An intuitive representation of context-free languages

By Lasz1l6 KAIMAR in Szeged, Hungary

B 1. In this paper, the following conception of language is
used. A language is an ordered triple L = {V, C, £) where V and C
are iwo disjoint, non-empty, finite sets and f is an application of C
into the set of all subsets of the free semigroup F(V) generated by V.
The set V is called the vocabulary (in Chomsky [1], terminal vocabu-
lary), its elements are called words, those of F(V) word strings. The
elements of C (which corresponds to the suxiliary vocabulary in Chom-
sky [1]) are called (grammatical) categories. For any category c €& C,
the elements of f{g) & F(V) are called the word sitrings belonging to
the category c. '

The usual conception of language, viz. & subset S of F(V), is
a particular case in which € = {s} contains a single element s (the
category of sentences, a sentence, i. e. & word string belonging to
the category s, being an element of SL However, both for natural and
‘formsl lamnguages, the above, more general conception seems to be more
appropriate, for we are not only interested, in the case of a natural
-langusge, in what are the sentences, and, for a programming language,
say, what are the programs, but also, what are the noun phrases, verbal
phrases, etc., and, what are the declarations, statements, expressions,
etc., respectively. Another advantage of our more general conception
is that for a generative grammar of L, we can use the set-C of catego-
ries (but of course, we can use any superset of C as well) as auxili~
ary vocabulary.

Accoréingly, we define a context-free grammar as an ordered
triple G = (V, c, R> where V and C ere two disjoint, non-empty, fini-
te sets and R is a subset of the Cartesian product of C with the free
semigroup F(V V) C) generated by the union of V and C. V and C are

called the vocabulary and set of categories (or terminal and auxili-
‘ary vocabulary), respectively; the elements r of R, which are of the
form {c,6) with ¢ & C and 6 € F(VU C), are called (production) rules.
A rule {¢, €) will be written in the seguel as "c:g" as in the pres- .
entation of ALGOL 68 [2], rather than "c+e" as in Chomsky or "c::=¢"

-2 -

as in the presentation of ALGOL 60 [}]). A "mixed string," i. e. &n
element & of Fé] 9 c) is called a2 direct production of a category c
if c:€ is a rule; productions of a category ¢ are defined recursiiely
as (i) its direct productions and (ii) mixed strings 6 = d16263 form-
ed of productions &’ = &.¢’6, of ¢ by replacing a category c/ by a
direct production Gé of ¢/. (We denote the semigroup operation of
F(V(J C) by juxtaposition and do not distinguish in notation a string
formed of a single element (of VU C) from that element.) Terminal
prcductions of c are those of its productions which are elements of
FQ/‘) (i. e. formed of words only); and the language 1 generated by a
context-free grammar G = <V, c, R> is defined as L = (V, c, f> where,
for any category c € C, f{) is the set of all terminal productions
of c. (Also, any language I/ = (V, ¢/, f1> with ¢'€ ¢ where £/ is
-the mapping f asbove restricted to C/ could be regarded 2s a language
genersted by G as wellJ A language I is a .context-free language if
it is generated by some context-free grammar.

2. The intuitive representation of context-free languages a-
bout which I shell speak is a representation by means of flag diagrams.
A flag diagram is an ordered septuple D = (V, .C, .Hy i‘l, f2, &1 g2>,
where V and C are disjoint, non-empty, finite sets; H is & finite ori-
ented graph; fl and f2 are mappings of two disjoint, non-empty subsets
Pl and P2, respectively, of the set P of points (vertices) of H onto
C; and =0 and g, are mappings of two disjoint subsets E.1 and E2, re-
spectively, of the set E of edges of H, of which El is non-empty, on-
to V and into C, respectively. The sets V and C are called again vo-
cabulary (set of words) and set of categories, respectively. A point
p; € P, and a point p, € P, with f; (p)) = I, (p;) = ¢ € C ere called
a starting c-point and an ending c-—-point, respectively; an edge ele El
with gl(el) = v € V and an edge e, & E, with g, (ez) = c& C are called

~a v-edge and a c-edge, respectively. Starting and ending c-points are
marked by a flag-head, pointing to the left and to the right (i. e. by
a pentagon with two horizontal, one vertical and two slant sides which
form an angle pointing to the left and to the right), respectively,
bearing the symbol c¢; v-edges e are marked by the word v written a-
bove the edge e, and c—edged are marked by a double flag-head, point-
ing to both sides (i. e. by a hexagon with two hofizontal and four
slant sides which form two angles, pointing to the left and to the

-3 -

right), bearing the symbol c. (See Fig. 1)

starting ending
v
&l > — L)
c-point v-—-edge c—-edge
Fig. 1.

In the case E, = § we call D = {v, ¢, H, £10 £55 815 gé>,

which can be written for short as D = (V, C, H, £1, £, gi) for g,
is the empty mapping, viz. the mepping of the empty set E2 into C,

a8 finite state flag diagram. In this case, an (oriented, possibly
self-intersecting) path Q @" e. going possibly several but & finite
number of times through the same point or edge) of H is called & g-
path of H Q:E q), if it leads from z starting c-point Py to an end-
ing c-point j but otherwise, does not go through sny starting or
ending c-point (;mplying the condition that Q has not to go through
p, or p, once more) .

