
An i n t u i t i v e r e p r e s e n t a t i o n o f c o n t e x t - f r e e l a n g u a g e s

By L~sz l6 KALM~ in Bzeged, Hungary

1 . I n t h i s p a p e r , t h e f o l l o w i n g c o n c e p t i o n o f l a n g u a g e i s

u s e d . A l ~ g u a g e i s an o r d e r e d t r i p l e L = (V , C, f) where V and C

a r e two d i s j o i n t , n o n - e m p t y , f i n i t e s e t s and f i s s n a p p l i c a t i o n o f C

i n t o t h e s e t o f a l l s u b s e t s o f t h e f r e e s e m i g r o u p F (~ g e n e r a t e d by ¥ .

The s e t V i s c a l l e d t h e v o c a b u l a r y (i n Chomsky ~1~, t e r m i n a l v o c a b u -

l a r y) , i t s e l e m e n t s a r e c a l l e d word_____~s, t h o s e o f F(V) F o r d s t r i n g s . The
e l e m e n t s o f C (which c o r r e s p o n d s t o t h e a u x i l i a r y v o c a b u l a r y i n Chom-

sky [i~) are called ~smmatieal) categories. For any category c ~ C,

the elements of f~)~ F~) are called the word strings belonging to

the category c.

The usual conception of language, viz. a subset S of F~V), is

S particular case in which C = ~s} contains a single element s ~the

category of sentences, a sentence, i. e. a word string belonging to

the category s, being an element of S~ However, both for natural and

formsl languages, the above, more general conception seems to be more

appropriate, for we are not only interested, in the ease of a natural

language, in ~hat are the sentences, and, for a programming language,

say, what are the programs, but also, what are the noun phrases, verbal

phrases, etc., and, what are the declsrations, Statements, expressions,

etc., respectively. Another advantage of our more general conception

is that for a generative grammar of L, we can use the set.C of catego-

ries (but of course, we can use any superset of C as wel~ as auxili-

ary vocabulary.

Accordingly, we define a context-free grammar as an ordered

triple G = (V, C, R~ where V and C ar~ two disjoint, non-empty, fini-

te sets and R is s subset of the Cartesian product of C with the free

semigroup P(VU C) generated by the union of V and C. V and C are

called the vocabulary and set of cste6ories (or terminal and auxili-

ary vocabulary), respectively; the elements r of R, which are of the

form (c,~ with c ~ C and ~ E F(V ~ ~, are called (production) rules.

A rule (c, ~> will be written in the sequel as "c:d" as in the pres-

entation of ALGOL 68 [2], rather than "c,~" as in Chomsky or "c: :=d',

- 2 -

as in the presentation of ALGOL 60 C3~). A "mixed string," i. e. an

element ~ of F ~ U C) is called a direct production of a category c

if c:~ is a rule; productions of a category o are defined recursively

as ~) its direct productions end ~ii) mixed strings ~ = dl~3 form-

ed of productions ~t= c%ie~63 of e by replacing a category c t by a

direct production ~2 of ci° (We denote the semigroup operation of

F (V U C) by juxtaposition end do not distinguish in notation a string

formed of a single element (of V • C) from that element.) Terminal

productions of c ere those of its productions which are elements of

F~) ~. e. formed of words only); and the language L generated by a

context-free ~rammar G = ~V, C, R~ is defined as L = 4¥, C, f~ where,

for any category c ~ C, f~) is the set of all terminal productions

of c. (Also, any language L / = (V, C/, fl) with CtC C where fl is

the mapping f above restricted to C / could be regarded ssa language

genersted by G as well.) A language L is a comtext.free language if

it is generated by some context-free grammar.

2. The intuitive representation of context-free languages s~

bout which I shall speak is a representation by means of flag diagrams.

