i1
METAPRINT 3

(METAMETAPRINT 1)
Responses to ""COMPUTERIZED LINGUISTICS: EALF A COMMENTARY"'

- Martin Minow -

Rather than attempt a summary of the replies to "metaprint' {
included here, I feel it would be more useful for me to discuss one of my
programs.

PURPOSE

The program generates sentences from a generative (context-sensitive,
transformational) grammar. It is almost identical in function to that pre-
sented by Joyce Friedman in preprint 14.

LANGUAGE

While I had previously written a context-free generator in assembly
language, these programs were written in SNOBOL3, which is intended
specifically for string processing. There were both advantages and dis-
advantages inherent in this choice. The language provides simple, power-
ful operations for parsing strings and allows easy defination of push-
down stacks and lists. In addition, a primitive was available which re-
cognizes strings balances with respect to parentheses. Because of this,

I chose to represent trees as fully parenthesized strings. What is more
important than this is the fact that SNOBOL manages all storage auto-
matically., Thus the program has almost no pre-defined limits.

The major disadvantage of my choice was that I was completely in-
experienced in the language and unfamiliar with the recursive techniques
permitted. Thus the program was extraordinarily inefficient.

THE PROGRAM

Bot the context-sensitive generator and the transformations program
were written in two separate stepts, one converting the rules from a
form as similar to that used by the linguist as possible to a form con-
venient for storing on the machine. In general, all rules containing
abbreviatory devices (braces and parentheses) were expanded to a number
of sub-rules. These were then punched out and used as input to the gene-
rator itself. The size of the programs is

CF generator (assembly) 2500 cards

CS rule reader 300 statements
CS generator ~ 360
Transformations rule reader ~ 280
Transformations executor ~ 600

In addition, each program contained approximately one comment for

each 4 statements since this was the only way I could understand what

I really intended to write. These were written as the program was written
and proved invaluable. I should note that I generally over-document my
programs as | tend to borrow algorithms from them years later.

12
DEVELOPMENT TIMES

The CS program took about six weeks to get running while the trans-
forrmations program !‘oock the better part of four months before it worked
well enough that I could attempt to transform a '"‘real" sentence. Due to
personal reasons, I was unable to debug the grammar/program well
enough to consider distribution. The cost of processing a real tree

was also prohibitive (20 minutes at 7094 time). I again note that this
was caused more by my inexperience with SNOBOL than by any faults
inherent in the language. The work could hardly be done so quickly in
assembly language or FORTRAN as I first would have to write a large
set of subroutines for string handling, input-output, etc.

INFLUENCE OF THE LANGUAGE

The strongest external influences on the program was the fact that

data must be punched on cards. Thus a two dimensional notation, as

used by Fromkin and Rice (preprint 53) for example, seemed too diffi-
cult to program to warrant the effort. Trees and rules thus must be
written in a linear manner, using parentheses for structure identification.
(Though the programmer may indent items when punching.) Any other
limitations were primarily caused by my inexperience. Note especially
that there is no limitation on the number of characters in a string.

CONVERSION

Until I found out about Friedman's program (preprint 14) I had considered
rewriting the transformations program in SNOBOL4 -~ a string processing
language similar to, but incompatable with, its predecessor. It seems,
however, that only the algorithm (preserved in the commentary) could be
transferred as SNOBOL4 s increased capabilities allowed a much more
efficient approach to tree parsing.

OPERATING SYSTEMS

While it would be very nice to be able to generate sentences in a time-
sharing environment, I feel that the languages currently available and
especially the amount of work that must go into interfacing programs with
operating systems preclude any such effort at the present time. One
solution is to have full control over a small computer, however, this
may excessively limit the size of the program. While there doesn 't
seem to be any clear-cut answer, I seem to be reluctantly choosing

the power and nit-picking of the large operating system so as not to limit
the programs. [hope somebody convinces me that I am wrong.

13

lopenhagen, 28th August 1969.

It may bc too late for you to include this in ycur summary, but
now it's writvten I send it anyhow.