Let be €12 €5y eeey € the edges belonging to El of a c-path
¢ of H, each written as meny times as Q goes through it and written
in the order in which Q goes through them. The word string vlﬁz...vn,
where, for i =1, 2, ..., n, vy = gl(ei), is called the word siring
to be_read along the c—peth Q. ' The language represented by a finite
state flag dizgrem D = (V, C, H, 1y £,y &) is defined as L = &, ¢, 1),
where, for any c & C, I(c) is the set of 2ll word strings to be read
ajong some c-path of H., A language is a finite state longuage if it
is represented by some finite state flag diagram.

Flag diagrams in general are generalizations of finite state
flag diagrams., In the case of a flag diagram D = (V, c, H, fl’ f2, 81 »
g2) in general, an Guiented, possibly self-intersectiné) path Q of H
is called a c—path of H (c & C) if, besides lesding from a starting c-
point to an ending c-~point but otherwise not going through sny sterting
or ending c-point, it does not go through any c/-edge of H Qf'é C).
The word string to be read along & c-path of H is defined in the same
way as in the case of a finite state flag diagram.

In order to define the language represented by a flag diagram
in general, we need still some auxiliary notions. Consider two differ-
H
ent pints Py and | D of the oriented graph, of a flag diegrem D = <V, c,

-4 -

H, fl' £y, &) g2>. The subgraph H’ of H connecting 19 with p, con-
sists, by definition, of &ll points p of H for which both from Py to

p and from p to Py at least one (oriented) path leads, together with
the edges which connect the= points p in H. (if there is no such point
p then H/ is the empty graph; otherwise, both Py and p, are points of
H'). A subgraph of H connecting a starting c-point with an ending c-
point @:é C), provided it is not empty, is called @ c—subgrasph of H.

The derivatives of & flag diagram D = (v, ¢, B, £,, T,, &, &)
are defined by recursion as @) D itself, and (ii) any flag diagram of
the form D = <V, ¢, #, f&, fé, gi, gé) which can be obtezined from so-
me derivative D" = {V, C, H", fi, fg, g, g5> of D by replacing one of
its c-edges @ & C) e by any c-subgraph H"™ of H. Here, replscing has
to be understood in the following sense. First, the starting c-point
Py end the ending c-point Py of H connected by H™ are replaced by the
startiag point Py and the ending point Pys respectively, of the edge e
of H"; then, the graph H"™ modified thus is inserted, instead of e, be-
tween p3 and Py in H". Any point or edge of H" and H™ which was a start-
ing ¢’-point, an ending ¢’ -point, a v-edge or 2 c’-edge in H" and H, re-
spectively ('€ C, v & V), remoins so after the replecement; in parti-
cular, p3 and p4 rem2in marked or unmarked as they were in H" rather
than getting merked by a flag-head, bearing the symbol c¢ and pointing
to the left and to the right, respectively, &s Py and Pos respectively,
were merked in H.

Now, we define the language represented by a flag disgram D =
(v, ¢, H, £,y f5, 8, 8y) 88 L = (V, c, f> where, for any c€ C, f(¢)
is the set of 21l word strings to be read along some c—path of the ori-
ented graph H' of some derivetive D' = (V, C, H', f&, th, &, &) of .

aAS @ simple example, Fig. 2. shows a flag diagram D represent-
ing the lsnguage L = {V, C, £>with V ={0, (,)}, C = {s} and £() =
{b, @, (Y, («pﬁ»}, ...}. On Fig. 3, some of the derivatives of
]

D sre shown.,
-0

—o (o
(0]

S o wa =

(0 T

T T
. 0 R

s>

T - ’

Fig. 3.

3. Obviously, any centext-free language can be represented
by some flag diegram. Indeed, let G = {V, C, R) be & context-free
grammer., To each rule r = c:& € R, where 6 = 81Sp..+8,, ¢ € C, 8,
Soy eeey %ne VU C, form an oriented graph H,withn + 1 points*po,
Pis Ppsy ey Py of which Py is a starting c-point, P, &n ending c-
point and, for i =1, 2, ..., n, Py is connected with 1 by an s;-~
edge (i. e., for B, = ¥ € V a v-edge, for sy = ¢ € C a c -edge))
oriented towards Pi- The (@isconnected) union of these oriented graphs
Hr, for all rules r & R, defines a2 flag diagram obviously representing
the language generated by G.

Using this constuction e. g. for the context-free grammar G =
(V, C, B) with V = SO,(s Ok C= {s} and R =.{s:0, s:(s)} generating
the language represented by the flag disgram shown by Fig. 2, we should
obtain the flag diagram shown by Fig. 4. Replacing this disconnected
flag diagram by the connected one shown by Fig 2 corresponds to the AI-
GOL 68-l1ike way of writing s:0;(s) (or the ALGUL 60~like way of writing
s::=0[(g)) of the rules belonging to R.

