N, Q}, and 

R = { S ~ C F ' E I ,  F ' ~ X Y ,  C ~ M J ,  M ~ K I - t , K ~ D F ,  H ~  
QH, Q-~- AF, H ~  NF, A ~ a , D ~  d, F ~ f ,  E ~ 

v, I ~  i , J ~ j ,  N ~  n, X ~  x, Y ~  y}. 

Taken P as base grammar the base trees in general have the form 

s 
c ~ 

M - -  ~u i 

Y\ ?\ & Y \  \ \  
! i [  

d f a f . . .  a f ,, f .I x ]' v i 

Now all rule sequences of length smaller than or equal to 12 = [~[, 
(of the form (~_)), starting with the sentence symbol S are 
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(1) S :-. C F ' E I  (2) S --+ C F ' E I  (3) S ---'. C F ' E I  
C - + M J  C - + M J  C - + M J  
M ~ K H  M ~ K H  " M ~ K H  
K ~ D F  H --> Q H  H ~ N F  
D ~ d(or F - + f )  N ~ n(or F ~ f 

(4) S --> C F ' E I  (5) S -+ C F ' E I  (6) S -+ C F ' E I  

C ~ M J  F ' - +  X Y  E ~ v(or I ~ i) 
J ~ j  X ~ x ( o r  Y ~ y )  

It can be immediately observed that there is only one recursion sequence; 
namely the rule H ~ Q H  in (2) which represents simultaneously the 
only recursion cycle of  P. N o w  { H, S } is taken as the set of  base sym- 
bols of  P. Further following the given construction finally the kernel 
trees (a), (b), (c) result: 

(a) S ( C ( M ( K ( D ( d ) F ( f ) ) H ) J ( j ) ) F ' ( X ( x ) Y ( y ) ) E ( v ) I ( i ) )  

(b) H ( Q ( A ( a ) F ( f ) ) H )  " 
(c) H ( N ( n ) F ( f ) )  

It is easy to see that for instance taking the embedding sequence 

H 

/ q . . .  " 
A F Q H 

t t / X  

a ) A  F 
i I 
,, f 

there is a tree associated with some sentence generation in P such that 
the sequence is a subtree of  it. From the construction equally follows 
that each base tree can be decomposed into elements of  B in the oppo- 
site manner as contructing trees using the members of  B. 

Since there are three kernel trees in ~ embedded into one another 
we speak in exactly the same sense as above of  the depth of  a tree. 
Thus 0~ has depth 3. In the following we will also call every tree built 
up only of  kernel trees a complex. 
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4. In this section, I will first deal with some relevant implications 
of the foregoing construction and introduce the required terminology. 
Suppose, some T-rule ,r of a T-grammar G is applied to a base tree 0~: 

Let ~ be the resulting tree. Then ~ can also be decomposed into 
kernel trees, taking as cutting-points again those nodes labeled with 
base symbols. Some of the resulting kernel trees will perhaps have been 
deleted or will have been modified by the application of'r. In the lat- 
ter case we get derived kernel trees. In any case, each tree that could 
be generated in G can be decomposed into (base or derived) kernel 
trees. I will call the set of all those kernel trees, thus obtained of all 
trees occuring in the derivations of G, the decomposition set B* of G. 

Suppose further that there are k terms in the structural description 
of-: which have been related to k nodes of 0~. Now the sequence of all 
and only those kernel trees (from left to right) in which these nodes 
lie will be called the characteristic domain of'r. 

The complex which is the smallest subtree of 0c such that it contains 
exactly the nodes, characterized by % (see the dashed line)is said to 
be a minimal complex of-~ (rel:/tive to 0t). 

