1. The number of all the possible structures as a
function of the length of the sentence

As soon as practical applications are considered
the efficiency of the parsing method is of fundamental
importance whether natural or programming langusges are
to be processed. The problem of efficiency arises because
the relationship between the length of a string of symbols
and the number of structures that may in theory be
aséigned to the string is far from linear, the growing
number of symbols entails a much more rapidly growing
number of possible structures.
' For CF grammars it is comparatively easy to determine
how the number of structures depends on the length of the
string. Considering binary branchings only and excluding
the possibilities that arise from having different labels
attached to one node

£(a) 21— (2:1-1)

2n-1 n-l

is the number of different trees that can be assigned to

a linear string of n elements [i]. This means that for a
10 element string the number of different trees is slightly
less than 5000, for a 20 element string thie number

becomes more than 1.75 milliard.
To include nom-binary branchings as well I suggest

the following recursive formula

&Y/ = g/f2f =1
n-2 n-3

g/n/ =2 [8/2/52; 8/ + &/3/ Zf &+ eee
= J=

2
eee + 8/n=2/ Z &/ + g/n=1/ yll} +1
J= s

where n is the number of elements in the string.
Accordingly, more than 100 000 different structures can
be assigned to a 10 element string, and 1.6 x 1012

different structures to a 20 element string.

Let us stress again that what we have calculated
‘here is the number of the essentially different
derivations, i.e. the number of those yielding different

results. The number of possible derivational paths for 10

elements is 18 times larger than the number of the
different results, for 20 elements the number of paths

is 750 times larger than that of the different structures
(2% 1.2 X 1018) .

2. Syntactic embiguities

Netural languages utilize but a small fraction of
these possibilities. As to the number of possible stru-
ctures of concrete sentences, the syntactic restrictions
are very strong yet far from sufficient to yield inform-
ation for unambiguous assignement. The number of stru-
ctures sllowed by the formal syntactic rules is in most
cases definitely larger than the number of structures a
human being becomes aware of in the course of speech.

A well-known point is that unambiguity caennot al-

» ways be ensured by grammatical means even for artificial
languages whose structure is immensely less complicated
[2]. It is worth mentioning that the authors of ALGOL-68
decided to let some ambiguities remain in the language
as it could have been eliminated but by making the gram-
mar a lot more complicated [3].

Where does the majority of syntactic ambiguities
in natural languages come from?

1. There is a number of words with varying scopes
and vice versa: some worde may fall within the
scope of several different words and it cannot be
determined by formel syntactic means - nor yet

by semantic ones at times - whose socope they really
fall within. These two things often combine, espe-
cially in complex genitive constructions.

A fine Russian specimen of which is as
follows:

e+ +BCEXOACTBEE XPYIEX SAXOHOB COXDAHEHNA K
ocobeHnocrell msamuoxefiorsns wACTEN...
The corresponding string of symbols:

4
N N N
Pr Ag g Mg E Ng g Ng

The rules of reductiona:

N
7i/ A&, + <4 B8 X=wp
g NP g
g
N N
7ii/ K B 2+ B> = Np
NP NP g
1 &
' N
2iii/d 8>+ B +{ & >= NP
NP 1 g
g
Ng
/ivz Prf + w (= C
g

Apparently a number of different structures can be
determined by changing the order of rule application.

2. Another source of syntactic ambiguities is that
not even the string of symbols /categories/ can
always be unambiguously assigned to the sentence,
i.e. homonymy may often appear on the morphological
level. Homonymy arises either because formel diffe-
rentiation between parts of speech is absent /e.g.
in Engiish/ or because the correspondence of the
functions of words and the morphological means of
expressing them is ambiguous, the morphological
functions are not unambiguously expressed/e.g. in
Russian/. Completely independent words with or with-
out affices.too can of course agree in form,

Still one seldom comes across a sentence that could
be assigned several entirely different structures. Sen-
tences of this type are usually puns or grammatical
examples /cf. "Time flies like an arrow"/. It is the.

so-called local syntactic ambiguity that normally troubles

us, i.e. a part of the sentence that can be assigned
several different part-structures without influencing the
remainder of the sentence-structure. Now if there are
several locally ambiguous parts in the sentence and they
are independent from each other, the number of ambiguities
for the whole sentence will considerably increase: it will
be the arithmetic product of the numbers of independent
local ambiguities.