A flag diagram is an ordered septuple D -- (V, C, H, fl' f2' gl' g2~'

where V and C are disjoint, non-empty, finite sets; H is a finite ori-

ented graph; fl and f2 are mappings of two disjoint, non-empty subsets

P1 end P2' respectively, of the set P of points (vertices) of H onto

C; and gl and g2 are mappings of two disjoint subsets E 1 and E2, re-

spectively, of the set E of edges of H, of which E 1 is non-empty, on-

to V and into C, respectively. The sets V and C are called again v__oo-

cabulary (set of words) and set of categories, respectively. A point

Pl ~ P1 and a point P2~ P2 with fl@l) = f2(P2~ = c E C are called

a starting c-point snd an ending c-point, respectively; an edge el~ E 1

with gl(el) = v ~ V and sn edge e 2 ~ E 2 with g2(e2~ = c~ C are called

a v-edge and a c-edge, respectively. Starting and ending c-points are

marked by s flag-head, pointing to the left and to the right (i. e. by

a pentagon with two horizontal, one vertical and two slant sides which

form an angle pointing to the left and to the right), respectively,

bearing the symbol c; v-edges e are marked by the word v written a-

bove the edge e, and c-edge~ are mar~ed by a double flag-head, point-

i~ tu Both sides (i. e. by a hexagon with two horizontal and four

slent sides which form two angles, pointing to the left and to the

-3-

right , bearing the s bol c. (See Fig. i.)

starting ending

c-point v-edge c-e dge

Fig. 1.

In the case E 2 = @ we call D = (V, C, H~ fl' f2; gl' g2~'

which can be written for short as D = <V, C, H, fl' f2' gl> for g2

is the empty mapping, viz. the m~pping of the empty set E2 into c,

a finite state fla~ diagram. In this case, an ~riented, possibly

self-intersecting) path Q ~. e. going possibly severai but a finite

number of times through the same point or edg~ of H is called a c~

path of H (c ~ C), if it leads from s starting c-point Pl to an end-

ing c-point P2 but otherwise, does not go throug~ any starting or

ending c-point (implying the condition that Q has not to go through

Pl or P2 once mor~.

Let be el, e2, ..., e n the edges belonging to E 1 of a c-path

Q of H, each written as m2ny times as Q goes through it and written

in the order in which Q goes through them. The word string VlV2...Vn,

where, for i = I, 2, ..., n, v i = gl(ei), is called the word strin~

robe read along the c-path Q. The language represented h~ a finite

state flag diagram D = <V, C, H, fl' f2' g~ is defined as L = ~V, C, f>,

where, for any c ~ C, f(c) is the set of all word strings to be read

along some c-path of E. A language is a finite state language if it

is represented by some finite state flag diagram.

Flag diagrams in general are generalizations of finite state

flag diagrsms. In the case of a flag diagram D = <V, C, H, fl' f2' gl'

g2> in general, an ~riented, possibly self-intersecting~ path Q of H

is called a c-path of H ~ ~ C) if, besides leading from a starting c-

point to an ending c-point but otherwise not going through any starting

or ending c-point, it does not go through any cl-edge of H ~t ~ C).

The word string to be read along a c-path of H is defined in the same

way as in the case of a finite state flag diagram.

In order to define the language represented by a flag diagram

in general, we need still some auxiliary notions. Consider two differ-
H <V, C, ent ~nts Pl and P2 of the oriented graph^of a flag diagram D =

-4-

H, fl' f2' gl' g2>" The subgraph H / of H connectin~ Pl with P2 con-

sists, by definition, of all points p of H for which both from Pl to

p and from p to P2 at least one (oriented) path leads, together with

the edges which connect theszpoints p in H. (If there is no such point

p then H / is the empty graph; otherwise, both Pl and P2 are points of

H~). A subgraph of H connecting a starting c-point with an ending c-

point ~ ~ C), provided it is not empty, is cslled a c-subgraph of H.