Obviously only the minimal complex of a T-rule (relative to some 
tree) is relevant for the observation of the structural change produced 
by the rule, because all structure beyond it (above and below in the 
tree) is not directly concerned. To examine certain properties of trans- 
formational derivations, it could therefore be sufficient to construct 
derivations consisting of such complexes rather than of the whole trees. 
This can be done nearly in the following way: 

a) Relative to all T-rules of G, at first all possible minimal com- 
plexes of depth 1 are built up of the elements of B. The set of kernel 
trees, obtained after the decomposition of the complexes resulting from 
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the application of  the rules, yields together with set B set B1,1. This 
procedure can be repeated for minimal complexes over B of  depth 
2, 3, ... which gives the sets Bz,1, B3,,, ... 

b) N o w  continuations of  the foregoing derivations (of length 
1) could be constructed taking as basis each time the corresponding 
set Bi,z, Bi, z . . . .  According to the resulting derivations of  length 2, 
3, ... the sets B1,2, B1,3, ..., B~,z, B~,3 . . . .  of kernel trees will be obtained. 

By this procedure, which I cannot describe in detail here, the de- 
composition set B* of  G can be enumerated as the union set of  the 
sets Bp, q (p, q > 1). 

For our purposes, it is relevant to consider what happens with some 
kernel tree y or some node of  a tree in the course of  a derivation: per- 
forming some transformation, y is either deleted or there are some 
derived kernel trees (at least one) in the resulting tree which are the 
images of  y, either identical or modified by the rule. Again the asso- 
ciated images of  these in the following derived tree (which are also 
images of  y) could be identified, and so on. This procedure could be 
carried out along the whole derivation starting with an element of  
B, called the origin, in the base tree. The same is valid for a node in a 
tree. It is either deleted or copied or only transferred by applying a 
T-rule, where in the latter cases it has some images (at least one) in 
the resulting tree 13 called the occurrences of the node in 13. 

N o w  let us consider some derivation in G. It starts with a base 
tree ~, and we are looking at some kernel tree y that is a subtree of  0c, 
and some derived tree 13 occurring in the derivation: 

a) All occurrences of  terminal nodes of  y in 13, labeled with 
terminal elements, Or occurrences of  nodes in 13, inserted in y or an 
image of  it by T-rules introducing new terminals (or morphemes), 
are called the rest-nodes of  y in ~. 

b) Each terminal node of  y labeled with a base symbol is called 
a base-node, and all occurrences of  such nodes of  y in 13 are said to be 
base-nodes of  y in 13. 

After these remarks we are ready to outline the class of  structurally 
bounded T-grammars. For a grammar G to be structurally bounded in 
particular the following conditions must hold: 

a) The condition of  recoverability of  deletions. 
b) If a rest-node of  some kernel tree.~ in the characteristic do- 

main of  a T-rule $ relative to a tree 13 is deleted, the number of  rest-no- 
des of  0~ in 13 must be greater than 1. 

c) If  a subtree y is deleted by performing "~, then each base-node 
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occurring in % and lying in some kernel tree of ~, may be an occur- 
rence or a base-node of the origin of y. 

d) Let the number of terminal nodes of the origin of a kernel 
tree occurring in the characteristic domain of ": be m. Then this sub- 
tree, following its changes under the rules up to ~ by considering its 
" t r ace"  along its images in the given derivation, may not have occur- 
red more than m-1 times in the characteristic domain of-r. 

For this class of grammars, say G1, the following theorem can be 
proved: 

(A) If G is structurally bounded, then the length of each sentence 
derived from some base tree ~ of depth n cannot be shorter than n, 

n 

the member of kernel trees contained in 0~ could maximally be ~; k ~-1 
i=l  

(where k is a constant depending on G). 
Suppose G is structurally bounded, and m is the maximum of sub- 

trees which could be deleted on account of their identity by one T- 
rule of G. Lei.j  be the number ofT-rules of G, and r the length of the 
longest terminal string of members in the set B of G, then let j .m.r = k. 
n ~--- 1: If0~ is a base tree of depth 1, then every tree ~ that could be 
derived from 0c may contain a rest-node of e. Thus the length of the 
terminal string of ~ is greater than or equal to n = 1, and the number 

of kernel trees in ~ is 1 = ~ k  ~-~. 

Now suppose (A) is true for all trees of depth h smaller than n (h 
greater than 1). 

