
1 . The numbe r o f a l l t h e p o s s i b l e s t r u c t u r e s as a

f u n c t i o n o f t he l e r ~ t h o f t h e s e n t e n c e

Ae soon as practical applications are coneidered

the efficiency of the parsing method is of fundamental

importance whether natural or programming languagee are

to be proceesed. The problem of efficiency arises because

the relationship between the length of e string of symbols

and the number of structures that may in theory be

assigned to the string is far from linear, the growing

number of symbols entails a much more rapidly growing

number of possible structures.

For CF ~ s it is comparatively easy to determine

how the number of structures depends on the length of the

string. Considering binary branchings only and excluding

the possibilities that arise from having different labels

attached to one node

~ii ~n-l/

is the number of different trees that can be assiEned to

a linear string of n elements [I]. This means that for a

i0 element strin E the number of different trees is slightly

less than 5000, for a 20 element string this number

I

becomes more than 1.75 milliard.

To include non-binary branchings as well I suggest

the following recursive formula

g/if= ~21= 1

g/n/= 2 g/21 ~',~I + g/31 j=l ~'jl + ...

2

... + g/n-2/ j~= g/j/ + F/n-I/ ~] + I

where n is the number of elements in the string.

Accordingly, more than I00 000 different structures can

be assigned to a I0 element string, and 1.6 x 1012

different structures to a 20 element s~ing.

Let us stress again that what we have calculated

here is the number of the essentially different

derivations, i.e. the number of those yielding different

results. The number of possible derivational paths for I0

elements is 18 times larger than the number of the

different results, for 20 elements the number of paths

is 750 times larger than that of the different structures

2. Syntactic ambiguities

Natural languages utilize but a small fraction of

these possibilities. As to the number of possible stru-

ctures of concrete sentences, the syntactic restrictions

are very strong yet far from sufficient ~o yield inform-

a~ion for unambiguous assignement. The number of stru-

ctures allowed by the formal syntactic rules is in most

cases definitely larger than the number of structures a

human being becomes aware of in the course of speech.

A well-known point is that unambiguity cannot al-

ways be ensured by grammatical means even for artificial

languages whose structure is immensely less complicated

[2]. It is worth mentioning that the authors of ALGOL-68

decided to let some ambiguities remain in the language

as it could have been eliminated but by making the gram-

mar a lot more complicated [3].

Where does the majority of syntactic ambiguities

in natural languages come from?

I. There is a number of words with varying scopes

and vice versa: some words may fall within the

scope of several different words and it cannot be

determined by formal syntactic means - nor yet

by semantic ones at times - whose soope they really

fall within. These two things often combine, espe-

cially in complex genitive constructions.

A fine Russian specimen of which is as

loll ows:

. . . s o z e ~ o T B x e Xpyr- ,x SaXoHos ooxl)aweHxa w

O000euHoOTell saazuoxeMo~Bzs l a o ~ ' x ~ . . .
The corresponding string of symbols:

Pr g Ag Ng Ng E Ng Ng Ng

The rules of reductions:

It' _

+ - l ~ g / i / Ag MPg

liil = NPg

/ i v / ~ + = C

I

Apparently a number of different structures can b e

determined by changing the order of rule epplloatlon.

2. Another source of syntactic ambiguities is that

not even the string of symbols /categories/ can

always be unambiguously assigned to the sentence,

i.e. homor~ve~ may often appear on the morphological

level. Homon~m~ arises either because formal diffe-

rentiation between parts of speech is absent /e.g.

in English/ or because the correspondence of the

functions of words and the morphological means of

expressing them is ambiguous, the morphological

functions are not unambiguously expressed/e.g, in

Russian/. Completely independent words with or with-

out a f f t o e a . t o o can of course agree in form.

Still one seldom comes across a sentence that could

be assigned several entirely different structures. Sen-

tences of this type are usually puns or grammatical

examples /cf. "Time flies like an arrow"/. It is the

so-called local syntactic ambiAnaity that normally troubles

us, i.e. a part of the sentence that can be assigned

several different part-structures without influencing the

r e m a i n d e r o f t h e s e n t e n c e - s t r u c t u r e . Now i f t h e r e a r e

several locally ambiguous parts in the sentence and they

are independent from each other, the number of ambiguities

for the whole sentence will considerably increase: it will

be t h e a r i t h m e t i c p r o d u c t o f t h e numbers o f i n d e p e n d e n t

l o c a l ambiguities.

