CN SATURATED PARTITIONS Abstract

Stephan-Ylan Solomon

Let L be a language over a vocabulary V and let denote. by E (V) the set of all equivalence relations (partitions) on V. If $\beta \in E$ (V) and x \in V then we shall denote by $\beta(x)$ the cell of β containing the element x.

Definition 1. A partition $\rho \in E(V)$ is said to be saturated if for every marked ρ -structure $\rho(x_1) \cdot \rho(x_2) \cdot \rho(x_1)$ and for every i (1 $\leq i \leq n$) there exist such elements x'_j (j=1,..., i-1, i+1,...,n) that $x'_j \in \rho(x_j)$ and $x'_1 \cdot \dots x'_{j-1} \times x'_{j+1} \cdot \dots \times x'_{j-1} \in L$.

Our purpose is to find (in the case of a finite vocabulary) the greatest saturated partition Z of the language.

<u>Definition</u>?. Let $\rho \in E(V)$ and x, $y \in V$. We shall say that x ρ -dominates y (x - y) if for every string $x_1 \dots x_n \in L$ where $x_i = x$ there exist such elements x_j^i $(j=1,\dots,j-1,$ $i + 1,\dots,n)$ that $x_j^i \rho = x_j$ and $x_1^i \dots x_{j-1}^i y x_{j+1}^i \dots x_n^i \in L$.

We can introduce now the partition p^* , called the asteriak of the partition p: $x p^* y$ if both $x \xrightarrow{P} y$ and $y \xrightarrow{P} x$ hold true.

Theorem 1. g is a saturated partition if and only if ρ is finer than ρ^{\star} .

The connection between the asterisk and the derivative of a partition is given by:

<u>Theorem 2.</u> In order that $p' = p^*$ it is necessary and sufficient that p be saturated.

By using the notation: grand and "" "" we have :

<u>Theorem 3.</u> There exists a natural number n so that $Z = \infty^{n*}$ (where ∞ is the improper partition of V).