The first step in +the investigation reported in my paper, CL 3.3,
is a program for sorting 2 text into words and word delimiters, and
thus qualLfles 28 a data processing program. In my view, this pro-
grzm presentc the festurss you are interested in to = higher degree
than the lollowing programs which are datamatically much simpler,
involving only'manipulations of the numerical ccdes for words and
other syrmbols determined by the first program. - Linguisiically of
course the later programs centain all the essentials.,

Thanelaw ; w72ilable to me.at Lonenh°~en University i1s a GIiR
(.. Lo) wi central store of 4096 40~hit ¢..1l3 and periphe-
1 siere of ob, 300 000 «:lls. Programming ic done in ~lgol with
encisnzo vhich make the single bits of each word casily acccesible.
¢ Fﬁt a2t has no cperstor, but is aveilable to the personrel of
’ insvitutes - vhich undoubtedly contribuses uo more ireguert
nical breaokdovmns than comparable ownerator-mans bc1 dotanats have
”bn *“xt ¢ obh’icined on G-pociticn paper tapc wout parity

1 it ook some ingenuity to convert it tou the vsunl 8-pos--
:11 the came it is much chesper to "Lu the text on these
srciiiae produce? tapes than to codn the nev.,
ml\o a0t to flexowuriicr cnde, hut vwith letiars
ar (a=1, b»=2 etc.) and other o bﬂlo with val-
Loword is cdefined ns o “ﬁqu,MOA o; letteors ot
i n lewer cage syirbecl after the Tirst, and cach
WA?} Jouw in *he dont is first siored in sn ocrreay (oF len;Lh 50 to
bn on t“. o side). When a nori-letter symbol is found the word is
12 5 letters are placed in the first 25
icntn whether the word has no
athar this is the 2irst part of the
e TCft enesy 1f it is the first part of
Lo b snG one bit indicates

wvord or a
the word,
whesher Lt

I.Ot,;

aok--up - a viord stored like describ-

ed the ordcrin coircides xlth numerical ordcring when
ceclilo "“e an intogers ($ha tit which in integer mode ind-
icates si c cmnt" jl.e. The dictionary is stor-
el in an 296 +o 1 for othexr varinbles in-—
cluding above; it is numbered

201 ~ 4000 Lfor weagsw . e b . Zach new word found is
sterec uter oh rery occurrence of it is
indiecated by : the output

ihe “lph"y“tJF o“‘r“vn" Lo talen cnre of by list vrocessing: the
vaca nt 12 bits ia the first poart cf = word is uscd to stere the num-
ber of the ncuwe word in alphabetic order. Yo avoid having 2 ge
throuch <the hole 4"ctlonary an index is kept o7 iritinls indicating
the nupher of the first word with each initial., (Jom? reduction of
search tine coul? undoubtedly be obtained if the initicl s were sub-
divided by the value of the ncxt 1etueLo)

The ousgsuv of the program consists of the dictionary, number and
letter sequonce for each word,; ordered cither by numbers or aclpha-
beticelly, and the proccssed text string, words given by their num-
ber above 200, other symbols by thelr number below 100, depending. on
the value of tlie 1lr=wi case symbol. (A space wrich only separates two
words is suppressed; other possibilities orf reduction do not present.
nesrly She seme r2duction of space requirement.

-2 - 14

In this way, the central store will hold a dictionary of ab.
2500-3000 words (words up to 5 letters take one cell, with 6-12 let-
ters they take 2 cells, 13-19 3 cells etc,) which in a unitary text
will hold 21l but the very infrequent words.

The program builds henvily on the type of d-~tamat used, only the
most general principles will be transferable. Some slight alterot-
ions have benn necessary to enable the program to be run on znother
éntamat of the same mcke which is operator-run (but still totally
without time sharing or similar devices). I cannct to any degree of
accuracy assess the initial time used for programming, which was
not excessive, or that for debugging, which was considerable. Both
parts of the work were done over a longz period in between other work.

[eerndi

Gust~v Leunbach

Answers to guestionnaire) 15

Type of Project: Modelling of Linguistic System
Language: Assembly language, IBM 360/65 1, 500K (h.s.)

The computer used works in a time sharing set
up, in which we are one of a number of users;

No conversational methods are used.

Choice of Larguage: Owing to the fact that 50% of the central ccre
storage is permanently occupied by the time shar-
ing system, the space available to our program
is only 200 to 250 K; this is barely sufficient;
hence, in order to compress the job as much as
possible, the entire application was programmed
in assembly language., The formulaticn of the pro-
blem and the program, therefore are in many ways
influenced or, rather, determined by the charact-
eristics of the particular machine.