The derivatives of a fla~ diagram D = <V, C, H, fl' f2' gl' g~

are defined by recursion as (i) D itself, and (ii) any flag diagram of

the form D t = <V, C, H I , f~, f~, g~, g~> which can be obtained from so-

me derivative D" = <V, C, E", f~, f~, g~, g~> of D by replacing one of

its c-edges (c ~ C) e by any c-subgraph H"' of H. Here, replacing has

to be understood in the following sense. First, the starting c-point

Pl ~nd the ending c-point P2 of H connected by H" are replaced by the

st~zting point P3 and the ending point P4' respectively, of the edge e

of H"; then, the graph H'" modified thus is inserted, instead of e, be-

tween P3 and P4 in H". Any point or edge of H" and H ~ which was a start-

ing c~-point, an ending c'-point, a ~-edge or a c~-edge in H" and H, re-

spectively (c' E C, v & V), remains so after the replacement; in parti-

cular, P3 and P4 remein marked or unmarked as they were in H" rather

then getting marked by a flag-head, bearing the s~bol c and pointing

to the left and to the right, respectively, as Pl snd P2' respectively,

were m~rked in H.

Now, we define the language represented by a fls~ diagrem D =

(V, C, H, fl' f2' gl' g2) as L = <V, C, f> where, for any c E C, f(c)

is the set of all word strings to be read along some c-path of the ori-

ented graph H' of some derivative D' = (V, C, H' , fl'# f~, g~, g~)of D.

As a simple example, Fig. 2. shows a flag diagram D represent-

ing the language L = (V, C, f> with V =~0, (,)}, C = {s} and f(s) =

~b, (C), ((0)) ; (((0)))i , ...}. On Fig. 3, some of the derivatives of

D ere shove.

0
-

7ig. 2.

c

- 5 -

0

0

<D l + o

0

° ,t+

i + + + o o ° . + , o ° . ° ° + ° o . o ~ o . o ° o . . o o + . . ° e , o o o o t

Fig. 3.

3. Obviously, any cQntext~free language can be represented

by some flag diagram. Indeed, let G = (V, C, R~ be a context-free

grammar. To each rule r = c:~ R, where 6= SlS2...Sn, c E C, el,

s 2, ..., SnE V U C, form an oriented grsph H r with n + 1 points P O,

Pl' P2' "''' Pn of which P0 is a starting c-poi~t~ pm an ending c-

point and, for i = l, 2, ..., ~, Pi-1 is connected with Pi hy a~ s i-

edge (i. e., for s i = v E V a v-edge, for s i = c E C a c -edg~ el,

oriented towards Pi" The ~isconnected) unio~ of these oriented graphs

Hr, for all rules r ~ R, defines a flag diagram obviously representing

the language generated by G.

Using this constuction e. g. for the context-free grammar G =

<V, C, R~ with ¥ =~O,(,)9, C =~s~ and R =~s:O, s:~s)~ generating

the l~mguage represented by the flag diagram shown by Fig. 2, we should

obtain the flag diagram, shown by Fig. 4. Replacing this disconnected

flag diagram by the connected one shown by Fig 2 corresponds to the AL-

GOL 68-like way of writing s:O;(s) (or the ALGOL 60-like way of writing

s::=O[~)) of the rules belonging to R.

Besides the possibility of reduction of the number of starting

-6-

Fig. 4.

and ending c-points in a similar way, we have often the more important

possibility of reduction of the number of c-edges. E.g. the language

generated by the context-free grammar G = (V, C, R) with V = ~a, b,...,

z, O, 1,..., 9 , C = letter, digit, identifier , R = rl, r2,... ,

r26 , r27 , r28,... , r36 , r37, r38 , r39~, where

r I = letter:a ~

r 2 = letter:b

. e . e ° e e o e e e e o

r26 = letter:z

r27 = digit:O

r28 = digit:l

. o o o o e e e o o o e e

r36 = digit:9

r37 = identifier:letter

r38 = identifier:identifier letter

r39 = identifier:identifier digit

here, space has been used between "identifier" snd "letter" or "digit"

to denote the semigreup operation), can be represented, instead of the ~

flag diagram indicated by Fig. 5, which we get using the above constuct-

ion end for which the overall number of c-edges is 5, by the flag dia-

gram indicated by Fig. 6, for which this number is O, the language in

~ue~tion being actually a finite state language.