3. Questions of tactics

The above numeric data clearly show how hope-
less it is to simple proceed by checking on all the theo-
retically possible structures. But it is also apparent
that syntax-directed parsing systems will feil in a con-
siderable number of cases just because the sentence
structure is syntactically undetermined [4]. The develop-
ment of an effective analyzer is at least as much a
mathematiceal as a linguistic problem. ‘

The most important demands a parsing algorithm
should meet are as follows:

/i/ It should be able to determine all the conceiv~
able parsings that a given sentence is assigned by a
particular grammar.

/ii/ It should be consistent in the sense that one
parsing could not be arrived at but in one single way.
/It should be a ’'one-to-one algorithm?’,/

/iii/ In some way or other it should counterbalance
the immense growth of the number of possible structures.
The purpose to be strived for is a linear relationship
between the steps to be taken and the 1length of the

sentence.

The efficiency of the algorithm depends considerably
on factors that are independent of the perticular method
one has chosen to épply. These problems arise with any
;glgorithm even if in different forms. The most important
’tactical’ questions of this type are as followa;

/i/ Assuming a lerge set of rules how does the
algorithm select the rules that are /possibly/ to be
applied?

/ii/ How does it check for the conditions of
applying them?

/iii/ How does it recognize ’blind alleys’ i.e.
illegal paths /if any/?

/iv/ How does it return from the illegal path to
the legal one /or to the one that has not proved to
be illegal as yet/?

Some of the well-known methods for solving /i/ are
as follows:

/8/ Each rule is explicitly assigned the set of rules
by which it could be continued. But ¢hoosing this method
for a complicated grammar with a large number of possi-
bilities one might face troubles,

/b/ The rules are divided into several groups on the
basis of different characteristics such as the number or
the character of the symbols within the rule etc.
Searching is then carried out within a comparatively small

set of rules,

/c/ Each symbol is assigned a set of all the rules
this particular symbol appears in. Assignment can be done
according to the position numbers within the rules. The
so called initial symbols, i.e. symbols in first position,
play then a distinguished role in the rule selection.

Whatever method one applies one may choose one of
the several possible ways of practical realization. In
case of /c/ the choice made will be of immense importance
/e.g. Tules arranged in matrix form, chainlike
representation etc./.

Problems /i/ and /ii/ are strongly interconnected.
How are we to decide whether the conditions of applying a
rule are met?

In the case of CF grammars checking could be carried
out quite easily. For top-to-bottom analysis all we have
to do is the identification of the left-hand side.symbol of

the rule.For bottom—to-~-top analyesis based on normal form CF
rules /i.e. binary branchings/ only, once again it is not
too difficult to check a twodimensional table for the
possibilities of connecting a pair of symbola.

If general form CF or CS grammars sre applied, the
problem is not trivial at all, it turns out to be that of

identifying strings of symbols. It could of course be

solved in a trivial way but this would require an awful

lot of work to do. B. Dm3lki has developed a moat

elegant method that would examine a whole series of rules
at once'. The checking is performed on Boolean vectors,
and the point D8mblki has made an excellent use of is that
computers carry out logical operations on all the bits of
a machine word at the same time [5].

Two subproblems connected with checking rules should
be discussed: v

/8/ When should it start at all? Suppose that the
symbol string is processed in sequential order
/left-to~right or right-to-left/ and a possibly applicable
rule or a given context should be checked for. Then we
could either go back to symbols that have already been
examined /and check them repeatedly when checking for the
applicability of various rule¢/ or have already begun and
completed certain examinations so that we finished
checking by the time its result is needed. /The second
solution could of course be spplied only if an appropriate
mechanism automatically provides the checking for .the
conceivable conditions and the /gradual/ cancelling of the
non-realizable possibilities./

/b/ Is some kind of an additional examination
necessary before the checking is completed? Namely it might
turn out that the whole checking was superfluous because
its result cannot be used later on or it will not lead to

a correct result.