Development time: The flow charting, defining of algoritkms, and
linguistic research had all been done previously,
in three years work, for another machine (GE 425);
the time required tou remodel the entire applica-
tion for use on the IBM 360 was approximately 3
months, - The linguistic approach and the algo-
rithmic formulations it requires and makes pos-
sible are highly unorthodox and, therefore, not
at all suitable for formulation in an existing
high~level language. N
The system works without vecabulary look-up; the
sentences to be analysed are input on punched
cards; such storage of words as occurs.during the
analysis procedure, is achieved by numeric code.

There are no character manipulation subroutines;
input and output definition is in I0CS. No extern-
al storage is used.

The program is thoroughly defined by the sequence
of operations determined by the linguistic pro-
cedure.

Since the application is exclusively experimental,
there is continual exchange and modification of
both program and algorithms; and the program was
written, from the outset, with this in mind, i.e.
allowing for easy alteration in many areas,

Notes comprehensible only to the programmer who
devised the program.

Sizs of Program:

Time sharing:

Job Control:

Change of Machine:

Language:

Teaching:

16

3200 instructions, no commentary.

The model 360 we are using disposes of approxi-
mately 180 machine instructions; the Multistore
program employs nao more than 3C of these (of
which about 6 or B8 could be reduced to others,

so that the total of used instructions could be
brought down to approximately 22, or 12% of the
instructions available in the machine).

This is a typical symptom of the situation of
linguistic, artificial intelligence, artificial
perception, etc., programming in general: the
machines actually available are far too compli-
cated, i.e. they can do innumerable things which
are not needed in that kind of program; on the
other hand, machines specially designed for these
tasks would have to have larger central cores.

No doubt processing times could be greatly short-
ened on special purpose machines.

Yes. If we had a cocnsole in our office, it cer-
tainly would save time.

Since the computer has to be used by other people
and for other tasks as well, one has to accept
job control; if we had a computer exclusively for
this particular use of ours, we should do away
with job control.

Since the program was to some extent determined
by the particular machine (capacity, byte confi-
guration, etc.) we are using, it is not transfer-
able to another type. Being purely experimental,
this was not an objective.

Yes. The requirements being su very specific (see
above) programming in a machine oriented language
is essential.

Na.

Linguist Programmers: No. The analytical work to be done to under-

stand the workings of natural language is still

so enarmous that they should not scatter their
attention and efforts; they should, however, have
fairly clear ideas about what can and what cannot
be implemented on a computer and, above all, how
minutely all formulations of -linguistic rules have
to be defined, if they are to work satisfactorily

on a computer. .

17

Lloyd Rice

1929 12th Street - Apt, A
Santa Monica, Californmia 90404
August 26, 1969

(preprint number 53)

In reply to some of your ideas expressed in "Metaprint', I

am sending a brief history of the phonological testing program
PHONOR (see preprint #53). The program has been through several
translations and parts of it have actually run on two machines
while other parts have not yet been coded,

The project began about a year ago, when a fairly simple program
was written in Super Basic on the Tymshare, Inc, timesharing
system. That program accepted a single test form, placing it in
a binary matrix of feature values. Rules were written directly
in Super Basic coding, performing the desired operations on the
bit matrix. Later in the school year we decided to try to set

up a similar system on the IBM 360/91 on campus and the Super
Basic program was rewritten in PL/I. This program was still
simply a rule executor and the rules had to be coded in PL/I.
Difficulties with the IBM system led to the abandomment of this
project. There were two main causes here which lead into the
current system called PHONOR, First, I was completely turned

off by the IBM system performance (91 means 917 down time). The
more important reason, however, is that I wanted more flexibility
in the scope display than the primitive batch job system allowed.
During the time the program was being rewritten in PL/I, I was
thinking more and more about a better system of rule specification
and input than coding in a standard computer language, not very
suitable for a linguistic researcher to use the system., Some
early thinking about the string matching process and a gradually
improving knowledge of Chomsky and Halle's SPE led to a rule
compiler algorithm which accepted a string of text stating the
rule using a notation quite similar to the SPE format and produced
as output a list of matching process operations. I.soon realized
that these matching operations could be coded and stored fairly
compactly as they were produced by the compiler and then read by a
separate rule interpreter system which contained the test matrix

Martin Minow 2 26 August 1969

and performed the matching operations in the order in which the
compiler had stored them. This led to the present system written
for the LINC-8 in our lab.