3. ~ues t ions of tact i .c9

The above numeric data c l e a r l y show how hops-

less it is to simple proceed by checking on all the theo-

retically possible structures. But it is also apparent

that syntax-directed parsing systems will fsil in a con-

siderable number of cases just because the sentence

structure is syntactically undetermined E4~. The develop-

ment of an effective analyzer is at least as much a

mathematical as a linguistic problem.

The most important demands a parsing algorithm

should meet are as follows-

/i/ It should be able to determine all the conceiv-

able parsinge that a given sentence is assigned by a

particular grammar.

/ii/ It should be consistent in the sense that one

parsing could not be arrived at but in one single way.

/It should be a 'one-to-one algorithm'./

/iii/ In some way or other it should counterbalance

the immense growth of the number of possible structures.

The purpose to be strived for is a linear relationship

between the steps to be taken and the length of the

sentence.

The efficiency of the algorithm depends considerably

on factors that are independent of the particular method

one has chosen to apply. These problems arise with any

algorithm even if in different forms. The most important

'tactical' questions of this type are as follows:

/i/ Aesumin~ a large set of rules how does the

algorithm select the rules that are /possibly/ to be

applied?

/ii/ How does it check for the conditions of

applylnE them?

/iii/ How does it recognize 'blind alleys' i.e.

illegal paths /if any/?

/iv/ How does it return from the illegal path to

the legal one /or to the one that has not proved to

be illegsl as yet/?

Some of the well-known methods for solving /i/ are

as follows:

/a/ Each rule is explicitly assigned the set of rules

by which it could be continued. But ehoosing thie method

for s complicated grammar with a large number of possi-

bilities one might fsce troubles.

/b/ The rules are divided into several groups on the

basis of different characteristics such as the number or

the character of the symbols within the rule etc.

Searching is then carried out within a comparatively small

set of rules.

7

/c/ Each symbol is assigned a set of all the rules

this particular symbol appears in. Assignment can be done

according to the position numbers rithin the rules. The

so called initial symbols, i.e. symbols in first position~

play then a distinguished role in the rule selection.

Whatever method o n e applies one may choose one of

the several possible ways of practical realization. In

case of /c/ the choice made will be of immense importance

/e.g. rules aITanged in matrix form, chainlike

representation etc./.

Problems /i/ and /ii/ are strongly interconnected.

How are we to decide whether the conditions of applying a

rule are met?

In the case of CF grammars checking could be carried

out quite easily. For top-to-bottom analysis all we have

to do is the identification of the left-hand sidesymbol of

the rule.Yo~ bottom-to-top analysis based on normal form CF

rules /i.e. binary branchings/ only, once again it is not

too difficult to check a twodimensional table for the

possibilities of connecting a pair of symbols.

If general form CF or CS grammars are applied, the

problem is not trivial at all, it turns out to be that of

identifvin~ strir~s of symbols. It could of course be

solved in a trivial way but this would require an awful

lot of work to do. B. DS~iki has developed a most

elegant method that would examine a whole series of rules

at ones,. The checking is performed on Boolean vectors,

end the point DSmSlki has made an excellent use of is that

computers carry out logical operations on ell the bits of

a machine word at the same time [Sj.

Two subproblems connected with checking rules should

be discussed:

/a/ When should it start at all? Suppose that the

symbol string is processed in sequential order

/left-to-right or right-to-left/ and a possibly applicable

rule or a given context should be checked for. Then we

could either go back to symbols that have already been

examined /and check them repeatedly when checking for the

applicability of various rule~ or have already begun and

completed certain examinations so that we finished

checking by the time its result is needed. /The second

solution could of course be applied only if an appropriate

mechanism automatically provides the checking for the

conceivable conditions and the /gradual/ cancelling of the

non-realizable possibilities./

/b/ Is some kind of an additional examination

necessary before the checking is completed? Namely it might

turn out that the whole checking was superfluous because

its result cannot be used later on or it will not lead to

a correct result.

We have come very near to /iii/, i.e. to how the

occasional impasses /blind alleys/ could be recognized in

the course of the analysis? This is a cardinal problem

concerning the efficiency of automatic analysis. The

growing length of the sentence /symbol string/ entails not

only a growing number of possible structures but the

number of inappropriate part-structures growing as well.

