47: AL 3.3

Some corrections for "Properties of Formal Grammars with Mixed Types of Rules and their linguistic relevance", A.K.Joshi.

p.7: In Def. 2.5.1, m is the length of σ_i p.9, line 11 bottom: of LALN's should be of nr-LAL's. p.11, line 17: a j should be a ϵ_j . p.14, line 17: a rule should be rule. p.14, line 5: some occurrence should be any occurrence. p.14, line 5: some occurrence should be any occurrence. p.14, line 5: some occurrence should be any occurrence. p.15: G1 and G2 should be as follows: $\epsilon_i = (\xi_i, \pi), \xi_i \in \{a_{k-1}, a_k\}$, $d_{2} = \{c_{j}, \pi), \xi_i = \{a_{j}, a_{j}, a_{j},$

 $J = \{u_1 = (acb, (a) (cb), r_1 r_3), u_2 = (acb, (a) (b), r_1 r_3), u_3 = (acb, (a) (cb), l_2 r_2) \}$

p.15, line 10: DAG <u>should be</u> DAGN. p.15, line 17: <u>after</u> the only nonternimal <u>add</u> (excluding null symbols; we conjecture however that these can be eliminated, i.e., in Theorem 3.3.1 we can replace DAGN by DAG).

p.18; line 11: in terms should be in terms of. p.18; In Def 3.4.2, the same subscript i has been used in d_1 and d_1 . There is no significance to this --- bad notation. p.19; line 15; have to should be have to be. p.21, line 19 bottom: replacer(s) string should be replacer string(s). p.22; line 6 bottom: d_1 should be d_1 . p. 24; line 17 bottom: terms should be d_1 . p. 24; line 10 bottom: terms should be terms of. p. 24; line 10 bottom: <u>before</u> : <u>add</u> (of course, these are not the only conditions). p. 24; line 4 bottom: <u>after</u>. <u>add</u> A replacement rule can also be generalized by allowing all occurrences of S in a complex host to be simultaneously replaced by the same replacer string. Let M₂AG's and M₃AL's be the corresponding grammars and

languages. p.27,line 4 bottom: M_sAL <u>should be</u> M_s'AL. p.27,line 2 bottom: M_sAG's <u>should be</u> M_s'AG's.

26

ADDENDA ET CORRIGENDA to Preprint No. 33

'Automatic Recognition of Speech Sounds...' by A. Iivonen

Corrections

Page	Line	Wrong	Correct	
4	5	32	24	
4	6	4 kHz	3 kHz	
7	36- 37	END	4 CONTINUE END	

Addenda

Page 6, Paragraph 5, Line 23:

The amount of correct identification by means of the program described was:

Phoneme	Number of	variants	Correct %
'n	50		76
m	37		67

By means of a modification of this program the recognition result was:

<u>Phoneme</u>	<u>Correct %</u>		
n	90		
m	70		

27

CORRIGENDA to Preprint No. 51

''A Search Algorithm.....' by Shou-chuan Yang

Corrections						
Page	Paragraph	Line	Word	Wrong Words	Correct Words	
3	2	12	6	Jacobson's	Jacobsen's	
5	3	1	9	Jacobson	Jacobsen	
12		10	7	Good	Excellent	
12		13	1	Jacobson	Jacobsen	
12		15	1	addressing	chaining	
14	2	7	7	SADSIRS	SADSEIS	
16	4	1	4	method	methods	
22	10	. 1	7	gound	found	
26	1	2	6	keyword	the keyword	
35	1	12	4	ASL(J)	ASL(J) to ASL(J+7)	
35	1	13	1	J=J+1	J == J +8	
37	1	36	4	342	557 (34 2)%	
39	1	3	3	sort	sorting	

28