Input to the compiler will be either from the teletype or from a
specified file on disk or mag tape. The input rules may be
displayed on the scope in a two-dimensional format very close to
the SPE formalism, This input may be edited, compiled or saved
in a file. When the interpreter is loaded (by a single command
to the compiler system) the most recently compiled set of rules
is loaded., Operation of the interpreter is under complete inter-
active control of the linguistic researcher at the console, who
may enter test forms, specify which rules to apply and set or
reset flags for various printout options as the interpreter runs,
The compiler may also be recalled at any time,

I have not added substantially to the basic compiler algorithm
since writing the conference paper. I have worked out a subroutine
generation system to take care of the case mentioned in the last
paragraph, Actually most of the coding in the compiler is (will
be) concerned with more mundane housekeeping tasks such as input
text manipulation and setting up storage for the coded output.

As the program nears completion, I will definitely have clearer
documentation of its structure and capabilities. I tend to avoid
this as most programmers do unless I can get it done while I'm in
the mood of blowing my horn (as now). Then it flows out pretty well.

I hope to remain responsive to suggestions as the program is used
and desire to make it available as widely as possible.

Sincerely yours,
) T
D, Lloyd Rice =~

DLR:ksc

SHOHNR . 19
The Interactive Phorolezic | Jul ster

The heart of this system is a rule exprc sion larguaze consisting of operations
to be performed on the string of phonologica® nits stored in the test matrix.

These operations are described in the paper using the PL/I language and comprise.
push-down stack operations, unit match instructions, matrix modification instr-
uctions and various forms of branch instructions. The system actually consists of
two parts; I) A compiler, which reads the rules as they are entered and translates
them to the rule expression language, and II) An interpreter, which contains the

tast matrix, accepts a test string from the console ard interprets the rule expression
langnage, modifying the test matrix as indicated by the rule codinz.,

PHONOR is now being written for the Digital Zquipment Corp. LINC-8 with two
Iinctape units and 8K of core memory. The interpreter is written in PDP-8 machine
language and is now completed. The compiler is being written in LINC IAP-6 assembly
language and will be running sometime in October, 1969. One memory field (l&K). is
dedicated to storage of the rule expression coding when the interpreter is rumning.
I expect to get 30 to 40 average sized rules in the memory field.- Additional fields
of rules may be stored on Linctape and read in under program control. The present
system has an upper limit of 128 rules.

One item described in the paper which the present system will not support
is the notation "X", meaning any string of units not containing the bourdary symbol
u§", This would require a more complex matching algorithm than I have yet worked -
out. If it appears that such a notational device is useful it will be considered
as a future extension. I hope to be able to include 4in the near future the capa-
bility of handling indexed disjunctions (angle brackets in Chomsky and Halle, SF3).
This brings up a number of questinns relating to dis junctively ordered rules (as in
SPE) and the exact sequence of matching units within a rule. PZONGR treats
dis junctions somewhat differently than the system of SPZ in that computational
efTiciency is given priority over descriptive efficiency, I think it is a short-
ceming of the current ideas on descriptive simplicity in a grammar that dynamice
computational simplicity is not taken into account. It is my hope that future vse
of the PHONOR system will help in setting ur new models for overall ovperationzl
simplicity in the phonoleogical componert.

For more information on this system, write to

D. Lloyc Rice

Phonetics lab, Humanities Bldg. 1110
UCIA

los Angeles, Ca. 90024

DEPARTMENT OF COMFUTER SCIENCE
CORNELL UNIVERSITY
ItHaca, N.Y. 14850
Telephone (607) NN
25-~~4117
PSON HALL

August 18, 1969

(preprint number 4)

I refer to your metaprint entitled "Computerized Linguistics".
For your information I should like to answer the questions which you
raise in so far as they apply to the SMART document retrieval system:

1. The SMART system is information retrieval oriented.

2, The system is programmed for a batch processing computer
(IBM 360 model 65) largely in Fortran IV, with some of
inner routines and executive programs in assembly language.

3. The choice of language was determined by the programming
systems available with our computer and the preferences
of the programmers.