These 'torsoes' correspond to certain parts of the sentence

but are incompatible with the remainder of it. What is

more, the longer a sentence the more levels it ma~ h a v e

i.e. the deeper its structure can be. This holds for the

blind alleys as well: the longer the sentence the deeper

the blind alley can be, the more branches and the more

valid elements it m8~ contain. Sentences that are

monosemantic thoug~ syntactically ambiEuous could he

thought of as bottomless blind alleys not yet explored

whose exploration needs either a wider context or the use

of interrelationships not contained in the text.

The problem once again becomes twofold:

8/ What is the criteriu~ of having got into a blind

alley?

b/ How could we prevent getting into a blind alley

at least in some cases?

The answer to these questions ms~7 be different, of

course, for each algorithm and plays a subordinate thongh

extremely important role regarding the "strate~" applied.

I0

Just to give an example I would like to mention a

most elegant method of defining end "calculating" the

criterium of blind alleys using an algorithm built up in

terms of logical vectors. DSmSlki [5] -- who condenses the

information related to the hypothetically accepted part

structure and to the given symbol string under processing

into s state vector defined recursively -- applies the

following criteria to determine the impossibility of

continuing the analysis along the given line

(,(Q0V B)A H [xt÷ ~ = 0

Accordingly the new symbol xt+ 1 to be processed may

neither continue the paths the previous vector of state

contained that have proved possible so far, i.e.

T(Qt) A H [Xt÷l] = O, nor begin a new rule, i.e.

B^. =o.

The only handleap of DSm51ki's method is that impasses

can be recognized only after the algorithm has got into

them -- the algorithm cannot pick out the paths that will

lead into an impasse later on. So we have modified the

algorithm and instead of using DSmSlki~s vector B - that

would'activate ~ the first position of each of the rules -

we let only those of the rules become active that provide

/direct or indirect/ continuation of the paths that have

already proved to be legal [6].

II

Experience so far shows three practical methods of at

least partial avoidance of impasses: #i/ taking into

consideration the context; /ii/ making use of the

transitive connectivity of the rules; /iii/ checking

ahead the number of symbols not yet processed.

Taking into consideration the context means making

use - if possible -- of only one direction of the con-

text to avoid the repetition of the tests performed.

Today such analyzing grammars play an important role in

the analysis of artificial languages [TJ.

In m~ opinion making use of the transitive joining

of rules has yet mar~y important possibilitiem to offer.

P. Z. Ingerman's analysis is a good example of experiments

in this direction [aj.

Taking into consideration the number of symbols not

yet processed, saves the analysis mmly unnecessary tests.

There have been attempts at doing a preliminary global

analysis of the complete symbol string on this basis to

assess in advance the possibilities of each path of the

analysis [9].

Finally let us mention the question as the last of

the questions of tactics:

/iv/ How to find the way from an' illegal path back

to a legal one?

12

This is the task that must somehow be solved by the

parsing algorithm. So it is not enough to give a sign or

~flag" at the points where the decision may perhaps be a

failure. /i/ It must be ensured that the state prior to

commltti~ the error is reconstructed. /ii/ It would be

advantageous to return to the state immediately prior to

committing the error thus avoiding unnecessary delays.

Hever%heless9 there exist fine algorithms with no

assurance that every error could be corrected. One of them

is the well-known 'compiler compiler' that would never

reinterpret a part of the symbol string if the part has

once been accepted, consequently it is unable to recognize

certain structures.)

One of the possible solutions to the problem in

question is to have the "current state" of the analysis

stored whilst proceeding so that it could be accessed

later on. What we have termed "current state" here may

include all the half-finished and abandoned rule

applications that could be continued only after other

rules have been applied. Whenever reaching back for

a previous "current state" the possibilities that have

ceased to exist in the meantime can always be cancelled.

/The techniques followed for practical realization may

vary depending on the amount of information to be stored,

on the msmor~ area available for the working fields~ etc.

(In most cases some kind of a push down store is applied.)

13

4. The strate~iy of anal~sis I.

The problems mentioned so far are common in varying

degrees for all parsing systems, the ways they are solved

have no decisive influenc~ o,1 the whole flow of analysis

/though they are of decisive importance as far as efficiency

is concerned/.

T.V. Griffiths and S.R. Petrick base the determination

of the types of parsing systems on two considerations EI~

/whilst stressing that 'some procedures are described in

these terms only with difficulty' and 'others seem to

allow no such classification'/:

/i/ In what direction does the parsing proceed -

is it a top-to-bottom or a bottom-to-top analysis?