We have come very near to /iii/, i.e. to how the
occasional impasses /blind alleys/ could be recognized in
the course of the analysis? This is a cardinal problem
concerning the efficiency of automatic snalysis. The
growing length of the sentence /aymbol string/ entails not
only a growing number of possible structures but the
number of inappropriate part-structures growing as well,
These ’torsoes’ correspond to certain parts of the sentence
but are incompatible with the remainder of it. What is
more, the longer a sentence the more levels it may have
i.e. the deeper its structure can be. This holds for the
blind alleys as well: the longer the sentence the deeper
tﬁe blind alley can be, the more branches and the more
valid elements it may contain. Sentences that are
monosemantic though syntactically ambiguous could be
thought of as bottomless blind alleys not yet explored
whose exploration needs either a wider context or the use
of interrelationships not contained in the text.

The problem once again becomes twofold:

af What is the criterium of having got into a blind
alley?

b/ How could we prevent getting into a blind alley
at least in some cases? '

The answer to these questions may be different, of
course, for each algorithm and plays a subordinate though

extremely important role regarding the "stirategy" applied.

10

Just to give an example I would like to mention a
most elegant method of defining and “"calculating” the
criterium of blind alleys using an algorithm built uwp in
terms of logical vectors. DSmdlki [5] -~ who condenses the
information related to the hypothetically accepted part
structure and to the given symbol string under processing
into a state vector defined recursively -~ applies the
following criteria to determine the impossibility of
continuing the analysis along the given line

(T@)vB)AH [x,,,] = ©
Accordingly the new symbol *t+1 to be processed may
neither continue the paths the previous vector of state
contained that have proved possible so far, i.e.

TGQt)A H {?t+1] = 0, nor begin a new rule, i.e.

BAH [x,,,] = 0.

The only handicap of D¥mélki’s method is that impasses
can be recognized only after the algorithm has got into
them -~ the algorithm cannot pick out the paths that will
leed into an impasse later on. So we have modified the
algorithm and instead of using Démdlki’s vector B - that
would’activate’ the first position of each of the rules -
we let only those of the rules become active that provide
/direct or indirect/ continuation of the paths that have

already proved to be legal [6].

11

Experience so far shows three practical methods of at
least partial avoidance of impasses: [i/ teking into
consideration the context; /ii/ meking use of the
transitive connectivity of the rules; /iii/ checking
ahead the number of symbols not yet processed.

Taking into consideration the context means making
use - if possible -- of only one direction of the con~
text to avoid the repetition of the tests performed.
Today such analyzing gremmars play an important role in
the analysis of artificial languages [7].

In my opinion making use of the transitive joining
of rules has yet many important possibilities to offer.
P. Z. Ingerman's anelysis is a good example of experiments
in this direction [BJ.

Taking into consideration the number of symbols not
yet processed, saves the analysis many unnecessary tests.
There have been attempts at doing a preliminary global
analysis of the complete symbol stiring on this basis to
assess in advance the poasibilities of each path of the
analysis [9].

Finally let us mention the question as the last of
the questions of tactics:

/iv/ How to find the way from an' illegal path back

to a legal one?

12

This is the task that must somehow be solved by the
parsing algorithm. So it is not enough to give a sign or
*flag® at the points where the decision may perhaps be a
failure. /i/ It must be ensured that the state prior to
committing the error is reconstructed. /ii/ It would be
advantageous to return to the state immediately prior to
committing the error thus avoiding unneceasary delays.

(Nevertheless, there exist fine algorithms with no
assurance that every error could be corrected. One of thenm
is the well-known ’compiler compiler’ that would never
reinterpret a part of the symbol string if the part has
once been accepted, consequently it is unable to recognize
certain structures.)

One of the possible solutions to the problem in
question is to have the “"current state"” of the analysis
stored whilst proceeding so that it could be accessed
later on. What we have termed "current state™ here may
include all the half-finished and abandoned rule
applications that could be continued only after other
rules have been applied. Whenever reaching back for
B previous "current state" the possibilities that have
ceased to exist in the meantime can always be cancelled.
/The techniques followed for practical reslization may
vary depending on the amount of information to be stored,
on the memory area available for the working fields, etc.

<In most cases some kind of a push down store is applied.)

13

4. The strategy of analysis I,

The problems mentioned so far are common in varying
degrees for all parsing systems, the ways they are solved
have no decisive influence ou the whole flow of analysis
/though they are of decisive importence as far as efficiency
is concerned/.