4, The planning, flowcharting, and programming took approxi-
mately three years from 1961 to 1964, and a total of
approximately 10 man years.

5. The total number of programming steps (assembly language
instructions) is approximately 150,000,

6. The program is not easiiy transferrable onto another
machine.

7. For many years I have been teaching a graduate course
entitled "Automatic Information Organization and Retrie-~
val" in which linguistic analysis procedures are used.

I should be glad to participate in the panel session if it is
held within the first couple of days of the Conference (since I must
leave early). I shall be glad to amplify on the comments given above.

Sincerely,

. '
-

Ttz xtx'
Gerard Salton
Professor
Computer Science

GS:rp

20

G. Veillon 21

I - PROJECT Mechanical translation

II - LANGUAGE

The program is used both for actual processing and for testing
linguistic models.

A complete program is running on an IBM 7044 computer
(32K memory) and a new version is being written for the
IBM 360-67.

Programming for the 7044 were written in MAP

(macro assembly language). The program consists of
eight steps, along with a supervisor embedded in the
IBSYS (IBJOB) system which interfaces the different
programs with each other and with input-output devices.
This is, of course, a batch-proceésing system.

In the new program, the most important algorithms,
which have to be very efficient, will be written in
assembler language. Auxiliary programs will be
written in PL{. This program must run both under
conversational mode (using Cp-Cms $ystem) and
batch-processing mode. Conversational mode will

be used for debugging and for testing linguistic models,
while batch-processing will only be used for production.

The language choice never influences the problem defination.

III - STRUCTURE of the program

The program is composed of eight different steps, each
roughly corresponding to a particular linguistic model.
These are:

pre-editing

dictionary look-up .

morphological analysis

syntactical analysis

tree transformations (intermediate language)
syntactical generation

morphological generation

post-editing

© N U W N
[}

t

22

Each step requires:

{ - the program itself
2 - the input text (which is the output of
the previous step)
3 - linguistic parameters: grammar and lexicography
4 - the output text.

The last three are encoded to preserve program efficiency.
Grammars, for example, may be pre-compiled by a
special subroutine.

It is also necessary to provide auxiliary programs; giving
input, output, and if necessary, intermediary results a
human-readable form.

Thus, we need to write two different types of programs,

the processor -~ which must be very efficient and is;usually
quite short -- is written in assembler language. The
auxiliary programs -- which need not be particularily
efficient, but must be easily modifiable -- are written

in a problem-oriented language, PL1, The latter
represent 60% of the programming work (including
compilers, text file updating, dictionaries, etc.)

IV - TIME REQUIRED

This depends on the nature of the step. In the case of
syntactical analysis, probably the most important,
the following roughly holds:

statement of proglem: about two or three years
defining data structures and system programming:
s8ix months
programming and debugging the algorithm: one year
programming and debugging auxiliary programs:
one year
computer time for program debugging:
ten hours (7044)

The complete 7044 program, including all eight steps,
contains about 65 000 machine instructions, 20000 for
the program, 45000 for auxiliary routines.

23

V - PROGRAM CONVERSION

After the 7044 prograr s « e debugged, we began

changing to the 360-67. We are trying to convert

all algorithms directly. The most important changes are
relative to data managment. We had many problems

with tape devices for the files and feel that the direct-access
capabilities of the newer machine will prove very useful.

In writing the first program, we were very cautious about
program efficiency. While this is, of course, important,

it did become very time consuming for the linguistic debugging
(of grammars) and dictionary updating. This was partly

due to batch-processing. With the new computer, we shall
always use conversational node for debugging. The program
thus must be executable in both conversational and batch modes.
The most important problem is to make the files compatable
under both systems.

PL1{ seems to give us all the power we need, but we intend
to limit iss use to auxiliary programs.

I think it is important to speak a little about artificial
languages for linguistics. We were obliged to define
special languages for this purpose.

In some cases, we wrote a compiler; while in others,

such as tree transformation, we used a sophisticated
macro processor. Macro assembly is very attractive --
the operations being easy to define, describe, and modify.
In our case, language defining and macro .writing took

only three months. Unfortunately, macro assembly is
very slow and, in the case of the 360, not sufficiently
powerful. We were thus obliged to write our own compiler,
instead of using the IBM software directly.