/The third type mentioned - 'direct substitution

algorithms' - is a subclass of the bottom-to-top

algorithms./

/ii/ Does the algorithm apply any means of a preven-

tive reduction of the number of blind alleys, i.e.

for increasing the 'selectivity' of the algorithm?

Their most important findings concerning the effi-

ciency of the different types of algorithms are as follows:

/a/ Algorithms proceeding from top to bottom -
I . .

especially those of the direct substxtutlon type -

are the more efficient ones.

/b/ Methods of increasing selectivity are of no

special importance in the case of top-to-bottom

14

analyses but they do considerably increase the

efficiency in the case of bottom-to-top analyses.

/c/ Efficiency is demonetratably influenced by the

asymmetxT/left-branching or right-branching/ of

the structure to be analyzed. In the case of

analysis proceeding from top to bottom it is in-

fluenced in the reverse direction if compared

with the analysis proceeding from the bottom up-

wards. /We assume that the analysis proceeds

either from right to left in both cases or from

left to right in both cases./

They considered the parsing time of the following

sentence types:

ab n anb a% n abncd

left- right- embedding compoun d

branching branching

/left-branching

/'regressive' /'progressive' with respect to

in Yngve's term/ in Yngve's term/ recursivity/+

Parsing time as a function of sentence length in-

creases - according to Griffiths' and Patrick's date -

as follows:

*The grammar given would have allowed right recursivity

as well /abncdm/ but in the measurements only the above

restrictions of grammar are dealt with.

ab n

i ' top-to- non-select. I selective 1

bottom q u a d a t i c

bottom- I i n e a r I
to-top ~. I

a%

non-select, selective

linear

exponential linear

/
I
a

S

A / \b
/ \b

a/S\~
/\

8 ".

\
B

top-to-

bottom

bottom-
to-top

anb n abncd

non-select, selective

linear

exp° linear

non-select, selective

exponential

exp. cubic

a/~\b
a S b

/ \
a b

A/\ B
/\ I\~

A bB

• . \ b i n A" b
I

a

16

According to GrifTiths's and Patrick's data it is

the bottom-to-top selective parser alone that is able to

analyze sentences of the last, comparatively simple type

grammar with a better than exponential efficiency.

What are the underlying reasons for the results

obtained by Griffiths and Petrick?

/I/ Bottom-to-top algorithms are characterized by the

fact that they take their start from what actually exists

instead of looking for what "could be" ~llJ.

In the case of exceedingly extensive ATsm~ars the

top-to-bottom analysis must work with a huge number of

potential possibilities and the elements of the symbol

string to be analyzed will but slowly filter out the

possibilities that may not be realized.

/ii/ Selectivity, in the sense Oriffiths and Petrick

use the term, does not influence all this to any degree as

the :filtering on the basis of a precedence-matrix extends

only to testiv~ the first element. It will be shown later

on that selectivity can be considerably increased and,

going even further, it could be made the basis of the

strategy of the analysis.

/iii/ In the case of bottom-to-top analysis the

situation is entirely different. Here the seemingly

identical apparatus works with a much greater efficiency.

 t/ /the nook ead" condition s ested by etian

17

/i.e. the possiblli~y of the resultant symbol aohleving

its aim oheok~ the uompatlblllty/ one level higher up and

t h e d i s t a n o e f rom t h e t o p i s so muoh l e s s . / b / Here on17

euoh r u l e s a r e t o be r e a l i s e d i n whioh a l l t h e oomponen ts

oan be f o u n d , t h e o t h e r s a r e o m i t t e d i n t h e o o u r s e o f t h e

r u l e o o n t r o l s . I t i s o u t o f t h e q u e s t i o n t h e r e f o r t o r e g a r d

t h i s e e l e o t i v i ~ y a s a n a l o g o u e w i t h t h e t o p - t o - b o t t o m s e -

leetlvi~y that is based on the flret ~ i of the lowest

level.