T.V. Griffiths and S.R. Petrick base the determination
of the types of parsing systems on two considerations Ehﬂ
/whilst stressing that ’some procedures are described in
these terms only with difficulty’ and 'others seem to
aliow no such classification?/:

/i/ In what direction does the parsing proceed -

is it a top~to-bottom or a bottom-to-top analysis?
/The third type mentioned -~ ’direct substitution
algorithms?® ~ is a subclass of the bottom-to~top
slgorithms./

/1ii/ Does the algorithm apply any means of a preven-
tive reduction of the number of blind alleys, i.e.
for increasing the 'selectivity’ of the algorithm?

Their most important findings concerning the effi-

ciency of the different types of algorithms are as follows:

/a/ Algorithms proceeding from top to bottom ~
especially those of the direct substitution type ~
are the more efficient ones.

/b/ Methods of increasing selectivity are of no
special importance in the case of top-to-bottom

14

analyses but they do considerably increase the
efficiency in the case of bottom-to-top analyses.
/c/ Efficiency is demonstratably influenced by the
asymmetry /left~branching or right-branching/ of
the structure to be enalyzed. In the case of
analysis proceeding from top to bottom it is in-
fluenced in the reverse direction if compared
with the analysis proceeding from the bottom up-
wards. /We assume that the analysis proceeds
either from right to left in both cases or from
left to right in both cases./

They considered the parsing time of the following

sentence types:

abt® a”b a™p" ab’cd
left- right- embedding compound
branching branching
/left-branching
/’regressive’ /'progressive’ with respect to
in Yngve's term/ in Yngve’s term/ recursivity/*

Parsing time as a function of sentence length in-
creases - according to Griffiths' and Patrick’s date =

as follows:

*The grammar given would have allowed right recursivity
as well /ab”cd”/ but in the measurements only the above
restrictions of grammar are dealt with.

15

top-to-
bottom

bottom-
to-top

top~to-
bottom

bottom-
to-top

ab® ab
non-select. | selective||non-select. | selective
quadratic linear
]
|
linear exponential linear
]
/ S\ 2N
A b a B
J/ AN /// \
- b a
/ AN
? B
a b
a™p? ab’cd
non-select.| selective| [non-select.| selective
linear exponential
eXpe linear exp. cubic

a///’i\\\\b
I\

N

a b

16

N
A/\b B/ \d
A..' ’\b b/\c
|

Aceording to Griffiths’s and Patrick’s data it is
the bottom-to-top selective parser alone that is able to
analyze sentences of +the last, comparatively simple type
gremmar with a better than exponentisl efficiency.

What are the underlying reasons for the results
obtained by Griffiths and Petrick?

/3/ Bottom—to-top algorithms are characterized by the
fact that they take their start from what actually exists
instead of looking for what "could be” [11].

In the case of exceedingly extensive grammers the
top-to~bottom analysis must work with a huge number of
potential possibilities and the elements of the symbol
string to be analyzed will but slowly filter out the
possibilities that may not be realized.,

/ii/ Selectivity, in the sense Griffiths and Petrick
use the term, does not influence all this to any degree aa
the :filtering on the basis of a precedence-matrix extends
only to testing the first element. It will be shown later
on that selectivity can be considerably increased and,
going even further, it could be made the basis of the
strategy of the analysis.

/iii/ In the case of bottom-to-top analysis the
situation is entirely different. Here the seemingly
identical apparatus works with a much greater efficiency.

But /a/ the "look ahead® condition suggested by Bastian [-_12]

17

/i.e. the poasibility of the resultant symbol achieving

its aim checks the compatibility/ one level higher up and
the distance from the top 1s so much less. /b/ Here only
such rules are to be realised in which all the components
can be found, the others are omitted in the ocourse of the
rule controls. It is out of the question therefor to regard
this selectivity as analogous with the top-to-bottom se-
lectivity that is based c;n the firat symdol of the lowest
level.