Let ~ be a base tree of depth n. Without loss of generality, we may 
assume that 0~ has the form, 

where ~ is some kernel~tree, Y1, ..-, ~'~ subtrees maximally of depth 
n-l, and let us further assume that s does not exceed k. Then k-1 of these 
subtrees could be deleted maximally. Some rest node of ~ in a tree 
[~ derived from 0~ must also survive. From this and by induction it 
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follows that the length of the terminal string of [3 must be greater or 
equal to n-1 + 1 = n. Hence the number of kernel trees in ~ has as 

maximum value k. ( ~  k iq) + 1 = 2f k iq. 
i=1  i = l  

Obviously a decision procedure for the language generated by some 
grammar of G1 could be given. However, it can be proved that there 
is no recursive solution to the problem whether in general a given gram- 
mar belongs to G1 or not. 

In the sequel I shall go on to sketch some properties of grammars 
in G1 for which this problem is decidable. 

In considering the construc.tion of the decomposition set B* of a 
given T-grammar G and of the corresponding derivations of complexes 
(see page 52 and 53), there might exist some point where the following 
requirements are fulfilled: 

Suppose that all derivations starting with complexes up to a 
certain depth p have been constructed, that the length of these deriva- 
tions has as yet reached some q, and that they are "structurally bound- 
ed ". Suppose further that by continuing the construction for some p' 
greater than p no new derivation (beginning with complexes over/3) 
could be started. Then G is structurally bounded and is said to be in 
class Gp,~, if the given derivations become periodical. That is, if they 
have the same continuations in the q + 1-th step as in the q -  n + 1-th 
step (for some n), in the q + 2-th step as in the q - n  + 2-th step, ..., 
in step q + n as in step q, and so on. This in particular means, that at 
those points in the derivations always the same minimal complexes 
appear periodically, and that therefore the decomposition set B* of 
G is finite. 9 

Since there are grammars for which these properties hold for 
arbitrary _p and q, there exists an infinite hierarchy G2 of types of 
grammars Gp, q (p, q >1) in G1. For each p and q obviously membership 
of a given grammar in Gp,q could be determined in a finite number 
of "steps. 

The following example should help in understanding these brief 
remarks: 

Let G be a T-grammar with base given by the ab0ve-mention- 
ed context-free grammar P, and let G contain the following oblig- 
atory T-rules: 

There is great evidence in the assumption that every <~ kernel sentence * of  a sen- 
tence of  a natural language can undergo only a finite number  of  transformations. 
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r l :  (~,  y, v, i) 1, 2, 3 - +  3, 2, 01° 
"r2: (~, j, x, i, v) 1, 2, 3, 4 -+ 0,1, 3, 4 
%: (K,H,F' ,v)  1 ,2 ,3 ,4 -+  l + 3 , 2 , 0 , 4  
"r4: (d,f, F', ~e)1, 2, 3 , -+  1 , 3 , 3 ,  
"rs: (~, F', F', n,f, ~ ) 1 ,  2, 3, 4, -+ l, 0, 3, 2 
"re: (M,F',F' ,  Q, H, ~ )  1, 2, 3, 4, ~ 1 , 3 , 3 ,  
"rT: (M, a,f ,  F ' , ~ )  1, 2, 3 - +  1 , 3 , 3  

N o w  the following derivations could be constructed: 

~) o~ = S(C(M(K(D(d)F(f))H)J(j))F',(X(x)Y(y))E(v)I(i))~ 
S(C(M(K(D(d)F(f))H)J(j))F (X(x)Y(O)E(v)) 
S(C(M(K(D(d)V(f!)n))F (X(j)Y(i))E(v)) 

( ~  o~,o~5 S(C(M(K(D(d)F (X(f)Y(i))H)))E(v)) 
_~ = S(C(M(K(D(d)F(F'(X(j)Y(i))))F'(X(j)Y(i))H)E(V))y~ 

___>t ®::  -~ S(C(M(yIF'(X(j)Y(i))H(N(n)F(f))))E(v)) 
== S(C(M(y~H(N(n)F(F' (X(j)Y(i))))))E(v)) 

I~ t ~s = S(C(M(y~F' (X(j)Y(i))H(Q(A(a)F(I))H)))E(v)) 
( ~  = S(C(M(y~H(Q(A(a)F(f))F (X(j)Y(i))H)))E(v)) 