/iv/ Griffiths'e and Patrick's measurements of the

effect of the asymmetry of sentences on the efficiency of

the analysis are a practical justification of an observation

I made in 1964. In an article about Yngve's hypothesis ~13j

I developed the idea that for lar~uages that have mostly

"progressive" /right-branching/ structures it is the right-

to-left analysis that is more effective in the case of ana-

lysis from bottom to top. /The right-to-left analysis is

equivalent of course with a left-to-right analysis in e

system that is a mirror image of the original./

In case of pure structures the explanation of the

phenomenon is simple: In a right-branching structure the

number of erroneous linkinge is started at the end of a

sentence. Let us take the example from the above mentioned

article of mine:

8 H a s T e] ~ o p o T e o p e M o l l p e ~ e z e z .

18

Its processing from right to left is very simple:

8 H e e T e l m o P o T e o p e x o n p e x e l a x

J

J

]

If, however, the analysis is started from the

beginning of the sentence we get erroneous /or incomplete/

linkages again and again:

]~K B H e e T e

aHaeTe ~ O r O

Msoro ~ e o p e ~

In the case of complex structures the situation is

more complicated. In this case the effectivity greatly

depends on the method used for eliminating the impasses.

/On the disadvantages of vertical analysis see the

next para~rraph. /

19

5o The strategy of ~sis II.

When determining the type of analysis apart from its

starting point it is also very important to know along

what paths the analysis proceeds towards its goal, or in

other words in what sequence the tests are carried out

together with the inseparable question of in what form or

structure the part-results su'e stored.

On the basis of these considerations there are two

basic types of Parsers.In theory this classification is

independent of the fact whether the analysis proceeds from

the bottom upwards or from the top downwards.

/i/ Those parsezs that proceed with "msxim~ width"

from level to level working on the full symbol string,

first produce all the reductions that may be achieved by

applying a single rule~ than those that may be obtained by

applying two rules and so on until the part-structu_~es thus

obtained are &Tadually linked. /In the analysis that

proceeds from top downwards, these correspond to the

derivations produced by applying two, there, ... rules,

followed by the comparison of the terminal symbols thus

obtained with the symbol string being analyse~./

/ii/ The ps.rse~sthat proceed with a "minimum width"

and the "steepest slope', while gradually extending the

20

elements of the symbol string take the first opportunity

to apply a rule and will not extend the analysis to a new

symbol until there are new rules that could be built on

the rules applied so far.

We could mention as an example for the first method

the ~kai-Nagao algorithm [14] [15] the Cocks algorithm

[16] or its application by Kuno to context sensitive

languages [17]/the same strategy is applied by Vsuquois in

his analysis of Russian/. The algorithms by Woods [18] by

Boracsev [19] and the DSmalki-Varga algorithms [5] [6] are

exnmples of the second method.

Both methods have their advantages and disadvantages;

perhaps it may be :useful to draw the attention to them.

The great advantage of the analysis that proceeds

from level to level is the ease with which in case of

appropriate storage the part-analyses that could be

continued alon E the same line, are contracted /see

Griffiths-Petrick: "Merging similar sections of different

[=ing aohine] pathsV.
Its disadvantage is the fact that

a/ relatively large number of independent part structures

has to be stored,

b/ it needs relatively lengthy tests to detemine whether

the individual part structures are compatible.

21

The strategy of "maximal hierarchization" is more

advantageous beyond doubt as far as econom~ in storage is

concerned because in this case s single push down store

will suffice to store the results and all the paths that

have proved incorrect may be removed once and for all from

the push down store together with all the derivations. This

principle may be formalized as follows.

Let us denote according to inverse Polish notation

the result of the rule applied to the elements

8 k ak+l.., ak. r with the result B m as

r
a k ak+ I... ak+ r B m • In other words let %he

elements of the symbol string that we applied the rule

remain in the symbol string and let us simply add to the

end of the string the symbol obtained as the result of the

rule application.

Accordingly the resulting symbol string will be

mini al'''ai ~i rl& i

after applying the first applicable rule,

Let us suppose that there are a% most m-I more

applicable rules following the first one while no new

symbol is read /m- ~ O/

The symbol string will become

rl rm i
%...a i ... Bm. rj-

m 1

22

~Fnile continuing the application of this principle

the symbol string will be increased by new terminal and

non-terminal symbols:

r m r .

al.." ai i .. Bm ai+l aj o rain sin max

j m i ;

~I r rj Brm+l r n
maXn mini maxm minl 81"'" ai "''Bin m ai+l'''aj m+l Bn

If the analysis gets into an impasse and cannot continue,
r

then we have to return to the symbol BsS last applied,

remove it and continue the analysis applying the above

principle. /First an attempt is made at applying another

permissible rule in the same place and only if this fails

shall we take a new a t symbol end continue the analysis./

The return from an impasse always means the deletion

of the last non-terminal symbol and the reconstruction of

the symbol string following it. /We would like to mention

that this principle of analysis may be quite easily adopted

to analyze context sensitive languages as well/.