Besides the possibility of reduction of the number of starting

Fig. 4.
and ending c-points in a similar way, we have often the more important
possibility of reduction of the number of c-edges. E. g. the language
generated by the context-free grammsr G = (V, €, R) with V = {e, b,...,
z, 0, 1,..., 9}, €= {letter, digit, identifier}, R = irl, Toyeeny
Togr Tpqs Togreser T3gr T37s Tigy r39}, where
letter:a %

&)
-
]

letter:d

Tog = letter:z

Tyq = digit:0.

Tog = digit:l

T36 = digit:9

T3yg = identifier:letter

rig = identifier:sidentifier letter .
r39 = identifier:identifier digit

(here, space has been used between "identifier" and "letter"” or "“digit"
to denote the semigroup operation), can be represented, instead of the‘
flag disgram indicated by Fig. 5, which we get using the above constuct-
ion and for which the overall number of c-edges is 5, by the flag dia-~
cram indicated by Fig. 6,'for which this number is ¢, the language in
cuestion being actually a finite state language.

To show a more complicated example, take the language of the
Church lambda conversion Eﬂ where we use X, xf, Xl , Xill yoo. &S VE=-
rizbles snd for simplicity (as & matter of' fact, for obtaining & con-
text-free language at all) we allow the abstraction Av{g] even if the
variable v is not conteined, or contained as a bound variable, in the
(well-formed) formule g, This language is generated by the context-
free grammer G = (¥, ¢, By with v ={x, 1,2, {, }, [, 1, G)}, ¢=

o a
< letter » letter

b
<1etter lette§

e s ssc00000csssesrsse

Z
<1etter letteb
digit »
1
(aigit }-——-;' digitd .
9
letter 1 identifier>
(adentifier |sm(identitier p—elletter o—s] identifier »
<identifierWentifier)*—v—(@t)»—.Eientifier>

Fig . 5.

Y

a

b

Lo
letter letter —»l identifier>
o]

< 9

Fig . 6.

variable; formula} snd R = §r., r,, r,, r,, r » Where
. 1 2 3 4 5

variable:x

= varisble:variablel

2]
N
[

-8 -

ry= formula:variable
T, = formula:{formulé}(formula)
Ty = formulasAvariable [formula]

(here, the semigroup operation is denoted by juxtaposition agai@ .
Fig. 7 shows & simple flag diagram representing this language. Here,
the overall number of c-edges is 4.

x
formulaAP’r><&ariable > > variable\> r -formul%;>

)
B D S S
A - L 3

Figo Te

Flag disgrams can be used with @&évantage as a tutorial tool in
teaching progrsmming lenguages. In the case of a great mumber of cate-
gories, starting and ending c-points can be marked by flags with handle
of different length for different categories c, rather than just flag-
heads, pointing to the left and to the right, respectively, as shown
by Fig. 8, serving to give a survey over the possible modes in ALGOL 68.
Here, the flzgs instead of fleg-heads are not really needed, for we have
two categories only. However, inserting some more flags CWhich needs
some more branchings too), we can get a flag diagram which is equivalent
to the metaproduction rules of modes (With 25 categbries) of [2], 1.2.1 .

Besides such tutorial use of flag diasgrams, they might have a
theoretical interest in furnishing & natural classification of context-
free langusges according to the minimum of the overall number of c-edges
in the flag diagrams representing & given such language. This minimum
can be considered as a measure of the non-finite state character of the
given lenguage. However, for such a theoretical use, a method for cal-
culation of the minimum in gquestion would be needed.

MOOD

HlE

MODE %—

integral

MOUD

Fﬁ KODE

G

U

tlongl real

boolean

character

format

procedure | with

parameter
/EEBE\?~* (EODE M

structured with

field
(HODE s -

and
void
reference to
< MUDE Y-
¢ Y-
row of T\;__d/ a
b

letter | @leph

1

e

digit zero

one

snd

union of

and
@*—) MOUD »»

mode

Fig. 8.

(1]
(2

- 16 -

References

- See e. g+ N. Chomsky, Three models for the description of langu-

ege, IRE Transactions, 2 (1956), 113-124.

See A, van VWi jngaarden (gditox?, B. Jd. Meilloux, J. E. L. Peck,
and C. H. A, Koster, PFinal Draft Report on the Algorithmic Langu-
age ALGOL 68, Stichting Mathematisch Centrum, Amsterdam, Reken-
afdeling, MR 100 (1968).

See P. Naur (editer) , J. W. Backus, J. Green, C. Ketz, J. McCarthy,
A. J, Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. G. Weg-
stein, A. van Wijngaarden, and M. Woodger, Report on the Algorith-
mic Language ALGOL 60, Numerische Math., 2 C;96QL 106-136, or
Communications ACH, 3 (1960), 299-314.

See e. g. A. Church, A set of postulates for the foundation of
Logic, second paper, Annals of Math., (2) 33 (1933),