To show a more complicated exsmple, take the lsnguage of the

Church lambda conversion t4J where we use x, x|, xJl, XllJ ,... as va-

riables end for simplicity (as a matter of~fact, for obtaining a con-

text-free language at all) we allow the abstraction ~v~ even if the

variable v is not contsined, or contained as a bound variable, in the

(well-formed) formula g. This language is generated by the context-

free grammar G = (V, C, R~ with V = ~x,] , ~, ~, ~, ~,], (,)~, C =

-7-

eeeeeeeeeeeeeeeeeee,o

eeeeeoeeeeoeeaoeleele

<identifier ~ identifie¢

<iden%ifl er ~iden%i f i e r ~ iden%ifi er>

<iden%i fief ~ i d e n t i f i e r ~ iden, ifier>

Fig, 5.
a

:

Fig . 6.

~variable, formula} 8nd R = {rl. r2, r3. r4, rs~ , where

r I = variable:x

r 2 = variable:variable|

- 8 -

r 3 = formula:variable

r4 = formula:~formul~ (formula)

r 5 = formula:~variable~foJ~mul~

(here, the semigroup operation is denoted by juxtaposition agai~ .

Fig. 7 shows a simple flag diagram representing this language. Here,

the overall number of c-edges is 4.

Fig. 7.

Flag diagrams can be used with advantage as a tutorial tool in

teaching progrs~ing languages. In the ease of a great number of cate-

gories, starting and ending c-points can be marked by flags with handle

of different length for different categories c, rather than just flag-

heads, pointing to the left and to the right, respectively, as shown

by Fig. 8, serving to give a survey over the possible modes in ALGO~ 68.

Here, the flags instead of flag-heads are not really needed, for we have

two categories only. However, inserting some more flags (which needs

some more branchings too), we can get a flag diagram which is equivalent

to the metaproduction rules of modes ~ith 25 categories) of C2], 1.2.1 .

Besides such tutorial use of flag diagrams, they might have a

theoretical interest in furnishing a natural classification of context-

free languages according to the minimum of the overall number of c-edges

in the flag diagrams representing a given such language. This minimum

can be considered as a measure of the non-finite state character of the

given l~nguage. However, for such a theoretical use, a method for cal-

culation of the minimum in question would ~e needed.

-9-

I integral

real ~t boolean

character

format

procedureJ With
r ~ klll~"

reference to

row of

structured with ~ _ field

parameter .~

i
a

• z •

letter~

digit " zero]

w~i °he ~I

:
[nine I

I r

union of.i

and

mode

Fig. 8.

r,

- 10-

References

C2]

See e. g. N. Chomsky, Three models for the description of langa-

~ge, IRE Transactions, 2 6950, 113-124.

See A. van Wijngaarden ~editor), ~. J. Mailloux, J. E. T.. Peck,

and C. H. A. Koster, Final Draft Report on the AlgorithnLic Lsngu-

sge ALGOL 68, Stichting Mathematisch Centrum, Amsterdam, Rekem-

sfdeling, I~m 100 (1968).

See P. Naur (editor) , J. W. Bsckus, J. Green, C. Ketz, J. McCarthy,

A. J. Perlis, H. Rutishauser, K. Samelson, B. Vsuquois, J. G. Weg-

stein, A. van Wijngaarden, and M. Woodger, Report on the Algorith-

mic Language ALGOL 60, Numerische lath., 2 (1960), 106-136, or

C oz~munications AC~, 3 (1960)~ 299-314.

See e. g. A. Church, A set of postulates for the foundation of

Logic, second paper, Ann~ls of Math., (23 34 C1933)¢