This undoubtedly elegant principle of application

produces the first possible analysis relatively rapidly,

in its canonic form.

The increased selectivity of the analysis gives us a

procedure that could be very well used in practical

applications. Going further, having obtained the first

23

analysis if the analysis is continued on the same principles

/just as if the first correct analysis were in an impasse/

all the other analysis ms,V be likewise produced.

The disadvantages of the applied strategy of analysis

are as follows:

/a/ If right at the beginning of the analysis we have

taken an incorrect path, then the correction of this error

may only be done after all the following and in part

independent applications of the rules have been ideleSad. This

means that the correct, or perhaps the only possible part-

results are lost: after putting the error right they have

t o be re-generated.

/b/ The position is somewhat similar as far as the

erroneous part-results are concerned: the analysis may get

into a "local" impasse several times.

/c/ A new, different system of storage and searching

must be provided if we wish to ensure a newer generation

of the Identloalcontinuations -- supposing that previously

some kind of a change took place in the determined

structure.

24

6. A new strateKy su~j~ested for analyzin~CF lanAmaKes

The exponential increase in the time of analysis in

various systems of analysis is obviously due to the

increase in the number and depth of impasses, to their

various branches-- in short to their dangerousness

increasing with the length of the symbol string.

This is the dangerous point I tried to dodge by

elaborating a parsing system that applies selectivity not

as an additional device for increasing the efficiency of

some method but as an independent method itself.

The linesrity of the increase in the process of

analysis may be best achieved if the symbol string to be

analyzed can be segmented in accordance with the highest

level rules applicable and these parts could be analyzed

sepsratedly. If several parsings can be assigned to any of

these segments /cf. what we have said about homor~ym~ on p.5/

the structures corresponding to the whole sentence can be

produced from the local part-results by combinatorical

means.

Segmentation requires the following apparatus:

/i/ the transitive Initial matrix of the rules

IBla, n/l

/ii/ the transitive continuation matrix of the rules

/c/a,n//

25

/iii/ the transitive end matrix of the rules /E/a,n//

/ivy/ the transitive Initial matrix of the i th

r u l e component /Bila,n//
Ivl/ the transitive continuation matrix of the i th

component /Ci/a,n//

/vii/ the transitive end matrix of the i th component

/Ei/a,n//

/vii/ the matrix of the number of rule components

/Vii ~n/l

The structure of the transitive initial ma£rix of

the rules is almost the same as that of the so called

precedence /or complete connectivity/ matrix. The

differences show up in two fao%s,namely

a/ the lines correspond to the terminal elements only

and not to all the elements of the vocabulary V;

b/ the columns are assigned to rules of the grammar

and not to the symbols.

Thus it is a Boolean matrix B/a,n/; its element

B/a,n/ is a truth function whose value is t if and only

if the grammar allows the terminal symbol ~ to be the •first

element of the terminal rewritin~ of the n th rule.

The transitive continuation matrix of the rules

C_/a,n/ is a Boolean matrix whose element C/a,D/ is t if end

only if the terminal symbol a is whichever but not the

first element of the terminal strings of the n th rule.

The value of an element E/a,rg of the transitive end

26

matrix of the rules is t if and only if the terminal

symbol a can be the last element of the terminal strings

of the n th rule.

It follows from the definition that

B/ap,n/ = E/ap,n/ and C/aq,n/ = E/aq,n/

may occur but B/~,n/ = E/ap,n/ = C/sp,n/ may not.

The Initial, continuation and end matrices of the

rule components can be defined in s similar way, so it

will be sufficient to give the definition of the initial

matrix of the i th rule component:

The value of an element B i /a,n/ of the initial

matrix of the i th rule component B i /a,n/ is t if and

only if the non-terminal symbol a ms~v be first element

of the terminal strings of the i th direct component of

the n th rule.

The line of thought of the algorithm is as follows:

Tests ape carried out on two levels: on the level of

inter-Pule linkages /from top downwards/ and on the level

of inter-terminal-symbol linkages /from left to right/. In

each successive step of the test the individual components

of the rules are made to correspond in the sequence of the

components to a certain series of the terminal symbols of

which the given component may be built up. By continuing

this process finally either we arrive st the terminal ending

in case of all oomponents or the given segmentation is found

27

to be incorrect.