--t ~) ~o = S(C(M(y~H(Q(A(a)F(F'(X(j)Y(i))))F(X(j)Y(i))H)))E(v)) 
Y~ 

--~l ~1~ = H(y2F'(X(j)Y(i))H(N(n)F(f))) 
® ~ = H(y~H(N(n)F'(X(j)Y(i))))) 

I ~3 = H(y2F'(X(j)Y(i))H(Q(A(a)F(f))H)) 
(~)o~4 = H(y~H(Q(A(a)F(f))F'(X~j)Y(i))H)) 
Q) o~S-- H(y~H(Q(A(a)F(F'(X~)Y(i))))F'(X(j)Y(i))H)) 

There is no difficulty in verifying that the continuations which could 
follow always start with the minimal complexes ~u and ~18. G is ob- 
viously structurally bounded and lies in G2,6. The following graph 
representing the order in the possible applications of  the T-rules of  
G makes perhaps the periodicity of  the derivations more transparent: 

10 The symbol Af means almost the same as variables like X in the usual notation of 
T-rules. 

n (~) means that the T-rule i is applied to the foregoing tree. The arrow ['-~ denotes 
some continuation of the derivation where it leads out. 
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5 

1------~ 2----> 3 "--"~ 4 /  5 

~ ' ~ 6 - - - - . . - ~  7 .J__~ ~ /5 
6 - " - - ~  7 - ~  6 

5. As indicated above, there is a recognition grammar for each 
grammar G of the class G m, namely G itself, using the general deci- 
sion procedure for the language generated by G. This is, however, 
obviously not an efficient procedure but represents some general way 
of analysis by synthesis. 

I will now sketch a way of constructing recognition grammars for 
the class of grammars considered here which in most cases are more 
practicable. This will mainly be done by examining our sample grammar. 
I will finish with the discussion of some problems involved in the 
described procedure. 

Let us consider the T-grammar G given above: Analysis should 
start with some given string over V, say " d  j i n j i v ". Now by re- 
versing the generation process, the last transformation that has been 
applied in generating this sentence, "rs: (~, F', F', n, f ~ )  1, 2, 3, 4 --+ 1, 
0, 3, 2, has now to be performed first. The inverse transformation 
":5 -1 (which can mechanically be constructed from ~5) would have the 
structural description (M, F', n, F', ~,1). However, there are no rules 
to attribute some structure to the given string such that there were 
nodes labeled with F which could be related to the corresponding terms 
in this inverse structural description. Base rules cannot do this work 
because the base structure has been modified by the applicafon of 
T-rules. 

Now by inspecting the derivations of complexes a term A of a 
structural description, could be ' expanded' in this way: the sequence 
of labels of the nodes which are dominated by a node related to A, 
such that the string of these labels is accepted by the inverse base rules, 1~ 
is substituted for A in . .  This will be done, if possible (see below) and 
necessary, for each term and each T-rule relative to the different trees 
to which it has been applied in all derivations. In general, for each T- 
rule more than one 'expanded' rule results. 

,s For each base rule of the form A-+ x, the rule x-~ A is the inverse. 
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Since there are only finitely many different derived (minimal) 
complexes in the derivations of a grammar G of Gp,q, one obtains a 
grammar G' (called reversible) containing a finite set of expanded 
T-rules. G' is by construction equivalent to G. A recognition grammar 
G is obtained from G' by computing the corresponding inverse T- 
rules. Then analysis will be performed by 'intermixed parsing ', that 
is, by alternating the application of base rules and T-rules. ~3 

In order to prevent the expanded T-rules being applicable at some 
point in a derivation, where the original rules could not have been 
applied, auxiliary symbols are inserted in the rules to control their 
correct application. 