/iv/ Griffiths’s and Patrick’s measurements of the
effect of the asymmetry of sentences on the efficiency of
the analysis are a practical justification of an observation
I made in 1964. In an article about Yngve’s hypothesis El}]
I developed the idea that for languages that have mostly
“progressive” /right-branching/ structures it is the right-
to-left analysis that is more effective in the case of ana-
lysis from bottom to top. /The right-to-left analysis ia
equivalent of course with a left-to-right analysis in a
system that is a mirror image of the original./

In case of pure structures the explanation of the
phenomenon is simple: In a right-branching structure the
number of erroneous linkings is started at the end of a
sentence. Let us take the example from the above mentioned

article of mine:

BH spaere NHOI'O TEOPEM O Npejpelxax,

i8

Its proceseing from right to left is very simple:

Be 3HeeTe NHOI'O TEOP6N O Ipexexex

\ 7
v
u v/
-
. 7
=

If, however, the analysis is started from the
beginning of the sentence we get erroneous /or incomplete/

linkages again and again:

B sHaere
3Ha&TE MHOIO

HHOT'O TeopeM

In the case of complex structures the situation is
more complicated. In this case the effectivity greatly
depends on the method used for eliminating the impasses.

/0n the disadvantages.of vertical anelysis see the

next paragraph./

19

5o The strategy of analysis II.

When determining the type of analysis apart from its
starting point it is also very importani to know along
what paths the analysis proceeds towards its gosl, or in
other words in what sequence the tests are carried out
together with the inseparable question of in what form or

structurethe part-results are stored,

On the bagis of these considerations there are two
basic types of persers.In theory this classification is
independent of the fact whether the analysis proceeds from
tﬁe bottom upwards or from the top downwards.

/1i/ Those parsers that proceed with “maximum width®
from level to level working on the full symbol string,
first produce all the reductions that may be achieved by
applying a single rule, than those that may be obtained by
applying two rules and so on until the part-structures thus
obtained are gradually linked. /In the analysis that
proceeds from top downwards, these correspond to the
derivations produced by applying two, there, ... rules,
followed by the comparison of the terminal symbols thus
obtained with the symbol string being analysed./

/ii/ The parsersthat proceed with é *minimum width"
and the “"steepest slope”, while gradually extending the

20

elements of the symbol string take the first opportunity
to apply a rule and will not extend the analysis to a new
symbol until there are new rules that could be built on
the rules applied so far.

We could mention as an example for the first method
the Sekai-Nagao algorithm [14] [15] the Cocke algorithm
ﬁﬁ] or its application by Kuno to context sensitive
languages [;TJ:Qhe same stirategy is applied by Vauquois in
his analysis of Russian/. The algorithms by Woods [18] by
Boracsev [19] and the Dom8lki~-Varga algorithms [5]{6] are
examples of the second method.

Both methods have their advantages and disadvantages;
perhaps it may be : useful to draw the attention to them.

The great advantage of the analysis that pfoceeds
from level to level is the ease with which in case of
appropriate storage the part-snalyses that could be
continued along the same line, are contracted /see
Griffiths-Petrick: *"Merging similar sections of different
™ El!uring Machine_] paths®/,

Its disadvantage is the fact that

a/ relatively large number of independent part structures
has to be stored,
b/ it needs relatively lengthy tests to detemine whether

the individual part structures are compatible.

21

The strategy of "maximal hierarchization" is more
advantageous beyond doubt as far as economy in storage is
concerned because in this case a single push down store
will suffice to store the results and all the paths that
have proved incorrect may be removed once and for all from
the push down store together with all the derivations. This
principle may be formalized as follows. .

Let us denote according to inverse Polish notation
the result of the rule applied to the elements

a B 1% 8 yr with the resgult Bm as

8y 8 qeee 8 0 B:1 + In other words let the
elements of the symbol string that we applied the rule
rémain in the symbol siring and let ue simply add to the
end of the string the symbol obtained as the reasult of the
rule application.

Accordingly the resulting symbol string will be
T

. 1
m;n aloocai Bl rlé i
after applying the first applicable rule.
Let us suppose that there are at most m-1 more
applicable rules following the first one while no new
symbol is read /m20/

The symbol string will become .
T r
s 1 m 2
max min &) ...8; B] wee B T r.£1
m i 1 m J

22

While continuing the application of this principle
the symbol string will be increased by new terminal and

non-terminal symbols:

. ry L b
min max min 8jee. 8 Bl oo Bm 8547 oo ajJ;
J m i
T r r. r
. . 1 m Jaml o n
mgf %1n m:f mir 8yee0 8y B1 ...Bm ai+1"'aj Bm+1 Bn

If the analysis gets into an impasse and cannot continue,
then we have to return to the symbol st last applied,
remove it and continue the analysis applying the above
principle. /First an attempt is made at applying another
permissible rule in the same place and only if this fails
shall we take a new a; symbol and continue the anelysis./

The return from an impasse always means the deletion
of the last non-terminal symbol and the reconstruction of
the symbol string following it. /We would like to mention
that this principle of analysis mey be quite easily adopted
to analyze context sensitive langueges as well/.