In case of incorrect segmentation first the

permissible branches of the latest segmentation are tested

by the algorithm. In our experience the selectivity of the

system is considerable. Therefore even the storage of

relatively small quantity of information allows a rapid

examination of all the possibilities.

During segmentation we apply a "principle of

segmentation" that is analogous "4;o the principle

discussed in connection with the "maximum hierarchization":

the shortest component that is nearest to the beginning of

the seEment or to the end of the previous component, is

taken and used until it becomes evident that for some

reason the given segmentation is not applicable. In this

case an attempt is made at solving the situation by

shifting the last border of segmentation to the right: only

if this leads to no result, is the previous border of

segmentation changed. The outstanding effectivity of the

method applied is due to

8/ making best use of the bottle-neck for the

reduction in analyzing tim;

h/ the fact that the tests for the possibilities of

various part-segmentations can be q u i c k l y
performed;

c/ the possibility of testin~ each segment in

complete separation from all the other segments;

d/ the fact that the twoaided approach leads to much

fewer unnecessqry pert results than either Cock's

or the well-known top-to-bottom algorithms.

28

BiblioEraph~

1 Berge, C. Th~orie des graphes et see applications,

Dunod, Paris, 1958.

M Ginsburg, S. The Mathematical Theory of Context-Free

Languages, McGraw Hill, New York, 1966.

3 Algol-68. MR 95. /mimeographed/

4 Shrejder, Ju. A. Teorija tolerantnosti, Nauchno-

Texnieheskaja Informacija, Ssro 2

5 DSmSlki, B. Voprosy sintaksicheekogo analiza dljs

formal'nyx jazykov, Computational Linguistics 5,

pp. 41-93.
6 Varga, D. Problems of Machine Analysis, Linguistica

Antverpiensia If. pp. 415-428.

7 Knuth, D.E. On the Translation of Languages from

Left to Right, Information and Control Vol. 8,

NO 6, p p . 607-639.

Kaufman, V. Sh. 0 raspoznavanii nekotoryx svojstv

kontekstno-svobodnyx grammatik, l-ya Vsssojuznaja

konferencija po programmirovaniju, Kiev, 1968.

8 Ir~erman, P.Z. A Syntax-Oriented Translator, Academic

Press, New York, 1966.

9 Unger, S.H. A Global Parser for Context-Free Phrase

Structure Grammars, Comm. ACM, Vol. ii, No 4, pp.

240-247.
I0 Griffiths, T.V., Petrick, S.R. On the Relative

Efficiencies of Context-Free Grammar Recognizers,

Comm. ACM, Vol. 8. No 5, pp. 289-300°

ii Cf. Vakulovskaja, G.V., Kulagina, O.S. Ob odnom al-

gori1~e sintaksicheskogo analiza russkix tekstov,

Proble~ kibernetiki 18, p. 218.

12 B a s t i a n , L. A P h r a s e - S t r u c t u r e L a ~ u a g e T r a n s l a t o r ,
AFCRL Rep. 62-549, AF Cambridge Research L a b s . ,

Bedford, Aug. 1962.
13 rares , D. Yr~ve's Hypothesis and Some Problems of

the Mechanical A n a l y s i s , Computat ional L i n g u i s t i c s

3, pP. 47-72.
1 4 Saka i , I . S y n t a x i n U n i v e r s a l T r a n s l a t i o n , PrOeo

1961 I n t e r n a t . conf . on MT of LanguaEes and
Applied Language Analysis, London, 1962, pp. 59~-608o

15 NeEao, M. Studies on LanEuaEe Analysis Procedure end

Charectel- Recognition, Eyoto University, 1965.

16 Cf° Hsys, D.G. Automatic ~e-Data Processing,
Computer Appllcatlons in the Behsviorel Sciences t
Prentice-He11, Englewood Cliffs, N.J., 1962, pp.

394-421.
17 Kuno, S° A Context-Sensitive Reco~ition Procedure,

NSF-18, &u~. 1967. VII-I-28o
18 Woods~ W.A. Context-Sensitlve ReeoEnition~ NSF-18°

£ug° 1967. VIII-I-23.
19 Borsceev, V.B°, Efimova, E.N., 0 sokreshchenil pete-

bore prl sinteksicheskom anallze, Neuchno-Texni-

cheskaje Informacija, 1967, No I0, pp. 27-33.