To illustrate these remarks, let us look at the expanded inverse 
T-rules of our sample grammar G: 

• i1: (~, i, v) 1, 2-+y,  2 + 1  
.r~: ( ~ , j  d3,~, i, ~)) 1, 2, 3, 4-+1, x, 3, 4 
.r~: (K,j ,d, ,~,i ,H,v) l , . . . ,6-+ l, 0, O,O, 5 , 2 + d 3 , x + 4 + 6  
"r]~: (d,j, dsi, i,j, d52, i, ~) t 

-~" (d , j ,d~ , i , j , c [6~ , i ,~ )  t 1 ..... 7 ~  1,0, O,f, 5, d4x, 7 
~ 7 4 2  • , , 

-~:  ( ~ , j ,  i, n , j ,  i, ~)  1, 2, 3, 4, 5 ~ 1 ,  d5,1+2, 4 +  d5,2+ 
+ 5 + 3 ,  o,f 

"ra~: ( ~ , j , i , Q , j ,  dT,~, i ,H,~)l  .... ,7 ~ 1, de.1 + 2, 4 + d6,~ + 
+ 6 + 3 , 0 , 0 , 0 , 7  

-~. (¢~,a,j, ds,x,i,j, ds,2, i ,~)  l 
"rT"~i (¢~,a,j, d6,~,i,j, de,~,i,¢~) 1, ..., 7---~1, O,O,f, 5, d~x, 7 
~ ' 7 2  • 

The construction should be clear in considering the original rules and 
the derivations given above. The symbols d~,,~ denote auxiliary symbols. 
For the rules % and "rv two expanded rules have been constructed be-- 
cause "r4 and "r7 precede the application of either the rule "r6 or xe. 

The recognition procedure will be illustrated by the analysis of 
the sample sentence " d j in j iv ". Let t~ ~i, tt R denote the appliCation 
of  the rule -r i or of the inverse base rules respectively. Notice that the 
inverse T-rules are not true inverse rules, since they apply to sequences 
of trees, so~alled "terminal rest-trees" 

x3 It can be shown that the set of context-semitive languages is properly included in 
the set of languages generated by grammars of G,. Furthermore, for each context-sensi- 
tive grammar a reversible T-grammar can effectively be given. 
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d j  i n j  i v 

d j ds,1 i j d~,2 i n f v 

d f j  d4,~ i n f v  

D F 

I I 
d f j d,,~ 

H 

N F 
I I 

i n f v  

K H (Y(",: 
d f , ,  . f j g ~ . ~ i v  

D F N  F 
I I I  I 
d f n f j x i v  

/ \  / \  

d f n . / ' j x v v i  

S 

/ \  / \  ~ / \  K I D F N F l X ' Y I [ 
D I I I I. I I I I 
d. f n f j x y v i 
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In addition the following condition is important: the final derived 
tree of the input string (with respect to the generation process) could 
be reconstructed in the course of the analysis process. It must then be 
checked if some obligatory T-rule of G' is applicable to  this tree. If 
this is not the case, the input string is a sentence of the grammar. 

The problems which arise out of the foregoing construction are 
the following: 

a) There are cases in which no reversible grammar G' for a given 
grammar G could be constructed, because, for instance, some auxiliary 
symbol could not be removed in the course of a sentence derivation. 

b) Another source of not obtaining a reversible grammar is, 
that there could occur subtrees of arbitrary depth which have to be 
considered for the exp=msion of some .term in a structural description. 
In this case a partially reversible grammar could be constructed. The 
recognition grammar then works with base rules, T-rules, and so-called 
"predictions " associated to the T-rules. 14 Analysis with these grammars 
will without doubt be much less efficient. 

The advantage in using reversible grammars appears to be 
a) that there is no additional synthesis phase necessary when the 

analysis step has been carried out, 
b) that the different possible paths which must be pursued in 

parsing a sentence could be reduced to a minimum, in using auxiliary 
symbols whenever it is possible, 

c) and that the recognition grammar could effectively be given' 
for the whole set of generated sentences. 15 

14 See my dissertation (E. PAusE, 1972). 

15 At page 54, Theorem (A), the number k must correctly be taken as the 
maximum number of  base symbols occurring in a kernel tree of  the set B. 
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