This undoubtedly elegant principle of application
produces the first possible analysis relatively rapidly,
in its canonic form.

The increased selectivity of the analysis gives us a
procedure that could be very well used in practical

applications. Going further, having obtained the first

23

analysis if the analysis is continued on the same principles
/just as if the first correct snalysis were in an impasse/
all the other analysis may be likewise produced.

The disadvantages of the applied strategy of analysis
are as follows:

/8/ If right at the beginning of the analysis we have
taken an incorrect path, then the correction of this error
may only be done after all the following and in part
independent applications of the rules have been .deleted. This
means that the correct, or perhaps the only possible part-
results are lost: after putting the error right they have
to- be re-geneorated.

/b/ The position is somewhat similar as far as the
erroneous part-results are concerned: the analysis may get
into a “local"™ impasse several times.

/c/ A new, different system of storage and searching
must be provided if we wish to ensure a newer generation
of the identical continuations —- supposing that previously
some kind of a change took place in the determined

structure.

24

6. A new strategy suggested for analyzing CF langusages

The exponential increase in the time of analysis in
various systems of analysis is obviously due to the
increase in the number and depth of impasses, to their
various branches -- in short to their dangerousness
increasing with the length of the symbol string.

This is the dangerous point I tried to dodge by
elaborating a parsing system that applies selectivity not
as an additional device for increasing the efficiency of
some method but as an independent method itself,

The linearity of the increase in the process of
analysis may be best achieved if the symbol string to be
analyzed can be gsegmented in accordance with the highest
level rules applicable and these parts could be analyzed
separatedly. If several parsings can be assigned to any of
these segments /cf. what we have said about homonymy on p.5/
the structures corresponding to the whole sentence can be
produced from the local part-results by combinatorical
means.

Segmentation requires the following apparatus:
/i/ the transitive 4initial matrix of the rules
/B/a,nt/
/ii/ the transitive continustion matrix of the rules

/C/a,n//
25

/iii/ the transitive end matrix of the rules /E/a,n//
/ivy/ the transitive 4nitial matrix of the i'"

rule component /B;/a,n//
/vi/ the transitive continuation matrix of the ith

component /C;/a,n//

/vi;/ the transitive end matrix of the i'" component
/E;/a,n//

/vii/ the matrix of the number of rule components
/V/i,n//

The structure of the transitive initial matrix of

the rules is almost the same as that of the so called
precedence /or complete connectivity/ matrix. The
differences show up in two facts,namely

a/ the lines correspond to the terminal elements only
and not to all the elements of the vocabulary V;

b/ the columns are assigned to rules of the grammar
and not to the symbols.

Thus it is a Boolean matrix B/a,n/; its element
B/a,n/ is a truth function whose value is t if and only
if the gremmer allows the terminal symbol a to be the first

h

element of the terminal rewriting of the nt rule.

The transitive continuation matrix of the rules
C/a,n/ is a Boolean matrix whose element C/a,n/ is t if and
only if the terminal symbol a is whichever but not the
first element of the terminal strings of the nth rule,

The value of an element E/a,n/ of the transitive end

26

matrix of the rules is t if and only if the terminal
symbol @& can be the last element of the terminal strings
of the nth rule.

It follows from the definition that

B/ap,n/ = E/ap,n/ and c/aq,n/ = E/aq,n/
may occur but EVap,n/ = E/ap,n/ = C/ap,n/ may not.

The 1nitial, continuation and end matrices of the
rule components can be defined in a similar way, so it
will be sufficient to give the definition of the initial

ith

matrix of the rule component:

The value of an element B; /a,n/ of the initial

ith

matrix of the rule component B; /a,n/ is t if and

only if the non-terminal symbol a may be first element

of the terminal strings of the ith direct component of

the nth rule.
The line of thought of the algorithm is as follows:
Tests are carried out on two levels: on the level of
inter-rule linkages /from top downwards/ and on the level
of inter-terminal-symbol linkages /from left to right/. In
each successive step of the test the individual components
of the rules are made to correspond in the sequence of the
components to a certain series of the terminal symbols of
which the given component may be built up., By continuing
this process finally either we arrive at the terminal ending

in case of all components or the given segmentation is found

27

té be incorrect.

In case of incorrect segmentation first the
permissible branches of the latest segmentation are tested
by the algorithm. In our experience the selectivity of the
system is considerable. Therefore even the storage of
relatively small quantity of information allows a rapid
examination of all the possibilities.

During segmentation we apply a “principle of
segmentation™ that is analogous <40 the principle
discussed in connection with the “maximum hierarchization®:
the shortest component that is nearest to the beginning of
the segment or to the end of the previous component, is
taken and used until it becomes evident that for some
reason the given segmentation is not applicable. In this
case an attempt is made at solving the situetion by
shifting the last border of segmentation to the right: only
if this leads to no result, is the previous border of
segmentation changed. The outstanding effectivity of the
method applied is due to

a/ meking best use of the bottle-neck for the
reduction in smalyzing time;

b/ the fact that the tests for the possibilities of
various part-segmentations can be quickly
performed; .

¢/ the possibility of testing each segment in
complete separation from all the other segments;

d/ the fact that the twosided approach leads to much
fewer unnecessgry part resultsa than either Cock’s
or the well-known top-to-bottom algorithms,.

28

1o

11

Bibliography

Berge, C. Théorie des graphes et ses applications,
Dunod, Paris, 1958, ‘ '

Ginsburg, S. The Mathematical Theory of Context-Free
Languages, McGraw Hill, New York, 1966.

A1gol-68. MR 95. /mimeographed/

Shre jder, Ju. A. Teorija tolerantnosti, Nauchno-
Texnicheskaja Informacija, Ser, 2

D8mb1ki, B. Voprosy sintaksicheskogo aneliza dlja
formal’nyx jazykov, COxhputational Linguistics 5,
PPe 41-93.

Varga, D. Problems of Machine Analysis, Linguistica
Antverpiensia II. pp. 415-428,

Knuth, D.E. On the Translation of Languages from

Left to Right, Information and Control Vol. 8,
No 6, pp. 607-639,

Kaufman, V. Sh. O raspoznavanii nekotoryx svojastv
kontekatno—évobodnyx grammatik, I-ya Vsesojuznaja
konferenci ja po programmirovaniju, Kiev, 1968,

Ingerman, P.Z. A Syntax-Oriented Translator, Academic
Press, New York, 1966.

Unger, S.He. A Global Parser for Context-~Free Phrase
Structure Grammsrs, Comm. ACM, Vol. 11, No 4, pp.
240-247.

Griffiths, T.V., Petrick, S.R. On the Relative
Efficiencies of Context-Free Grammar Recognizers,
Comm. ACM, Vol, 8. No 5, pp. 289~%00.

Cf. Vakulovskaja, G.V., Kulagina, 0.S. Ob odnom al~
goritme sintaksicheskogo analiza russkix tekstov,
Problemy kibernetiki 18, p. 218,

12

13

14,

15

16

17

18

19

Bastian, L. A Phrase-Structure Language Translator,
AFCRL Rep. 62~549, AF Cambridge Research Labs.,
Bedford, Aug. 1962.

Varga, D. Yngve’s Hypothesis and Some Problems of
the Mechanical Analysis, Computational Linguistics
35y PPe 47~T2.

Sakai, I. Syntax in Universal Translation, Proc.
1961 Internat. Conf. on MT of Languages and
Applied Language Analysis, London, 1962, pp. 593~-608.

Nagao, M. Studies on Language Analysis Procedure and
Character Recognition, Kyoto University, 1965.

Cf. Hays, D.G. Automatic Langusge-Data Processing,
Computer Applications in the Behavioral Sciences,
Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.
394-421.

Kuno, S. A Context-Sensitive Recognition Procedure,
NSF-18, Aug. 1967. VII-1-28.

Woods, W.A. Context-Sensitive Recognition, NSF-18.
4aug, 1967, VIII-1-23.

Borscsev, V.B., Efimova, E.,N., O sokrashchenii pere-
bora pri sintaksicheskom analize, Nauchno~Texni-
cheskaja Informacija, 1967, No 10, pp. 27-33.

